
Exercise Set 4

Problem 1

We are looking for the zeros of

36x3 + (162 + 4ε)x2 − 24εx − 9ε = 0

We try x = x0 + εx1 + o(ε). At the first order we get

36x3
0 + 162x2

0 = 0

hence

x0 = −9

2
or x0 = 0 (double root)

At the second order, we get:

108x2
0x1 + 4x2

0 + 324x0x1 − 24x0 − 9 = 0

For x0 = − 9

2
, we get

3645x1 = 36

hence

x1 =
4

405

For x0 = 0, we get −9 = 0 which is impossible and x cannot be expanded as
x = x0 + εx1 near 0 (x − x0 is not of order ε). Let’s try an other power of ε:
x = εpx1 + o(εp). We get

36ε3px3
1 + 162ε2px2

1 + 4ε2p+1x2
1 − 24εp+1x1 − 9ε = 0

p = 1/2 is the smallest strictly positive value which gives rise to more than one
leading order term. We take p = 1/2 and it follows that

162x2
1 = 9

and

x1 = ±
√

9

162

Finally, first approximations of the roots are given by

x = −9

2
+

4

405
ε

and

x = ±
√

9

162

√
ε
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Problem 2

We want to solve
εy′′ + (1 + x2)y′ + y = 0 (1)

with
y(0) = 0, y(1) = 1

The inner solution ym is given by

(1 + x2)y′

m + ym = 0

which can be integrated explicitly

ym = Ce− arctan x

C is a constant that we choose so that the boundary condition on the right is
satisfied. We get

ym = e
π
4
−arctanx

We have to determine the scaling xl for the outer solution on the left

xl =
x

εα

We have
yl(xl) = y(x)

and

y′(x) = y′

l(xl)
1

εα

y′′(x) = y′′

l (xl)
1

ε2α

Plugging that into equation (1), we get

ε1−2αy′′

l + (1 + ε2αx2
l )ε

−αy′

l + yl = 0 (2)

The smallest α strictly bigger than zero which gives rise to more than one leading
term is α = 1 and then equation (2) yields

y′′

l + y′

l = 0

The general solution of this equation is

yl = Ae−xl + B

The boundary condition y(0) = 0 implies that B = −A and

yl = A(1 − e−xl)
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To determine A, we match the outer and the inner expansions.

lim
xl→∞

yl(xl) = lim
x→0

ym(x)

hence
A = e

π
4

The total expansion is

y = yl(xl) + ym(x) − lim
xl→∞

yl(xl)

= e
π
4 (e− arctanx − e−

x
ε )
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Problem 3

If y satisfies the differential equation with the given boundary conditions, so
does y(1 − x). The problem is symmetric with respect to x = 1/2 and we will
focus our attention on the boundary layer on the left, around 0.

The inner expansion ym of y satisfies

y′′

m + λym = 0

which gives
ym = A cos

√
λx + B sin

√
λx (3)

where A and B are constant.
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Around 0, we rescale the problem with xl = x
εα and yl(xl) = y(x). We get

ε1−4αy′′′′

l − ε−2αy′′

l = λyl

We take α = 1/2 so that the fourth derivative is taken into account. At the
lowest order, we have

y′′′′

l − y′′

l = 0 (4)

The general solution of this equation is

yl = Axl + B + Cexl + De−xl

The terms xl = x/
√

ε and exl = e
x
√

ε are not possible, since we (implicitly)
assumed while doing our expansion that yl = O(1). We are left with

yl = B + De−xl

Taking into account the boundary conditions yl(0) = y′

l(0) = 0 , we get that
B = D = 0 and

yl = 0 (5)

A similar calculation on the right, around x = 1, would give us

yr = 0

we are now able to set the constants A and B in (3) by matching ym with yl

and yr. We have
lim
x→0

ym(x) = lim
xl→∞

yl(xl)

which implies, since yl = 0,
A = 0

and
lim
x→1

ym(x) = lim
xr→−∞

yr(xr)

which implies
B sin

√
λ = 0

We take B 6= 0 (we exclude the zero solution which is not a eigenfunction) and
we arbitrarily set B = 1 since any multiple of a solution remains solution for
the same eigenfrequency. We have:

λ = π2n2, n ∈ N\{0}

At the left-hand side, yl = 0 does not give us a satisfactory picture of the
solution. yl has to grow at some point in order to match with ym = sin

√
λx.

The fact is that yl is not only O(1) but O(
√

ε) as we will now see. Let’s introduce
yl1 (yl1 = O(1))defined as

yl1 =
√

(ε)yl1 + o(
√

ε) (6)
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yl1 satisfies (4) and we have, as earlier,

yl1 = Axl + B + Cexl + De−xl

When ε tends to infinity, the term xl = x/
√

ε is compensated by the factor
√

ε
in front of yl1 in equation (6). Therefore A does not have to vanish. The term
exl however still goes to infinity and we must impose C = 0. The boundary
conditions yl1(0) = y′

l1(0) = 0 imply that A = −B = D and yl1 takes the form

yl1 = A(xl − 1 + e−xl)

In order to match yl with ym, we introduce the intermediate scaling x̂ = εβxl =
εβ−1/2x where β ∈ (0, 1

2
). We rewrite yl and ym in terms of x̂.

yl = A(ε1/2−β x̂ − ε1/2 + ε1/2e−ε1/2−β x̂)

ym = sin
(√

λε1/2−βx̂
)

=
√

λε1/2−βx̂ + o(ε1/2−β)

We equal the lowest order terms and get

A =
√

λ

and the outer expansion on the left looks like

yl =
√

λ(x −
√

ε +
√

εe
−

x
√

ε )

Problem 4

Let f denote
f(u) = u2(u2 − 1)

The fixed points of the systems are given by the roots of f .

u = ±1, 0

In general, for a given root u of f ,

• if f ′(u) < 0 then u is a stable point.

• if f ′(u) > 0 then u is an unstable point.

• if f ′(u) = 0 then we have to look at the second derivative. If f ′′(u) 6= 0, u
is unstable otherwise we have to look at the next derivative and so forth.

These results are easily proved by looking at the taylor expansion of f around
u. To illustrate this, let’s look at u = 0 for our given function f . We have

du

dt
= −u2 + o(u2)
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and the system is unstable because if u is a little bit smaller than 0, the expansion
above holds and du/dt is strictly negative, u decreases and therefore u goes
further away from 0. In this case, we have

f ′(0) = 0 and f ′′(0) = −2

At u = −1,
f ′(−1) = −2 < 0

and the system is stable (locally we have d(u + 1)/dt = −2(u + 1) + o(u + 1)).

At u = 1,
f ′(1) = 2 > 0

and the system is unstable.

Problem 5

This problem is revisited in the next exercise set (number 5) where the use of
the theory presented in the course makes it much simpler.

The fixed point of the system are given by the zeros of f where

f(u) = u(9 − µu)(µ + 2u − u2)

case 1: µ > −1

µ + 2u − u2 has two distinct zeros

u1 = 1 −
√

1 + µ and u2 = 1 +
√

1 + µ

and the zeros (possibly multiple zeros) of f are

0,
9

µ
(if µ 6= 0), u1 and u2

At u = 0, f ′(0) = 9µ. If µ < 0, 0 is stable. If µ > 0, 0 is unstable. If µ = 0,
f ′(0) = 0 but f ′′(0) = 36 6= 0 and therefore 0 is unstable.

At u = 9

µ (µ 6= 0),

f ′(
9

µ
) = − 9

µ2
(µ3 + 18µ − 81)

µ3 + 18µ− 81 is strictly increasing from −∞ to +∞ and therefore has only one
root that we denote µ1. If µ < µ1,

9

µ is unstable while if µ > µ1,
9

µ is stable. If

µ = µ1, we have to look at f ′′(µ1). After some calculation, we get that

f ′′(
9

µ
) = − 2

µ
(µ3 + 36µ− 243)
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for all µ 6= 0. If we take µ = µ1, since µ1 satisfies

µ3
1 + 18µ1 − 81 = 0 (7)

we have

µ3
1 + 36µ1 − 243 = 81 − 18µ1 + 36µ1 − 243

= 18µ1 − 162

6= 0

because µ1 6= 162/18 (just check in (7)). Hence f ′′( 9

µ1

) 6= 0 and 9/µ1 is unstable.

At u = u1,
f ′(u1) = u1(µu1 − 9)(u1 − u2)

we have:
u1 = 1 −

√

1 + µ

hence, if µ < 0, u1 ∈ (0, 1) and f ′(u1) > 0 and u1 is unstable. If µ > 0 then
f ′(u1) < 0 (one has to check that 1−√

1 + µ < 9

µ for all µ > 0) and u1 is stable.
The case µ = 0 gives u1 = 0 and has already been investigated.

At u = u2,
f ′(u2) = u2(µu2 − 9)(u2 − u1)

u2 is always strictly positive as well as u2 − u1. f ′(u2) vanishes when

u2 =
9

µ
(8)

Equation (8) implies

1 + µ = (
9

µ
− 1)2 (9)

or
µ3 + 18µ − 81 = 0

Therefore the only possible solution of (8) is µ1. Conversly, µ1 is indeed a
solution of (8) because 9 > µ1 (µ3 + 18µ − 81 is stricly increasing and 93 +
18.9 − 81 > 0) and therefore (9) implies (8). Thus, when µ = µ1, u2 = 9/µ1

and we have already investigated this case.

case 2: µ = −1

We have a double root u = 1. Since f ′′(1) = −20 6= 0, it corresponds to an
unstable point. For u = 0 and u = 9/µ = −9 the conlusions of the previous
case remain unchanged.

case 3: µ < −1
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µ + 2u − u2 has no root. The only roots of f are u = 0 and u = 9/µ. The
stabilities of these points have already been given.

We sum up our results in the following table

µ −1 0 µ1

0 stable S stable U unstable U unstable
9/µ unstable U unstable ‖ unstable U stable
u1 undefined U unstable U stable S stable
u2 undefined U stable S stable U unstable

where S and U stand respectively for stable and unstable.
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