Exercise Set 5

Problem 1

The equilibrium points are given by the following curves in the (μ, u) plane (see figure below):

$$
\begin{aligned}
u & =0 \\
9-\mu u & =0 \\
\mu+2 u-u^{2} & =0
\end{aligned}
$$

At $(\mu, u)=(-1,1), \frac{d \mu}{d u}$ changes sign. We have

$$
f_{\mu}(\mu, u)=u\left(9-2 u \mu-2 u^{2}+u^{3}\right)
$$

Hence $f_{\mu}(-1,1)=10 \neq 0$ and $(-1,1)$ is a regular turning point where stability is exchanged.

We differentiate f_{μ} once more and get

$$
f_{\mu \mu}=-2 u^{2}
$$

At $\left(\mu_{1}, u_{1}\right)$, the intersection between the two curves $9-\mu u=0$ and $\mu+2 u-u^{2}=$ $0, f_{u}=0$ but $f_{\mu \mu}$ does not vanish. Thus, we have a double point and stability is exchanged (theorem 2.4, p. 370 in Logan).
$f_{\mu \mu}(0,0)=0$ but $f_{\mu u}(0,0)=9 \neq 0 .(0,0)$ is a double point and stability is also exchanged (theorem 2.5, p. 371 in Logan).

It then suffices to compute the sign of f_{u} at one point of each curve to determine the stability along all the curves. We have

$$
f_{u}=(9-\mu u)\left(\mu+2 u-u^{2}\right)-\mu u\left(\mu+2 u-u^{2}\right)+u(9-\mu u)(-2 u+2)
$$

We choose for example (μ, u) equal to $(0,2),(0,-\infty),\left(\mu, \frac{9}{\mu}\right) \mu \rightarrow \infty$. We get

$$
\begin{aligned}
f_{u}(0,2) & =-180 \\
\lim _{\mu \rightarrow-\infty} f_{u}(0, u) & =-\infty \\
\lim _{u \rightarrow \infty} f_{u}\left(\mu, 9 \frac{9}{\mu}\right) & =-\infty
\end{aligned}
$$

The thick lines indicate stable equilibrium points

Problem 2

The infinitesimal change $d s^{*}$ due to the chemical reaction is as in the textbook

$$
\begin{equation*}
d s^{*}=\left(-k_{1} s^{*} e^{*}+k_{-1} c^{*}\right) d t^{*} \tag{1}
\end{equation*}
$$

The infinitesimal change due to the reactor is

$$
\begin{aligned}
d s^{*} & =d\left(\frac{m_{s}}{V_{R}}\right) \\
& =\frac{1}{V_{R}} d m_{s}
\end{aligned}
$$

where m_{s} is the mass of substract in the reactor. Since

$$
d m_{s}=V s_{0} d t^{*}-V s^{*} d t
$$

we get

$$
\begin{equation*}
d s^{*}=\frac{V}{V_{R}}\left(s_{0}-s^{*}\right) d t^{*} \tag{2}
\end{equation*}
$$

We add up the two contributions (1) and (2) and get

$$
\frac{d s^{*}}{d t^{*}}=-k_{1} s^{*} e^{*}+k_{-1} c^{*}+\frac{V}{V_{R}}\left(s_{0}-s^{*}\right)
$$

We proceed in the same way for the remaining variables c^{*}, e^{*}, p^{*} and get the
following system of o.d.e :

$$
\begin{align*}
& \frac{d s^{*}}{d t^{*}}=-k_{1} s^{*} e^{*}+k_{-1} c^{*}+\frac{V}{V_{R}}\left(s_{0}-s^{*}\right) \tag{3}\\
& \frac{d c^{*}}{d t^{*}}=k_{1} s^{*} e^{*}-k_{-1} c^{*}-k_{2} c^{*}-\frac{V}{V_{R}} c^{*} \tag{4}\\
& \frac{d e^{*}}{d t^{*}}=-k_{1} s^{*} e^{*}+k_{-1} c^{*}+k_{2} c^{*}+\frac{V}{V_{R}}\left(e_{0}-e^{*}\right) \tag{5}\\
& \frac{d p^{*}}{d t^{*}}=k_{2} c^{*}-\frac{V}{V_{R}} p^{*} \tag{6}
\end{align*}
$$

Summing equations (3), (4) and (6), we obtain

$$
\frac{d}{d t^{*}}\left(s^{*}+c^{*}+p^{*}\right)=\frac{V}{V_{R}} s_{0}-\frac{V}{V_{R}}\left(s^{*}+c^{*}+p^{*}\right)
$$

and, similarly with (4) and (5),

$$
\frac{d}{d t^{*}}\left(c^{*}+e^{*}\right)=\frac{V}{V_{R}} e_{0}-\frac{V}{V_{R}}\left(c^{*}+e^{*}\right)
$$

We set

$$
\begin{equation*}
f^{*}=c^{*}+e^{*} \text { and } g^{*}=s^{*}+c^{*}+p^{*} \tag{7}
\end{equation*}
$$

The previous system of ode is then equivalent to

$$
\begin{aligned}
& \frac{d s^{*}}{d t^{*}}=-k_{1} s^{*}\left(f^{*}-c^{*}\right)+k_{-1} c^{*}+\frac{V}{V_{R}}\left(s_{0}-s^{*}\right) \\
& \frac{d c^{*}}{d t^{*}}=k_{1} s^{*}\left(f^{*}-c^{*}\right)-k_{-1} c^{*}-k_{2} c^{*}-\frac{V}{V_{R}} c^{*} \\
& \frac{d f^{*}}{d t^{*}}=\frac{V}{V_{R}}\left(e_{0}-f^{*}\right) \\
& \frac{d g^{*}}{d t^{*}}=\frac{V}{V_{R}}\left(s_{0}-g^{*}\right)
\end{aligned}
$$

We rescale the problem

$$
\begin{array}{lll}
s^{*}=s_{0} s & c^{*}=e_{0} c & f^{*}=e_{0} f \\
g^{*}=s_{0} g & t^{*}=\frac{t}{k_{1} e_{0}} &
\end{array}
$$

and set

$$
\begin{aligned}
\kappa & =\frac{k_{-1}+k_{2}}{k_{1} s_{0}} & \lambda & =\frac{k_{2}}{k_{1} s_{0}} \\
\varepsilon & =\frac{e_{0}}{s_{0}} & \mu & =\frac{V}{V_{R} k_{1} e_{0}}
\end{aligned}
$$

We end up with the following equivalent but simpler system of ode

$$
\begin{aligned}
\dot{s} & =-f s+(s+\kappa-\lambda) c+\mu(1-s) \\
\varepsilon \dot{c} & =f s-(s+\kappa) c-\varepsilon \mu c \\
\dot{f} & =\mu(1-f) \\
\dot{g} & =\mu(1-g)
\end{aligned}
$$

The equilibrium points ($\dot{s}=\dot{c}=\dot{f}=\dot{g}=0$) satisfy

$$
\begin{aligned}
& f=1 \\
& g=1
\end{aligned}
$$

and

$$
\begin{array}{r}
-s+(s+\kappa-\lambda) c+\mu(1-s)=0 \\
s-(s+\kappa) c-\varepsilon \mu c=0 \tag{9}
\end{array}
$$

Adding up these two equations, we get

$$
\begin{equation*}
(\lambda+\varepsilon \mu) c+\mu s=\mu \tag{10}
\end{equation*}
$$

We use equation (10) to express s in function of c and plug the result into equation (9). We get

$$
F(c) \equiv(\mu-(\lambda+\varepsilon \mu) c)(1-c)-(\kappa+\varepsilon \mu) \mu c=0
$$

$F(c)$ is a quadratic polynomial. $F(0)=\mu>0$ and $F(1)=-\mu(\kappa+\varepsilon \mu)<0$ imply that there exists $c_{*} \in(0,1)$ such that $F\left(c_{*}\right)=0$. F has an other root in $(1, \infty)$ because $\lim _{c \rightarrow \infty} F(c)=+\infty$ but this root cannot give a equilibrium point since $1=c+e$ (at equilibrium) implies that $c \leq 1$ (e is positive). Therefore, if we have an equilibrium point, we must have $c=c_{*}$.

Once c_{*} is known, the value of s at equilibrium (which we denote s_{*}) is given by (10) and p_{*} and e_{*} (the values of p and e at equilibrium) by (7). We have to check if these values are admissible i.e. if they are positive (concentrations must be positive). In dimensionless variables, equation (7) yields

$$
f_{*}=1=c_{*}+e_{*} \text { and } g_{*}=1=s_{*}+\varepsilon c_{*}+p_{*}
$$

Since $c_{*} \in(0,1), e_{*} \geq 0$. It remains to check that $s_{*} \geq 0$ and $s_{*}+\varepsilon c_{*} \leq 1$ so that $p_{*} \geq 0$. (9) implies

$$
s_{*}=\frac{(\varepsilon \mu+\kappa) c_{*}}{1-c}
$$

and since $c \in(0,1), s_{*} \geq 0$. (10) gives

$$
\varepsilon c_{*}+s_{*}=1-\frac{\lambda}{\mu}
$$

and therefore $\varepsilon c_{*}+s_{*} \leq 1$.

We have then proved that there exists an admissible equilibrium point and that it is unique. We now investigate the stability of this equilibrium point. We write down the matrix corresponding to the linearized system at $\left(s_{*}, c_{*}, f_{*}=\right.$ $1, g_{*}=1$)

$$
M=\left(\begin{array}{cccc}
-1+c_{*}-\mu & s_{*}+\kappa-\lambda & -s_{*} & 0 \\
\frac{1-c *}{\varepsilon} & \frac{-\left(s_{*}+\kappa_{*}\right)-\varepsilon \mu}{\varepsilon} & \frac{s_{*}}{\varepsilon} & 0 \\
0 & 0 & -\mu & 0 \\
0 & 0 & 0 & -\mu
\end{array}\right)
$$

The eigenvalues of M are given by the roots of $\operatorname{det}[M-\lambda I]$. We have

$$
\operatorname{det}[M-\lambda I]=(-\mu-\lambda)^{2} \operatorname{det}[\tilde{M}-\lambda I]
$$

where

$$
\tilde{M}=\left(\begin{array}{cc}
-1+c_{*}-\mu & s_{*}+\kappa-\lambda \\
\frac{1-c_{*}}{\varepsilon} & \frac{-\left(s_{*}+\kappa\right)-\varepsilon \mu}{\varepsilon}
\end{array}\right) .
$$

$-\mu$ is a double eigenvalue. The two remaining eigenvalues of M are the same as those of \tilde{M}. The product of the eigenvalues of a 2×2 matrix is equal to the determinant of the matrix while the sum is equal to the trace. We have

$$
\operatorname{det} \tilde{M}=\frac{1}{\varepsilon}\left[(\varepsilon \mu+\lambda)\left(1-c_{*}\right)+\mu\left(s_{*}+\kappa+\varepsilon \mu\right)\right]>0
$$

and

$$
\operatorname{tr} \tilde{M}=-\left(1-c_{*}\right)-2 \mu-\frac{s_{*}+\kappa}{\varepsilon}
$$

If λ_{1} and λ_{2}, the eigenvalues of \tilde{M}, are real, $\lambda_{1} \lambda_{2}>0$ implies that λ_{1} and λ_{2} have the same sign but, since $\lambda_{1}+\lambda_{2}<0$, they can only be strictly negative.

If λ_{1} and λ_{2} are imaginary, they must be conjugate: $\lambda_{2}=\overline{\lambda_{1}} . \quad \lambda_{1}+\lambda_{2}<0$ implies $\lambda_{1}+\overline{\lambda_{1}}<0$. Hence,

$$
\operatorname{Re}\left[\lambda_{1}\right]=\operatorname{Re}\left[\lambda_{2}\right]<0
$$

In both cases, we have a stable equilibrium point.

