
Exercise Set 6

Problem 1

(a)

The scales can be justified as follows:

x∗ = Lx This gives 0 ≤ x ≤ 1 in the problem, and there is no particular reason indicating that
u∗, v∗ and p∗ undergo significant changes over smaller distances in the x∗-direction.

y∗ = εLy This gives 0 ≤ y ≤ 1, and u∗ changes from U to 0 over the interval [0, εL] in the
y∗-direction.

u∗ = Uu Gives roughly 0 ≤ u ≤ 1 in the problem.

v∗ = εUv Substituting |∂x∗u∗| ∼ U/L and |∂y∗v∗| ∼ V/(εL), where V is the scale for v∗ into
the equation for conservation of mass one obtains U/L ∼ V/(εL) and V = εU as the
scaling factor for v∗.

(b)

With the additional scaling p∗ = Pp the system of equations becomes

U2

L
u∂xu +

U2

L
v∂yu = −

P

Lρ
∂xp + ν

( U

L2
∂xxu +

U

ε2L2
∂yyu

)

U2

L
u∂xv +

U2

L
v∂yv = −

P

ε2Lρ
∂yp + ν

( U

L2
∂xxv +

U

ε2L2
∂yyv

)

∂xu + ∂yv = 0.

The term containing 1/ε2 is clearly the dominating term in the ν–term in the first equation. The
assumption that the pressure term containing p∗

x∗ balances the viscous term leads to P = νUρ
ε2L .

Substituting this into the equations above leads to

ε Re(u∂xu + v∂yu) = −∂xp + ε2∂xxu + ∂yyu, (1)

ε3Re(u∂xv + v∂yv) = −∂yp + ε4∂xxv + ε2∂yyv, (2)

∂xu + ∂yv = 0. (3)

(c)

If we try the value ν ≈ 1 centiStokes = 10−2 cm2/s = 10−6 m2/s together with the other given
values we find Re ≈ 100. Only if the viscosity is an order of magnitude smaller, do we approach
the critical limit Re ≈ 1000 – so it appears safe to assume that turbulence will not arise.

(d)

By setting ε to 0 in (1)–(3) one obtains

∂xp = ∂yyu, ∂yp = 0, and ∂xu + ∂yv = 0. (4)

Since p does not depend on y, the first equation gives

u =
1

2
y2∂xp + Ay + B.
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The boundary conditions u(x, 0) = 1 and u(x, h(x)) = 0 give B = 1 and A = − 1
2h(x)∂xp − 1/h(x)

and thus

u = −
1

2
y(h − y)∂xp + 1 −

y

h
. (5)

Integrating the third equation in (4) with respect to y and using the boundary conditions v(x, 0) =
v(x, h(x)) = 0 gives

0 =

∫ h(x)

0

(∂xu + ∂yv)dy =

∫ h(x)

0

∂xu dy + v(x, h(x)) − v(x, 0) =

∫ h(x)

0

∂xu dy,

and substituting ∂xu from (5) gives

0 =

∫ h(x)

0

∂x

[

− 1
2y(h − y)∂xp + 1 −

y

h

]

dy

= ∂x

(
∫ h(x)

0

[

−
1

2
y(h − y)∂xp + 1 −

y

h

]

dy

)

= ∂x

(

−
1

12
(h3∂xp) +

1

2
h
)

.

(When we moved the derivative outside the integral sign we should have subtracted a term due to
the x dependency in the upper limit of the integral, but this term is zero because the integrand is
zero at y = h.) Integration gives 1

6h3∂xp = h−h, where h is a constant of integration. This can be

written ∂xp = 6(h − h)/h3, which is Reynold’s equation.

Finally, by setting h = 1 − αx one obtains

∂xp = 6

(

1
(1−αx)2

−
h

(1−αx)3

)

.

Another integration using p(0) = 0 gives

p(x) = 6

[

1
α(1−αx) −

h
2α(1−αx)2

]x

0

=
6

α(1−αx)2

[

(1 − αx) −
h
2
− (1 − αx)2 +

h
2
(1 − αx)2

]

=
6

α(1−αx)2

(

− αx + α2x2 −
h
2 (α2x2 − 2αx)

)

.

Using p(1) = 0 gives 0 = −α + α2 − h
2 (α2 − 2α) and therefore h = 2(α − 1)/(α − 2).

(Note that h = 2
1/(1−α)+1/1 . Hence h is the harmonic mean of 1 and 1−α (the height at x = 0 and

x = 1 respectively), and thus 1 − α < h < 1.)

The maximum pressure is attained at h = h since ∂p
∂x (h = h) = 0. We find

pmax =
3

2

Hence,

p∗max =
3Uνρ

2Lε2
= 30 hPa

2


