Exercise Set 3

Problem 1

(a) We plug in the expansion of u

$$
u=\sum_{n=0}^{\infty} \varepsilon^{n} u_{n}
$$

in the governing equation

$$
u^{\prime \prime}+u=1+\varepsilon u^{2}
$$

and we get

$$
\sum_{n=0}^{\infty} \varepsilon^{n} u_{n}^{\prime \prime}+\sum_{n=0}^{\infty} \varepsilon^{n} u_{n}=1+\varepsilon\left(\sum_{n=0}^{\infty} \varepsilon^{n} u_{n}\right)^{2}
$$

or

$$
\sum_{n=0}^{\infty} \varepsilon^{n}\left(u_{n}^{\prime \prime}+u_{n}\right)=1+\varepsilon \sum_{i, j=0}^{\infty} \varepsilon^{i+j} u_{i} u_{j}
$$

At the order 0 , we get

$$
\begin{equation*}
u_{0}^{\prime \prime}+u_{0}=1 \tag{1}
\end{equation*}
$$

At the order n, we get

$$
u_{n}^{\prime \prime}+u_{n}=\sum_{\substack{i, j \in \mathbb{N} \\ i+j+1=n}} u_{i} u_{j}
$$

or

$$
\begin{equation*}
u_{n}^{\prime \prime}+u_{n}=\sum_{i=0}^{n-1} u_{i} u_{n-1-i} \tag{2}
\end{equation*}
$$

(b) A general solution of (1) is given by

$$
u_{0}(\theta)=1+A \cos \theta+B \sin \theta
$$

$u(0)=e+1$ implies that $A=e$ and $u^{\prime}(0)=0$ implies that $B=0$. Hence,

$$
u_{0}(\theta)=1+e \cos \theta
$$

From (2), we get the equation satisfied by u_{1} :

$$
u_{1}^{\prime \prime}+u_{1}=u_{0}^{2}
$$

or

$$
u_{1}^{\prime \prime}+u_{1}=(1+e \cos \theta)^{2}
$$

We expand the the right-hand side and, after using the identity $\cos ^{2} \theta=\frac{1}{2}(\cos 2 \theta+$ 1), we get

$$
\begin{equation*}
u_{1}^{\prime \prime}+u_{1}=\left(1+\frac{e^{2}}{2}\right)+2 e \cos \theta+\frac{e^{2}}{2} \cos 2 \theta \tag{3}
\end{equation*}
$$

The solution of the homogeneous solution corresponding to (3) is $A \cos \theta+$ $B \sin \theta$. We have to find a particular solution. For the term $\frac{e^{2}}{2} \cos 2 \theta$, a solution of the form $\alpha \frac{e^{2}}{2} \cos 2 \theta$ will do and after some calculation, we get $\alpha=-\frac{1}{3}$. The second term is a bit more tricky since $\cos \theta$ is solution of the homogeneous equation. We want to find a particular solution of

$$
\begin{equation*}
v^{\prime \prime}+v=\cos \theta \tag{4}
\end{equation*}
$$

We write v as

$$
\begin{align*}
v(\theta) & =\alpha(\theta) \cos \theta+\beta(\theta) \sin \theta \tag{5}\\
v^{\prime} & =\alpha(\theta)(-\sin \theta)+\beta(\theta) \cos \theta \tag{6}
\end{align*}
$$

where α, β are unknown functions (such functions allways exist because $\cos \theta$ and $\sin \theta$ are two independant solutions of the homogeneous system).

Then we get

$$
\begin{equation*}
0=\alpha^{\prime}(\theta) \cos \theta+\beta^{\prime}(\theta) \sin \theta \tag{7}
\end{equation*}
$$

by differentiating (5) and using (6). We also have

$$
\begin{equation*}
\cos \theta=\alpha^{\prime}(\theta)(-\sin \theta)+\beta^{\prime}(\theta) \cos \theta \tag{8}
\end{equation*}
$$

because v is solution of (4).
Equations (7) and (8) give us

$$
\begin{aligned}
\alpha^{\prime}(\theta) & =-\sin \theta \cos \theta \\
\beta^{\prime}(\theta) & =\cos ^{2} \theta
\end{aligned}
$$

that we solve:

$$
\begin{aligned}
& \alpha=\frac{\cos 2 \theta}{4} \\
& \beta=\frac{\sin 2 \theta}{4}+\frac{\theta}{2}
\end{aligned}
$$

hence, we get

$$
\begin{aligned}
v & =\alpha(\theta) \cos \theta+\beta(\theta) \sin \theta \\
& =\frac{\cos 2 \theta}{4} \cos \theta+\left(\frac{\sin 2 \theta}{4}+\frac{\theta}{2}\right) \sin \theta \\
& =\frac{\theta}{2} \sin \theta+\frac{1}{4} \cos \theta \quad \text { (after some computation) }
\end{aligned}
$$

Since we are only interested in a particular solution, we can drop the $\cos \theta$ term (it is solution of the homogeneous equation) and take $v=\frac{\theta}{2} \sin \theta$. Finally, the solution of (3) is

$$
u_{1}(\theta)=\left(1+\frac{e^{2}}{2}\right)+e \theta \sin \theta-\frac{e^{2}}{6} \cos 2 \theta+A \cos \theta+B \sin \theta
$$

The boundary conditions $u_{1}(0)=0$ and $u_{1}^{\prime}(0)=0$ imply that

$$
u_{1}(\theta)=\left(1+\frac{e^{2}}{2}\right)+e \theta \sin \theta-\frac{e^{2}}{6} \cos 2 \theta-\left(1+\frac{e^{2}}{3}\right) \cos \theta
$$

The term $\theta \sin \theta$ is not physical because it grows to infinity. Our approximation is only valid on a small interval when $\theta \sin \theta$ remains of order 1 .
(c) We set

$$
\begin{equation*}
v(\phi)=u(\theta) \tag{9}
\end{equation*}
$$

where

$$
\phi=(1+\varepsilon h) \theta
$$

We differentiate twice (9) and we get

$$
(1+\varepsilon h)^{2} v^{\prime \prime}=u^{\prime \prime}
$$

We plug in this expression in the governing equation

$$
\begin{equation*}
(1+\varepsilon h)^{2} v^{\prime \prime}+v=1+\varepsilon v^{2} \tag{10}
\end{equation*}
$$

We expand v in a power serie of ε up to the order 1

$$
v=v_{0}+\varepsilon v_{1}+o(\varepsilon)
$$

and from (10) we get

$$
\left(v_{0}+\varepsilon v_{1}\right)^{\prime \prime}(1+\varepsilon h)^{2}+v_{0}+\varepsilon v_{1}=1+\varepsilon\left(v_{0}+\varepsilon v_{1}\right)^{2}+o(\varepsilon)
$$

Equaling the terms of same orders we end up with the following equations that v_{0} and v_{1} must satisfy

$$
\begin{align*}
v_{0}^{\prime \prime}+v_{0} & =1 \tag{11}\\
2 h v_{0}^{\prime \prime}+v_{1}^{\prime \prime}+v_{1} & =v_{0}^{2} \tag{12}
\end{align*}
$$

We have $v_{0}=1+e \cos \theta$ (v_{0} satisfies the same equation with the same boundary conditions as u_{0} in the previous question). After some simplification in (12), we get that v_{1} satisfies

$$
\begin{equation*}
v_{1}^{\prime \prime}(\phi)+v_{1}(\phi)=\left(1+\frac{e^{2}}{2}\right)+\frac{e^{2}}{2} \cos 2 \phi+2 e(1+h) \cos \phi \tag{13}
\end{equation*}
$$

The right-hand side is very similar to the one we got for u_{1} in the previous question and we use the result we found there to get the general solution of (13)

$$
v_{1}(\phi)=\left(1+\frac{e^{2}}{2}\right)+e(1+h) \phi \sin \phi-\frac{e^{2}}{6} \cos 2 \phi+A \cos \phi+B \sin \phi
$$

We set $h=-1$ so that we get rid of the unphysical term $\phi \sin \phi$. The boundary conditions for v_{1} imply that $A=-\left(1+\frac{e^{2}}{3}\right)$ and $B=0$. We end up with

$$
v_{1}(\phi)=\left(1+\frac{e^{2}}{2}\right)-\frac{e^{2}}{6} \cos 2 \phi-\left(1+\frac{e^{2}}{3}\right) \cos \phi
$$

which is 2π-periodic with respect to ϕ
(d) The system has period 2π with respect to $\phi . \phi=2 \pi$ when

$$
\begin{aligned}
\theta & =\frac{2 \pi}{1+\varepsilon h} \\
& =2 \pi(1-\varepsilon h) \quad(\text { at first order in } \varepsilon) \\
& =2 \pi+2 \pi \varepsilon
\end{aligned}
$$

since $h=-1$.

The perihelion (the point where the planet is the closest to the sun) moves forward with an angle $2 \pi \varepsilon$ at each rotation.

