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A simple example

θ

g

λ

The period t depends on

λ, g, θmax.

But how?

Consider the units:

[t] = T; [λ] = L; [g] = LT−2; [θmax] = 1.

The only dimensionally correct combination:

t = f(θmax)

s
λ

g

Buckingham’s pi theorem formalizes this procedure.
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The pendulum equation

λθ̈ + g sin θ = 0
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The pendulum equation
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Motivated by earlier analysis, introduce dimensionless time t∗ by

t =

s
λ

g
t
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The pendulum equation

λθ̈ + g sin θ = 0

Motivated by earlier analysis, introduce dimensionless time t∗ by

t =

s
λ

g
t
∗

and get the dimensionless form of the equation:

θ̈ + sin θ = 0
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Edgar Buckingham (1867–1940)

Educated at Harvard and Leipzig, worked at the (US) National Bureau of Standards

1905–1937. (Soil physics, gas properties, acoustics, fluid mechanics, blackbody

radiation.)

On Physically Similar Systems: Illustrations of the Use of Dimensional Equations.

Physical Review 4, 345–376 (1914).
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The original paper
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The Framework

Physical quantities: W1, W2, . . . , Wn
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The Framework

Physical quantities: W1, W2, . . . , Wn

Expressed in fundamental units L1, L2, . . . , Lm

Wj = W
#
j [Wj]; W

#
j ∈ R, [Wj] =

mY
i=1

L
aij
i

Combinations of physical quantities:

Wx
=

nY
j=1

W
xj
j , x ∈ Rn

What are the units of Wx?
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How units combine
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Introduce the dimension vectors: {Wj} = (a1j, . . . , amj)
T which form the columns of

the dimension matrix A. Formally:

[Wx
] = L

Ax

Buckingham / TMA4195 2004-08-16 6



How units combine
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] =
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i

Introduce the dimension vectors: {Wj} = (a1j, . . . , amj)
T which form the columns of

the dimension matrix A. Formally:

[Wx
] = L

Ax

i.e., by linear algebra!
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How units combine

[Wx
] =

nY
j=1

mY
i=1

L
aijxj
i =

mY
i=1

nY
j=1

L
aijxj
i =

mY
i=1

L

Pn
j=1 aijxj

i

Introduce the dimension vectors: {Wj} = (a1j, . . . , amj)
T which form the columns of

the dimension matrix A. Formally:

[Wx
] = L

Ax

i.e., by linear algebra!

The combination [Wx] is dimensionless iff Ax = 0.
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Dimensionless combinations

[Wx
] = L

Ax

Combinations Wzν are called independent if the vectors zν are linearly independent.

Buckingham / TMA4195 2004-08-16 7



Dimensionless combinations

[Wx
] = L

Ax

Combinations Wzν are called independent if the vectors zν are linearly independent.

We can create a

maximal independent set of dimensionless combinations

Πν = Wzν , ν = 1, . . . , k

by letting z1, . . . , zk be a basis for ker A.
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New variables

By expanding to a basis for Rn, we get an independent set of combinations:

Π1, . . . , Πk, X1, . . . , Xn−k
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New variables

By expanding to a basis for Rn, we get an independent set of combinations:

Π1, . . . , Πk, X1, . . . , Xn−k

Each of the original variables Wj is a combination of these!

Hence we may, and shall, rewrite any problem in terms of the new variables.

Key observation:
No nontrivial combination of X1, . . . , Xn−k is dimensionless.

I.e., the vectors {X1}, . . . , {Xn−k} are linearly independent.
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Some physics

A general physical law:

F (W1, . . . , Wn) = 0
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Some physics

A general physical law:

F (W1, . . . , Wn) = 0

Which means:

F
#
(W

#
1 , . . . , W

#
n ) = 0

But most importantly:

The form of this equation is invariant with respect to a change of units.

Since F is a result of computing with (W1, . . . , Wn), the units of F must be the units

of a combination of (W1, . . . , Wn).

Thus we may assume WOLOG that F is dimensionless.
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Independence of units

Introduce new units L̃i by Li = eciL̃i
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Independence of units

Introduce new units L̃i by Li = eciL̃i
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aij
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Independence of units

Introduce new units L̃i by Li = eciL̃i

Wj = fW #
j

mY
i=1

L̃
aij
i = W

#
j

mY
i=1

L
aij
i = W

#
j exp

“ mX
i=1

ciaij

” mY
i=1

L̃
aij
i

and so fW #
j = e

c{Wj}W
#
j

The invariance under change of units thus means

F (W1, . . . , Wn) = F (e
c{W1}W1, . . . , e

c{Wn}Wn) (c ∈ Rm
)

i.e., the equation is invariant under the action of an m-parameter group of symmetries.
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Buckingham’s theorem

Any dimensionally correct relationship involving physical quantities can be expressed in

terms of a maximal set of dimensionless combinations of the given quantities:

Φ(Π1, . . . , Πk) = 0.
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The proof

Rewrite the physical law in terms of these variables:

Φ(Π1, . . . , Πk, X1, . . . , Xn−k) = 0
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The proof

Rewrite the physical law in terms of these variables:

Φ(Π1, . . . , Πk, X1, . . . , Xn−k) = 0

The invariance:

Φ(Π1, . . . , Πk, X1, . . . , Xn−k) = Φ(Π1, . . . , Πk, e
c{X1}X1, . . . , e

c{Xn−k}Xn−k)
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The proof

Rewrite the physical law in terms of these variables:

Φ(Π1, . . . , Πk, X1, . . . , Xn−k) = 0

The invariance:

Φ(Π1, . . . , Πk, X1, . . . , Xn−k) = Φ(Π1, . . . , Πk, e
c{X1}X1, . . . , e

c{Xn−k}Xn−k)

Linear algebra tells us that the vectors

(c{X1}, . . . , c{Xn−k}), c ∈ Rm

fill all of Rn−k, and it follows that

Φ depends only on the dimensionless combinations (Π1, . . . , Πk).
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Proof detail

Recall: the vectors {X1}, . . . , {Xn−k} are linearly independent.
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Proof detail

Recall: the vectors {X1}, . . . , {Xn−k} are linearly independent.

We make an m × (n − k) matrix

B =
`
{X1}, . . . , {Xn−k}

´
and note that when c ∈ Rm (a row vector) then`

c{X1}, . . . , c{Xn−k}
´

= cB.
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Proof detail

Recall: the vectors {X1}, . . . , {Xn−k} are linearly independent.

We make an m × (n − k) matrix

B =
`
{X1}, . . . , {Xn−k}

´
and note that when c ∈ Rm (a row vector) then`

c{X1}, . . . , c{Xn−k}
´

= cB.

Since B has independent columns, it has rank n − k, and so its left image is all of

Rn−k as claimed.
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Example: Water waves

The speed v of a (not too small) water wave in deep water depends on the wave length

λ, acceleration of gravity g, and (perhaps) the density ρ of water.
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, [ρ] = ML
−3
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Since only ρ contains M, no dimensionless combination can involve ρ.

Buckingham / TMA4195 2004-08-16 14



Example: Water waves

The speed v of a (not too small) water wave in deep water depends on the wave length

λ, acceleration of gravity g, and (perhaps) the density ρ of water.

[λ] = L, [v] = LT
−1

, [g] = LT
−2

, [ρ] = ML
−3

.

Since only ρ contains M, no dimensionless combination can involve ρ.

We find one dimensionless combination:

Π = v
2
g
−1

λ
−1

.
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Example: Water waves

The speed v of a (not too small) water wave in deep water depends on the wave length

λ, acceleration of gravity g, and (perhaps) the density ρ of water.

[λ] = L, [v] = LT
−1

, [g] = LT
−2

, [ρ] = ML
−3

.

Since only ρ contains M, no dimensionless combination can involve ρ.

We find one dimensionless combination:

Π = v
2
g
−1

λ
−1

.

Thus

v ∝
p

gλ.
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Example: Nuclear explosions

Sir Geoffrey Taylor: The formation of a blast wave by a very intense explosion. I & II.

Proc. Royal Soc. (London) 201A, 159–186 (1950).
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Example: Nuclear explosions

Sir Geoffrey Taylor: The formation of a blast wave by a very intense explosion. I & II.

Proc. Royal Soc. (London) 201A, 159–186 (1950).

Radius r of the fireball is a function of time t, initial energy E, and initial densityρ0 of

air.
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Example: Nuclear explosions

Sir Geoffrey Taylor: The formation of a blast wave by a very intense explosion. I & II.

Proc. Royal Soc. (London) 201A, 159–186 (1950).

Radius r of the fireball is a function of time t, initial energy E, and initial densityρ0 of

air.

[r] = L, [t] = T, [E] = ML
2
T
−2

, [ρ0] = ML
−3
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Example: Nuclear explosions

Sir Geoffrey Taylor: The formation of a blast wave by a very intense explosion. I & II.

Proc. Royal Soc. (London) 201A, 159–186 (1950).

Radius r of the fireball is a function of time t, initial energy E, and initial densityρ0 of

air.

[r] = L, [t] = T, [E] = ML
2
T
−2

, [ρ0] = ML
−3

Just one dimensionless combination:

Π = r
5
t
−2

ρ0E
−1

leading to

r ∝
“E

ρ0

”1/5

t
2/5

.
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Nuclear explosion: First 2 ms
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Nuclear explosion at 15 ms

The bar is 100 m long
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Nuclear explosion at 127 ms
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Nuclear yield
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Example: Fluid flow in pipes

Pressure drop per unit length dP/dx as a function of density ρ, viscosity µ, average

flow velocity U , pipe diameter D:

Buckingham / TMA4195 2004-08-16 20



Example: Fluid flow in pipes

Pressure drop per unit length dP/dx as a function of density ρ, viscosity µ, average

flow velocity U , pipe diameter D:

Two dimensionless combinations:

Π =
dP/dx · D

U2ρ
, Re =

ρUD

µ
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Example: Fluid flow in pipes

Pressure drop per unit length dP/dx as a function of density ρ, viscosity µ, average

flow velocity U , pipe diameter D:

Two dimensionless combinations:

Π =
dP/dx · D

U2ρ
, Re =

ρUD

µ

So we expect the dimensionless pressure Π to be a universal function of the Reynolds

number Re:

Π = f(Re)

Experiments bear this out.
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The Moody diagram
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Symmetry and heat conduction

ρc
∂u

∂t
= k

∂2u

∂x2
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Symmetry and heat conduction

ρc
∂u

∂t
= k

∂2u

∂x2

[ρc] =
M

ΘLT2
, [k] =

ML

ΘT3
, [x] = L, [t] = T, [u] = Θ
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Symmetry and heat conduction

ρc
∂u

∂t
= k

∂2u

∂x2

[ρc] =
M

ΘLT2
, [k] =

ML

ΘT3
, [x] = L, [t] = T, [u] = Θ

Just one dimensionless combination:

x2

t
·

ρc

k
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Symmetry and heat conduction

ρc
∂u

∂t
= k

∂2u

∂x2

[ρc] =
M

ΘLT2
, [k] =

ML

ΘT3
, [x] = L, [t] = T, [u] = Θ

Just one dimensionless combination:

x2

t
·

ρc

k

By selecting the length scale L and time scale T so that X2/T = k/(ρc) we get the

dimensionless form of the heat equation:

∂u

∂t
=

∂2u

∂x2
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Symmetry and heat conduction

∂u

∂t
=

∂2u

∂x2

This leaves a degree of freedom still: Rescaling x = αx∗, t = α2t∗ yields the equation

invariant.

In addition, we have the obvious scale invariance on u, since the equation is linear.
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Symmetry and heat conduction

∂u

∂t
=

∂2u

∂x2

This leaves a degree of freedom still: Rescaling x = αx∗, t = α2t∗ yields the equation

invariant.

In addition, we have the obvious scale invariance on u, since the equation is linear.

We combine these to solve the initial value problem with

u(x, 0) = δ(x)
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Symmetry and heat conduction

∂u

∂t
=

∂2u

∂x2

This leaves a degree of freedom still: Rescaling x = αx∗, t = α2t∗ yields the equation

invariant.

In addition, we have the obvious scale invariance on u, since the equation is linear.

We combine these to solve the initial value problem with

u(x, 0) = δ(x)

If u solves this problem, then so does αu(αx, α2t).
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Similarity solution

Similarity solution:

u(x, t) = αu(αx, α
2
t)

for all x, t, α.
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Similarity solution

Similarity solution:

u(x, t) = αu(αx, α
2
t)

for all x, t, α.

With α = 1/
√

t this leads to

u(x, t) =
1
√

t
v

“x2

t

”
and a corresponding ODE for v. The final solution is

u(x, t) =
1

2
√

πt
exp

“
−

x2

4t

”
.
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Sophus Lie (1842–1899)
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Lie Symmetries

The geometry of a differential equation for q = q(t):

F (t, q, q̇, q̈) = 0
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Lie Symmetries

The geometry of a differential equation for q = q(t):
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Reduces to a first order system:

dq = q̇ dt, dq̇ = q̈ dt (∗)
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Lie Symmetries

The geometry of a differential equation for q = q(t):

F (t, q, q̇, q̈) = 0

Reduces to a first order system:

dq = q̇ dt, dq̇ = q̈ dt (∗)

A vector field in (t, q) space induces a one-parameter group of transformations, which

is prolonged to (t, q, q̇, q̈) space by insisting that it respects (∗).
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Lie Symmetries

The geometry of a differential equation for q = q(t):

F (t, q, q̇, q̈) = 0

Reduces to a first order system:

dq = q̇ dt, dq̇ = q̈ dt (∗)

A vector field in (t, q) space induces a one-parameter group of transformations, which

is prolonged to (t, q, q̇, q̈) space by insisting that it respects (∗).

If the surface F = 0 is invariant: A symmetry group of the ODE.
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Symmetries reduce order

Each one-parameter symmetry group allows the reduction of order of the differential

equation by 1.
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Symmetries reduce order

Each one-parameter symmetry group allows the reduction of order of the differential

equation by 1.

Recall the heat conduction example:

Rescaling symmetries reduce the order.
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Symmetries reduce order

Each one-parameter symmetry group allows the reduction of order of the differential

equation by 1.

Recall the heat conduction example:

Rescaling symmetries reduce the order.

But not all symmetries are due to rescaling.
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Emmy Noether (1882–1935)
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Variational problems

J(q) =

Z b

a

L(t, q, q̇) dt

How to minimize J(q)?
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Variational problems

J(q) =

Z b

a

L(t, q, q̇) dt

How to minimize J(q)?

Any stationary point of J must satisfy the Euler–Lagrange equation

∂L

∂q
−

d

dt

∂L

∂q̇
= 0
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Variational problems

J(q) =

Z b

a

L(t, q, q̇) dt

How to minimize J(q)?

Any stationary point of J must satisfy the Euler–Lagrange equation

∂L

∂q
−

d

dt

∂L

∂q̇
= 0

For example, L(t, q, q̇) = 1
2q̇

2 − V (q) produces this Euler–Lagrange equation:
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Variational problems

J(q) =

Z b

a

L(t, q, q̇) dt

How to minimize J(q)?

Any stationary point of J must satisfy the Euler–Lagrange equation

∂L

∂q
−

d

dt

∂L

∂q̇
= 0

For example, L(t, q, q̇) = 1
2q̇

2 − V (q) produces this Euler–Lagrange equation:

q̈ = −V
′
(q)
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Variational problems

J(q) =

Z b

a

L(t, q, q̇) dt

How to minimize J(q)?

Any stationary point of J must satisfy the Euler–Lagrange equation

∂L

∂q
−

d

dt

∂L

∂q̇
= 0

For example, L(t, q, q̇) = 1
2q̇

2 − V (q) produces this Euler–Lagrange equation:

q̈ = −V
′
(q)

Newton’s law for a free particle in a potential field V .
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Variational symmetries

These are one-parameter groups which leave the action integral

J(q) =

Z b

a

L(t, q, q̇) dt

invariant.
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Variational symmetries

These are one-parameter groups which leave the action integral

J(q) =

Z b

a

L(t, q, q̇) dt

invariant.

Noether’s theorem establishes a one-to-one correspondence betwwen variational

symmetries and integrating factors, and hence invariants, of the Euler–Lagrange

equations.
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Famous conservation laws

Translational symmetry implies the conservation of momentum.
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Famous conservation laws

Translational symmetry implies the conservation of momentum.

Rotational symmetry implies the conservation of angular momentum.
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Famous conservation laws

Translational symmetry implies the conservation of momentum.

Rotational symmetry implies the conservation of angular momentum.

And time invariance implies the conservation of energy
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