Problem 1

(a)

The scales can be justified as follows:

$$
\begin{array}{ll}
x^{*}=L x & \begin{array}{l}
\text { This gives } 0 \leq x \leq 1 \text { in the problem, and there is no particular reason indicating that } \\
u^{*}, v^{*} \text { and } p^{*} \text { undergo significant changes over smaller distances in the } x^{*} \text {-direction. }
\end{array} \\
y^{*}=\varepsilon L y & \begin{array}{l}
\text { This gives } 0 \leq y \leq 1, \text { and } u^{*} \text { changes from } U \text { to } 0 \text { over the interval }[0, \varepsilon L] \text { in the } \\
y^{*} \text {-direction. }
\end{array} \\
u^{*}=U u & \text { Gives roughly } 0 \leq u \leq 1 \text { in the problem. } \\
v^{*}=\varepsilon U v & \begin{array}{l}
\text { Substituting }\left|\partial_{x^{*}} u^{*}\right| \sim U / L \text { and }\left|\partial_{y^{*}} v^{*}\right| \sim V /(\varepsilon L), \text { where } V \text { is the scale for } v^{*} \text { into } \\
\\
\\
\text { the equation for conservation of mass one obtains } U / L \sim V /(\varepsilon L) \text { and } V=\varepsilon U \text { as the } \\
\\
\text { scaling factor for } v^{*} .
\end{array}
\end{array}
$$

(b)

With the additional scaling $p^{*}=P p$ the system of equations becomes

$$
\begin{aligned}
\frac{U^{2}}{L} u \partial_{x} u+\frac{U^{2}}{L} v \partial_{y} u & =-\frac{P}{L \rho} \partial_{x} p+\nu\left(\frac{U}{L^{2}} \partial_{x x} u+\frac{U}{\varepsilon^{2} L^{2}} \partial_{y y} u\right) \\
\frac{U^{2}}{L} u \partial_{x} v+\frac{U^{2}}{L} v \partial_{y} v & =-\frac{P}{\varepsilon^{2} L \rho} \partial_{y} p+\nu\left(\frac{U}{L^{2}} \partial_{x x} v+\frac{U}{\varepsilon^{2} L^{2}} \partial_{y y} v\right) \\
\partial_{x} u+\partial_{y} v & =0
\end{aligned}
$$

The term containing $1 / \varepsilon^{2}$ is clearly the dominating term in the ν-term in the first equation. The assumption that the pressure term containing $p_{x^{*}}^{*}$ balances the viscous term leads to $P=\frac{\nu U \rho}{\varepsilon^{2} L}$. Substituting this into the equations above leads to

$$
\begin{align*}
\varepsilon \operatorname{Re}\left(u \partial_{x} u+v \partial_{y} u\right) & =-\partial_{x} p+\varepsilon^{2} \partial_{x x} u+\partial_{y y} u \tag{1}\\
\varepsilon^{3} \operatorname{Re}\left(u \partial_{x} v+v \partial_{y} v\right) & =-\partial_{y} p+\varepsilon^{4} \partial_{x x} v+\varepsilon^{2} \partial_{y y} v \tag{2}\\
\partial_{x} u+\partial_{y} v & =0 \tag{3}
\end{align*}
$$

(c)

If we try the value $\nu \approx 1$ centiStokes $=10^{-2} \mathrm{~cm}^{2} / \mathrm{s}=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ together with the other given values we find $\operatorname{Re} \approx 100$. Only if the viscosity is an order of magnitude smaller, do we approach the critical limit $\operatorname{Re} \approx 1000$ - so it appears safe to assume that turbulence will not arise.
(d)

By setting ε to 0 in (1)-(3) one obtains

$$
\begin{equation*}
\partial_{x} p=\partial_{y y} u, \quad \partial_{y} p=0, \quad \text { and } \quad \partial_{x} u+\partial_{y} v=0 \tag{4}
\end{equation*}
$$

Since p does not depend on y, the first equation gives

$$
u=\frac{1}{2} y^{2} \partial_{x} p+A y+B
$$

The boundary conditions $u(x, 0)=1$ and $u(x, h(x))=0$ give $B=1$ and $A=-\frac{1}{2} h(x) \partial_{x} p-1 / h(x)$ and thus

$$
\begin{equation*}
u=-\frac{1}{2} y(h-y) \partial_{x} p+1-\frac{y}{h} . \tag{5}
\end{equation*}
$$

Integrating the third equation in (4) with respect to y and using the boundary conditions $v(x, 0)=$ $v(x, h(x))=0$ gives

$$
0=\int_{0}^{h(x)}\left(\partial_{x} u+\partial_{y} v\right) d y=\int_{0}^{h(x)} \partial_{x} u d y+v(x, h(x))-v(x, 0)=\int_{0}^{h(x)} \partial_{x} u d y
$$

and substituting $\partial_{x} u$ from (5) gives

$$
\begin{aligned}
0 & =\int_{0}^{h(x)} \partial_{x}\left[-\frac{1}{2} y(h-y) \partial_{x} p+1-\frac{y}{h}\right] d y \\
& =\partial_{x}\left(\int_{0}^{h(x)}\left[-\frac{1}{2} y(h-y) \partial_{x} p+1-\frac{y}{h}\right] d y\right) \\
& =\partial_{x}\left(-\frac{1}{12}\left(h^{3} \partial_{x} p\right)+\frac{1}{2} h\right)
\end{aligned}
$$

(When we moved the derivative outside the integral sign we should have subtracted a term due to the x dependency in the upper limit of the integral, but this term is zero because the integrand is zero at $y=h$.) Integration gives $\frac{1}{6} h^{3} \partial_{x} p=h-\bar{h}$, where \bar{h} is a constant of integration. This can be written $\partial_{x} p=6(h-\bar{h}) / h^{3}$, which is Reynold's equation.

Finally, by setting $h=1-\alpha x$ one obtains

$$
\partial_{x} p=6\left(\frac{1}{(1-\alpha x)^{2}}-\frac{\bar{h}}{(1-\alpha x)^{3}}\right)
$$

Another integration using $p(0)=0$ gives

$$
\begin{aligned}
p(x) & =6\left[\frac{1}{\alpha(1-\alpha x)}-\frac{\bar{h}}{2 \alpha(1-\alpha x)^{2}}\right]_{0}^{x} \\
& =\frac{6}{\alpha(1-\alpha x)^{2}}\left[(1-\alpha x)-\frac{\bar{h}}{2}-(1-\alpha x)^{2}+\frac{\bar{h}}{2}(1-\alpha x)^{2}\right] \\
& =\frac{6}{\alpha(1-\alpha x)^{2}}\left(-\alpha x+\alpha^{2} x^{2}-\frac{\bar{h}}{2}\left(\alpha^{2} x^{2}-2 \alpha x\right)\right)
\end{aligned}
$$

Using $p(1)=0$ gives $0=-\alpha+\alpha^{2}-\frac{\bar{h}}{2}\left(\alpha^{2}-2 \alpha\right)$ and therefore $\bar{h}=2(\alpha-1) /(\alpha-2)$.
(Note that $\bar{h}=\frac{2}{1 /(1-\alpha)+1 / 1}$. Hence \bar{h} is the harmonic mean of 1 and $1-\alpha$ (the height at $x=0$ and $x=1$ respectively), and thus $1-\alpha<\bar{h}<1$.)

The maximum pressure is attained at $h=\bar{h}$ since $\frac{\partial p}{\partial x}(h=\bar{h})=0$. We find

$$
p_{\max }=\frac{3}{2}
$$

Hence,

$$
p_{\max }^{*}=\frac{3 U \nu \rho}{2 L \varepsilon^{2}}=30 \mathrm{hPa}
$$

