
Exercise Set 8

a)

We can derive the governing equation by using lagrangian coordinates:

x̃(t, x)

x̃(t, x) is the position at time t of the particule that was at x at time t = 0.

The relation between Euler and Lagrangian coordinates is given by

v(t, x̃) =
∂x̃

∂t̃

(For the time being, we drop the star in our notation)

The runners do not overtake each other. The number N of people running
between a runner starting at x = x0 and an other starting at x = x1 remains
the same.

N =

∫ x̃(t,x1)

x̃(t,x0)

ρ(t, u) du

N is constant in time. ∂N
∂t

= 0 implies

∫ x̃(t,x1)

x̃(t,x0)

ρt(t, u) du + x̃t(t, x1)ρ(t, x̃(t, x1)) − x̃t(t, x0)ρ(t, x̃(t, x0)) = 0

Since
x̃t(t, x) = v(t, x̃(t, x)),

this last equation can be rewritten

∫ x̃(t,x1)

x̃(t,x0)

ρt(t, u) du + v(t, x̃(t, x1))ρ(t, x̃(t, x1)) − v(t, x̃(t, x0))ρ(t, x̃(t, x0)) = 0

hence,
∫ x̃(t,x1)

x̃(t,x0)

ρt(t, u) + (vρ)x(t, u) du = 0

This equality holds for any x0 and x1 if and only if the integrand vanishes
everywhere. We get

ρt + (vρ)x = 0

We now reintroduce the stars in our notation and rescale the problem.

ρ =
ρ∗

ρ∗max

, v =
v∗

v∗max

, x =
x∗

L
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are natural scaling. They induce the scaling

t =
t∗

v∗

and we get
ρt + (vρ)x = 0 (1)

With the scaled variables, the relation between speed and density becomes

v = 1 − ρ

Hence, from (1),
ρt + (1 − 2ρ)ρx = 0

b)

The characteristics are the curves defined by

dx

dt
= 1 − 2ρ (2)

along which ρ is constant. They are straight lines.

we integrate (2) and get
x = (1 − 2ρ)t + ξ (3)

where ξ is a constant. At t = 0, x = ξ and ρ is then determined by

ρ = ρ0 + ε cos(ξ) (4)

From (3) and (4), after eliminating ξ, we get an implicit solution for ρ

ρ = ρ0 + ε cos(x − (1 − 2ρ)t)

c)

Let c denote the characteristic speed

c = 1 − 2ρ

We have
x = c(ξ)t + ξ (5)

A shock forms when
c′(ξ)t + 1 = 0 (6)

because (5) is then no more invertible with respect to ξ ( ∂x
∂ξ

vanishes).
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Since t can only be positive, equation (6) has a solution if and only if there
exists a ξ for which c′(ξ) is strictly negative. We have

c′(ξ) = 2ε sin(ξ)

Hence, a shock will occur (c′(ξ) < 0, ∀ξ ∈ ((2k − 1)π, 2kπ)). The first time it
occurs is when (6) vanishes for the first time i.e.

t =
−1

min c′(ξ)

This is when ξ = 3π
2 , t = 1

2ε
and x = c( 3π

2 ) 1
2ε

+ 3π
2 . (We only really consider

one period but of course the results can be extended by periodicity)

c increases in (0, π) and decreases in (π, 2π). We get roughly the following plot.

2ππ0 π
2

3π
2

A shock forms.

Characteristics intersect.

d)

Following the given hint, we look at the two characteristics starting at ξ = 3π
2 ±θ.

They intersect at

x = c
(3π

2
+ θ

)

t +
3π

2
+ θ

x = c
(3π

2
− θ

)

t +
3π

2
− θ

Substracting the two equations, we get

2ε
(

cos
(3π

2
+ θ

)

t − cos
(3π

2
− θ

)

t
)

= 2θ

or
2ε sin(θ)t = θ (7)
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For any t ≥ 0, (7) has a unique positive solution θ ( and −θ is the unique
negative solution). Reciprocaly, if θ 6= kπ, (7) has a solution t, t > 0.

In addition, at t = θ
2ε sin(θ) and for any θ 6= kπ, the two characteristics intersect

the same line

x = (1 − 2ρ0)t +
3π

2
(8)

We are now going to prove that the line defined by (8) is the curve where the
shocks occur ( the problem is 2π periodic and all the translations of this line
are also shock lines).

We have

ρ
(3π

2
− θ

)

= ρ0 + ε cos(
3π

2
− θ) = ρ0 − ε sin(θ)

ρ
(3π

2
+ θ

)

= ρ0 + ε cos(
3π

2
+ θ) = ρ0 + ε sin(θ)

hence

ρ
(3π

2
− θ

)

+ ρ
(3π

2
+ θ

)

= 2ρ0 (9)

The Rankine-Hugoniot condition is

ds

dt
=

(1 − ρl)ρl − (1 − ρr)ρr

ρl − ρr

(10)

where x = s(t) is the equation of the shock curve and ρl (respectively ρr) denotes
the value of ρ on the left (right) of the shock.

(10) yields
ds

dt
= 1 − (ρl + ρr) (11)

If we look at (8),

dx

dt
= 1 − 2ρ0

= 1 − ρ
(3π

2
− θ

)

+ ρ
(3π

2
+ θ

)

by (9)

x = (1 − 2ρ0)t + 3π
2 therefore satisfies the Rankine-Hugoniot condition (10). It

is a shock line. We have the following picture.
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The height of the shock is

ρl − ρr = −2ε sin(θ)

when t tends to ∞, θ tends to 0 (see (7)). Hence

lim
t→∞

(ρl − ρr) = 0

π
2

3π
2

2ππ0

t = 0
ρ

x 0
π
2

3π
2

2ππ

a shock is forming
ρ

x

t > 0

We now investigate the behaviour of the solution as t → ∞. We take a small
strictly positive number η and look at the characteristics starting at π

2 ± η (see
picture above). In (7), we take θ = π−η and get that the characteristics starting
at π

2 + η intersect the characteristic starting at 3π
2 at a time t given by

t =
π − η

2ε sin(η)
(12)

We denote xr the point where they intersect. One can check easily that the
characteristic starting at π

2 −η intersect the characteristic starting at −π
2 at the

same time t as defined in (12) and at a position we denote xl.

At t = t fixed, for any point belonging to [xl, xr], there exists a unique η ∈ [−η, η]
such that the characteristic starting at π

2 + η contains (x, t). We can prove that
by showing that, when η is small,

x = c
(π

2
+ η

)

t +
π

2
+ η
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is a strictly decreasing function ( ∂x
∂η

< 0) which maps [−η, η] into [xl, xr].

For (x, t) ∈ [xl, xr] × {t} the solution is then given by

ρ = ρ0 + ε cos
(π

2
+ η

)

and x = c
(π

2
+ η

)

t +
π

2
+ η

(There is no shock in this region. The solution is given by using characteristics)

Since |η| < η ≤ 1, we expand these expressions and get

ρ = ρ0 − εη + O(η3)

x = (1 − 2ρ0 + 2εη)t +
π

2
+ η + O(η3)t

Equation (12) can also be expanded and, after some calclution, gives an asymp-
totic relation between t and η:

η =
π

2εt
+ O(

1

t
2 )

Hence,

x = (1 − 2ρ0 + 2εη)t +
π

2
+ η + O(

1

t
2 )

We express η in function of x

η =
x − (1 − 2ρ0)t −

π
2

2εt + 1
+ O(

1

t
3 )

=
x − (1 − 2ρ0)t −

π
2

2εt
+ O(

1

t
2 )

Finally,

ρ = ρ0 −
x − (1 − 2ρ0)t −

π
2

2t
+ O(

1

t
2 )

When t tends to ∞, ρ looks like a straight line between two discontinuities,
whose slope (− 1

2t
) tends towards 0. We can compute ρl and ρr, the values of ρ

on the left and right of the shock.

ρl = ρ0 −
π

2t
+ O(

1

t
2 )

ρr = ρ0 +
π

2t
+ O(

1

t
2 )

The density tends to ρ0 and therefore when t tends to ∞, all the runners (that
survive) go at the same speed 1 − ρ0.
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