
Exercise Set 5

Problem 1

The equilibrium points are given by the following curves in the (µ, u) plane (see
figure below):

u = 0

9 − µu = 0

µ + 2u− u2 = 0

At (µ, u) = (−1, 1), dµ

du
changes sign. We have

fµ(µ, u) = u(9 − 2uµ − 2u2 + u3)

Hence fµ(−1, 1) = 10 6= 0 and (−1, 1) is a regular turning point where stability
is exchanged.

We differentiate fµ once more and get

fµµ = −2u2

At (µ1, u1), the intersection between the two curves 9−µu = 0 and µ+2u−u2 =
0, fu = 0 but fµµ does not vanish. Thus, we have a double point and stability
is exchanged (theorem 2.4, p.370 in Logan).

fµµ(0, 0) = 0 but fµu(0, 0) = 9 6= 0. (0, 0) is a double point and stability is also
exchanged (theorem 2.5, p.371 in Logan).

It then suffices to compute the sign of fu at one point of each curve to determine
the stability along all the curves. We have

fu = (9 − µu)(µ + 2u − u2) − µu(µ + 2u − u2) + u(9 − µu)(−2u + 2)

We choose for example (µ, u) equal to (0, 2), (0,−∞), (µ, 9

µ
) µ → ∞. We get

fu(0, 2) = −180

lim
µ→−∞

fu(0, u) = −∞

lim
u→∞

fu(µ, 9
9

µ
) = −∞
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The thick lines indicate stable equilibrium points

Problem 2

The infinitesimal change ds∗ due to the chemical reaction is as in the textbook

ds∗ = (−k1s
∗e∗ + k−1c

∗)dt∗ (1)

The infinitesimal change due to the reactor is

ds∗ = d(
ms

VR

)

=
1

VR

dms

where ms is the mass of substract in the reactor. Since

dms = V s0dt∗ − V s∗dt ,

we get

ds∗ =
V

VR

(s0 − s∗)dt∗ (2)

We add up the two contributions (1) and (2) and get

ds∗

dt∗
= −k1s

∗e∗ + k−1c
∗ +

V

VR

(s0 − s∗)

We proceed in the same way for the remaining variables c∗, e∗, p∗ and get the
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following system of o.d.e :

ds∗

dt∗
= −k1s

∗e∗ + k−1c
∗ +

V

VR

(s0 − s∗) (3)

dc∗

dt∗
= k1s

∗e∗ − k−1c
∗ − k2c

∗ −
V

VR

c∗ (4)

de∗

dt∗
= −k1s

∗e∗ + k−1c
∗ + k2c

∗ +
V

VR

(e0 − e∗) (5)

dp∗

dt∗
= k2c

∗ −
V

VR

p∗ (6)

Summing equations (3), (4) and (6), we obtain

d

dt∗
(s∗ + c∗ + p∗) =

V

VR

s0 −
V

VR

(s∗ + c∗ + p∗)

and, similarly with (4) and (5),

d

dt∗
(c∗ + e∗) =

V

VR

e0 −
V

VR

(c∗ + e∗)

We set
f∗ = c∗ + e∗ and g∗ = s∗ + c∗ + p∗ (7)

The previous system of ode is then equivalent to

ds∗

dt∗
= −k1s

∗(f∗ − c∗) + k−1c
∗ +

V

VR

(s0 − s∗)

dc∗

dt∗
= k1s

∗(f∗ − c∗) − k−1c
∗ − k2c

∗ −
V

VR

c∗

df∗

dt∗
=

V

VR

(e0 − f∗)

dg∗

dt∗
=

V

VR

(s0 − g∗)

We rescale the problem

s∗ = s0s c∗ = e0c f∗ = e0f

g∗ = s0g t∗ =
t

k1e0

and set

κ =
k−1 + k2

k1s0

λ =
k2

k1s0

ε =
e0

s0

µ =
V

VRk1e0
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We end up with the following equivalent but simpler system of ode

ṡ = −fs + (s + κ − λ)c + µ(1 − s)

εċ = fs − (s + κ)c − εµc

ḟ = µ(1 − f)

ġ = µ(1 − g)

The equilibrium points (ṡ = ċ = ḟ = ġ = 0) satisfy

f = 1

g = 1

and

−s + (s + κ − λ)c + µ(1 − s) = 0 (8)

s − (s + κ)c − εµc = 0 (9)

Adding up these two equations, we get

(λ + εµ)c + µs = µ (10)

We use equation (10) to express s in function of c and plug the result into
equation (9). We get

F (c) ≡ (µ − (λ + εµ)c)(1 − c) − (κ + εµ)µc = 0

F (c) is a quadratic polynomial. F (0) = µ > 0 and F (1) = −µ(κ+εµ) < 0 imply
that there exists c∗ ∈ (0, 1) such that F (c∗) = 0. F has an other root in (1,∞)
because limc→∞ F (c) = +∞ but this root cannot give a equilibrium point since
1 = c + e (at equilibrium) implies that c ≤ 1 (e is positive). Therefore, if we
have an equilibrium point, we must have c = c∗.

Once c∗ is known, the value of s at equilibrium (which we denote s∗) is given
by (10) and p∗ and e∗ (the values of p and e at equilibrium) by (7). We have
to check if these values are admissible i.e. if they are positive (concentrations
must be positive). In dimensionless variables, equation (7) yields

f∗ = 1 = c∗ + e∗ and g∗ = 1 = s∗ + εc∗ + p∗

Since c∗ ∈ (0, 1), e∗ ≥ 0. It remains to check that s∗ ≥ 0 and s∗ + εc∗ ≤ 1 so
that p∗ ≥ 0. (9) implies

s∗ =
(εµ + κ)c∗

1 − c

and since c ∈ (0, 1), s∗ ≥ 0. (10) gives

εc∗ + s∗ = 1 −
λ

µ
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and therefore εc∗ + s∗ ≤ 1.

We have then proved that there exists an admissible equilibrium point and that
it is unique. We now investigate the stability of this equilibrium point. We
write down the matrix corresponding to the linearized system at (s∗, c∗, f∗ =
1, g∗ = 1)

M =











−1 + c∗ − µ s∗ + κ − λ −s∗ 0
1 − c∗

ε

−(s∗ + κ∗) − εµ

ε

s∗

ε
0

0 0 −µ 0
0 0 0 −µ











The eigenvalues of M are given by the roots of det[M − λI ]. We have

det[M − λI ] = (−µ − λ)2det[M̃ − λI ]

where

M̃ =

(

−1 + c∗ − µ s∗ + κ − λ
1 − c∗

ε

−(s∗ + κ) − εµ

ε

)

.

−µ is a double eigenvalue. The two remaining eigenvalues of M are the same
as those of M̃ . The product of the eigenvalues of a 2x2 matrix is equal to the
determinant of the matrix while the sum is equal to the trace. We have

detM̃ =
1

ε
[(εµ + λ)(1 − c∗) + µ(s∗ + κ + εµ)] > 0

and

trM̃ = −(1 − c∗) − 2µ −
s∗ + κ

ε

If λ1 and λ2, the eigenvalues of M̃ , are real, λ1λ2 > 0 implies that λ1 and λ2

have the same sign but, since λ1 + λ2 < 0, they can only be strictly negative.

If λ1 and λ2 are imaginary, they must be conjugate: λ2 = λ1. λ1 + λ2 < 0
implies λ1 + λ1 < 0. Hence,

Re[λ1] = Re[λ2] < 0

In both cases, we have a stable equilibrium point.
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