Problem 1

(a)

The scales can be justified as follows:

- This gives $0 \le x \le 1$ in the problem, and there is no particular reason indicating that $x^* = Lx$ u^* , v^* and p^* undergo significant changes over smaller distances in the x^* -direction.
- This gives $0 \le y \le 1$, and u^* changes from U to 0 over the interval $[0, \varepsilon L]$ in the $y^* = \varepsilon L y$ y^* -direction.
- $u^* = Uu$ Gives roughly $0 \le u \le 1$ in the problem.
- $v^* = \varepsilon U v$ Substituting $|\partial_{x^*} u^*| \sim U/L$ and $|\partial_{y^*} v^*| \sim V/(\varepsilon L)$, where V is the scale for v^* into the equation for conservation of mass one obtains $U/L \sim V/(\varepsilon L)$ and $V = \varepsilon U$ as the scaling factor for v^* .

(b)

With the additional scaling $p^* = Pp$ the system of equations becomes

$$\frac{U^2}{L}u\partial_x u + \frac{U^2}{L}v\partial_y u = -\frac{P}{L\rho}\partial_x p + \nu\left(\frac{U}{L^2}\partial_{xx}u + \frac{U}{\varepsilon^2 L^2}\partial_{yy}u\right)$$
$$\frac{U^2}{L}u\partial_x v + \frac{U^2}{L}v\partial_y v = -\frac{P}{\varepsilon^2 L\rho}\partial_y p + \nu\left(\frac{U}{L^2}\partial_{xx}v + \frac{U}{\varepsilon^2 L^2}\partial_{yy}v\right)$$
$$\partial_x u + \partial_y v = 0.$$

The term containing $1/\varepsilon^2$ is clearly the dominating term in the ν -term in the first equation. The assumption that the pressure term containing $p_{x^*}^*$ balances the viscous term leads to $P = \frac{\nu U \rho}{\varepsilon^2 L}$. Substituting this into the equations above leads to

$$\varepsilon \operatorname{Re}(u\partial_x u + v\partial_y u) = -\partial_x p + \varepsilon^2 \partial_{xx} u + \partial_{yy} u, \tag{1}$$

$$\varepsilon^{3} \operatorname{Re}(u \partial_{x} v + v \partial_{y} v) = -\partial_{y} p + \varepsilon^{4} \partial_{xx} v + \varepsilon^{2} \partial_{yy} v, \qquad (2)$$

If we try the value $\nu \approx 1$ centiStokes = 10^{-2} cm²/s = 10^{-6} m²/s together with the other given values we find Re \approx 100. Only if the viscosity is an order of magnitude smaller, do we approach the critical limit Re ≈ 1000 – so it appears safe to assume that turbulence will not arise.

(d)

By setting ε to 0 in (1)–(3) one obtains

$$\partial_x p = \partial_{yy} u, \quad \partial_y p = 0, \quad \text{and} \quad \partial_x u + \partial_y v = 0.$$
 (4)

Since p does not depend on y, the first equation gives

$$u = \frac{1}{2}y^2\partial_x p + Ay + B.$$

The boundary conditions u(x,0) = 1 and u(x,h(x)) = 0 give B = 1 and $A = -\frac{1}{2}h(x)\partial_x p - 1/h(x)$ and thus

$$u = -\frac{1}{2}y(h-y)\partial_x p + 1 - \frac{y}{h}.$$
(5)

Integrating the third equation in (4) with respect to y and using the boundary conditions v(x, 0) = v(x, h(x)) = 0 gives

$$0 = \int_0^{h(x)} (\partial_x u + \partial_y v) dy = \int_0^{h(x)} \partial_x u \, dy + v(x, h(x)) - v(x, 0) = \int_0^{h(x)} \partial_x u \, dy,$$

and substituting $\partial_x u$ from (5) gives

$$0 = \int_0^{h(x)} \partial_x \left[-\frac{1}{2}y(h-y)\partial_x p + 1 - \frac{y}{h} \right] dy$$

= $\partial_x \left(\int_0^{h(x)} \left[-\frac{1}{2}y(h-y)\partial_x p + 1 - \frac{y}{h} \right] dy \right)$
= $\partial_x \left(-\frac{1}{12}(h^3\partial_x p) + \frac{1}{2}h \right).$

(When we moved the derivative outside the integral sign we should have subtracted a term due to the x dependency in the upper limit of the integral, but this term is zero because the integrand is zero at y = h.) Integration gives $\frac{1}{6}h^3\partial_x p = h - \overline{h}$, where \overline{h} is a constant of integration. This can be written $\partial_x p = 6(h - \overline{h})/h^3$, which is Reynold's equation.

Finally, by setting $h = 1 - \alpha x$ one obtains

$$\partial_x p = 6\left(\frac{1}{(1-\alpha x)^2} - \frac{\overline{h}}{(1-\alpha x)^3}\right).$$

Another integration using p(0) = 0 gives

$$p(x) = 6 \left[\frac{1}{\alpha(1-\alpha x)} - \frac{\overline{h}}{2\alpha(1-\alpha x)^2} \right]_0^x$$

= $\frac{6}{\alpha(1-\alpha x)^2} \left[(1-\alpha x) - \frac{\overline{h}}{2} - (1-\alpha x)^2 + \frac{\overline{h}}{2}(1-\alpha x)^2 \right]$
= $\frac{6}{\alpha(1-\alpha x)^2} \left(-\alpha x + \alpha^2 x^2 - \frac{\overline{h}}{2}(\alpha^2 x^2 - 2\alpha x) \right).$

Using p(1) = 0 gives $0 = -\alpha + \alpha^2 - \frac{\overline{h}}{2}(\alpha^2 - 2\alpha)$ and therefore $\overline{h} = 2(\alpha - 1)/(\alpha - 2)$.

(Note that $\overline{h} = \frac{2}{1/(1-\alpha)+1/1}$. Hence \overline{h} is the harmonic mean of 1 and $1-\alpha$ (the height at x = 0 and x = 1 respectively), and thus $1 - \alpha < \overline{h} < 1$.)

The maximum pressure is attained at $h = \overline{h}$ since $\frac{\partial p}{\partial x}(h = \overline{h}) = 0$. We find

$$p_{\max} = \frac{3}{2}$$

Hence,

$$p_{\max}^* = \frac{3U\nu\rho}{2L\varepsilon^2} = 30 \text{ hPa}$$