Exercise Set 8

a)
We can derive the governing equation by using lagrangian coordinates:
Z(t, x)

Z(t, x) is the position at time ¢ of the particule that was at = at time ¢ = 0.

The relation between Euler and Lagrangian coordinates is given by

0z

v(t,T) = —
(t,7) = =
(For the time being, we drop the star in our notation)

The runners do not overtake each other. The number N of people running
between a runner starting at x = x¢ and an other starting at x = x1 remains
the same.

Z(t,x0)

N is constant in time. %—JX = 0 implies

i(t,z1)
[ pr(tyu) du+ & (L, x1)p(t, Z(t, x1)) — &(t, z0) p(t, Z(t, o)) =0

(t7ZE0)

Since
Ze(t, z) = v(t,Z(t, x)),

this last equation can be rewritten

Z(t,x1)
/ pe(t,u) du+v(t,Z(t,x1))p(t, 2(t, 1)) — v(t, Z(t, o)) p(t, Z(t,z0)) =0

(t7ZEQ)
hence,
:f(t7:E1)
[ b + wplattw) du=0
.’i(t7ZEQ)

This equality holds for any xy and z; if and only if the integrand vanishes
everywhere. We get

pt+ (vp)a =0
We now reintroduce the stars in our notation and rescale the problem.
p= * y U= * y L= —
pmar Umaz L



are natural scaling. They induce the scaling

_t*

,U*

and we get
pe+ (vp)e =0 (1)

With the scaled variables, the relation between speed and density becomes

Hence, from (1),

b)

The characteristics are the curves defined by

dx
—=1-2 2
o P (2)

along which p is constant. They are straight lines.

we integrate (2) and get
r=(1-2p)t+¢ 3)

where £ is a constant. At ¢t =0, x = £ and p is then determined by

p = po + € cos(§) (4)

From (3) and (4), after eliminating &, we get an implicit solution for p

p=po+ecos(z— (1—2p)t)

c)

Let ¢ denote the characteristic speed

c=1-2p
‘We have
r=c)t+¢ (5)
A shock forms when
dEt+1=0 (6)

because (5) is then no more invertible with respect to & (‘g—g vanishes).



Since t can only be positive, equation (6) has a solution if and only if there
exists a ¢ for which ¢/(§) is strictly negative. We have

¢(€) = 2esin(€)

Hence, a shock will occur (¢/(€) < 0, V€ € ((2k — 1), 2kn)). The first time it
occurs is when (6) vanishes for the first time i.e.

-1
t= —F——+—=
min ¢/ (£)
This is when { = 3%, ¢t = o= and © = ¢(3)5 + 2. (We only really consider

one period but of course the results can be extended by periodicity)

¢ increases in (0, 7) and decreases in (7, 27). We get roughly the following plot.

Characteristics intersect.

A shock forms.
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d)

Following the given hint, we look at the two characteristics starting at £ = ‘%’Tiﬁ.
They intersect at

3T 3T
3T 3T

Substracting the two equations, we get
25((305 (%T + 9)t — cos (377r — H)t) =20

or
2esin(0)t = 6 (7)



For any ¢t > 0, (7) has a unique positive solution 6 ( and —6 is the unique
negative solution). Reciprocaly, if 8 # km, (7) has a solution ¢, ¢ > 0.

In addition, at ¢t = ﬁn(@) and for any 6 # kn, the two characteristics intersect
the same line
3
x=(1—-2p)t+ - (8)

We are now going to prove that the line defined by (8) is the curve where the
shocks occur ( the problem is 27 periodic and all the translations of this line
are also shock lines).

We have
p(i%7r — 9) =po+ €COS(377T —6) = po — esin(0)
3 3
p(77T +0) = po+ scos(g +0) = po + esin(0)
hence 3 3
™ Y[
P(7 —0) + P(7 +6) =2po (9)

The Rankine-Hugoniot condition is

@ _ (L—p)pr — (1 —pr)pr
dt pL— Pr

(10)

where z = s(t) is the equation of the shock curve and p; (respectively p,.) denotes
the value of p on the left (right) of the shock.

(10) yields

ds
—=1- - 11
=1 (o +pr) (11)
If we look at (8),

dx

—=1-2

dt Po
3T 3

=1=p(5 —0)+p(5 +0) by (9)

z = (1—2po)t + 2L therefore satisfies the Rankine-Hugoniot condition (10). It
is a shock line. We have the following picture.



¢ shock line
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The height of the shock is
o1 — pr = —2esin(6)
when ¢ tends to oo, 6 tends to 0 (see (7)). Hence
Jm (pp = p) =0
P

t>0 a shock is forming

w0

T 37"277 x 0 3T 2m x

We now investigate the behaviour of the solution as t — co. We take a small
strictly positive number 77 and look at the characteristics starting at 7 £7 (see
picture above). In (7), we take 8 = m—n and get that the characteristics starting
at § + 7 intersect the characteristic starting at 37’7 at a time  given by

T—n

t=———
2e sin(n)

(12)
We denote z, the point where they intersect. One can check easily that the
characteristic starting at 3 —7 intersect the characteristic starting at —3 at the
same time ¢ as defined in (12) and at a position we denote x;.

At ¢t = ¥ fixed, for any point belonging to [z;, 2], there exists a unique n € [—7, 7]
such that the characteristic starting at Z 47 contains (z, t). We can prove that
by showing that, when 7 is small,

T

2

- ™
z = c( +n)t+§+n



is a strictly decreasing function (‘g—j”7 < 0) which maps [—7,7] into [z, z,].

For (z,t) € [x;,x,] x {t} the solution is then given by

7r
pzpo+scos(§+77)
and x:c(g—l—n)f—f—g—i—n

(There is no shock in this region. The solution is given by using characteristics)

Since |n| < 7 < 1, we expand these expressions and get
p=po—en+O0(n°)

z = (1-2pg + 2en)t + g +n+ 00t

Equation (12) can also be expanded and, after some calclution, gives an asymp-
totic relation between ¢ and 7:

T 1
n= —— O )
n 2l + (fg)
Hence,
- 1
= (1—2pg + 2en)t + 5 +77+O(f—2)
We express 7 in function of x
= — O —
g 26T + 1 +0(z)
= — O —
2¢et + (fg)
Finally,
z—(1—2po)t— % 1
= — — O Y
P = Po o7 + (f2)

When 7 tends to oo, p looks like a straight line between two discontinuities,
whose slope (—%) tends towards 0. We can compute p; and p,., the values of p
on the left and right of the shock.

™ 1
= —_— — O JE—
PL = Po 2t+ (fg)
™ 1
r = - O G
P p0+2t+ (%2)

The density tends to pg and therefore when t tends to oo, all the runners (that
survive) go at the same speed 1 — py.



