
Exercise Set 3

Problem 1

(a) We plug in the expansion of u

u =

∞∑

n=0

εnun

in the governing equation
u′′ + u = 1 + εu2

and we get
∞∑

n=0

εnu′′

n +
∞∑

n=0

εnun = 1 + ε(
∞∑

n=0

εnun)2

or
∞∑

n=0

εn(u′′

n + un) = 1 + ε

∞∑

i,j=0

εi+juiuj

At the order 0, we get
u′′

0 + u0 = 1 (1)

At the order n, we get

u′′

n + un =
∑

i, j ∈ N

i + j + 1 = n

uiuj

or

u′′

n + un =

n−1∑

i=0

uiun−1−i (2)

(b) A general solution of (1) is given by

u0(θ) = 1 + A cos θ + B sin θ

u(0) = e + 1 implies that A = e and u′(0) = 0 implies that B = 0. Hence,

u0(θ) = 1 + e cos θ

From (2), we get the equation satisfied by u1:

u′′

1 + u1 = u2
0

or
u′′

1 + u1 = (1 + e cos θ)2

1



We expand the the right-hand side and, after using the identity cos2 θ = 1

2
(cos 2θ+

1), we get

u′′

1 + u1 = (1 +
e2

2
) + 2e cos θ +

e2

2
cos 2θ (3)

The solution of the homogeneous solution corresponding to (3) is A cos θ +

B sin θ. We have to find a particular solution. For the term e2

2
cos 2θ, a solution

of the form α e2

2
cos 2θ will do and after some calculation, we get α = −

1

3
. The

second term is a bit more tricky since cos θ is solution of the homogeneous
equation. We want to find a particular solution of

v′′ + v = cos θ (4)

We write v as

v(θ) = α(θ) cos θ + β(θ) sin θ (5)

v′ = α(θ)(− sin θ) + β(θ) cos θ (6)

where α, β are unknown functions (such functions allways exist because cos θ

and sin θ are two independant solutions of the homogeneous system).

Then we get
0 = α′(θ) cos θ + β′(θ) sin θ (7)

by differentiating (5) and using (6). We also have

cos θ = α′(θ)(− sin θ) + β′(θ) cos θ (8)

because v is solution of (4).

Equations (7) and (8) give us

α′(θ) = − sin θ cos θ

β′(θ) = cos2 θ

that we solve:

α =
cos 2θ

4

β =
sin 2θ

4
+

θ

2

hence, we get

v = α(θ) cos θ + β(θ) sin θ

=
cos 2θ

4
cos θ + (

sin 2θ

4
+

θ

2
) sin θ

=
θ

2
sin θ +

1

4
cos θ (after some computation)
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Since we are only interested in a particular solution, we can drop the cos θ term
(it is solution of the homogeneous equation) and take v = θ

2
sin θ. Finally, the

solution of (3) is

u1(θ) = (1 +
e2

2
) + eθ sin θ −

e2

6
cos 2θ + A cos θ + B sin θ

The boundary conditions u1(0) = 0 and u′

1(0) = 0 imply that

u1(θ) = (1 +
e2

2
) + eθ sin θ −

e2

6
cos 2θ − (1 +

e2

3
) cos θ

The term θ sin θ is not physical because it grows to infinity. Our approximation
is only valid on a small interval when θ sin θ remains of order 1.

(c) We set
v(φ) = u(θ) (9)

where
φ = (1 + εh)θ

We differentiate twice (9) and we get

(1 + εh)2v′′ = u′′

We plug in this expression in the governing equation

(1 + εh)2v′′ + v = 1 + εv2 (10)

We expand v in a power serie of ε up to the order 1

v = v0 + εv1 + o(ε)

and from (10) we get

(v0 + εv1)
′′(1 + εh)2 + v0 + εv1 = 1 + ε(v0 + εv1)

2 + o(ε)

Equaling the terms of same orders we end up with the following equations that
v0 and v1 must satisfy

v′′0 + v0 = 1 (11)

2hv′′0 + v′′1 + v1 = v2
0 (12)

We have v0 = 1+e cos θ (v0 satisfies the same equation with the same boundary
conditions as u0 in the previous question). After some simplification in (12), we
get that v1 satisfies

v′′1 (φ) + v1(φ) = (1 +
e2

2
) +

e2

2
cos 2φ + 2e(1 + h) cosφ (13)
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The right-hand side is very similar to the one we got for u1 in the previous
question and we use the result we found there to get the general solution of (13)

v1(φ) = (1 +
e2

2
) + e(1 + h)φ sin φ −

e2

6
cos 2φ + A cosφ + B sin φ

We set h = −1 so that we get rid of the unphysical term φ sin φ. The boundary

conditions for v1 imply that A = −(1 + e2

3
) and B = 0. We end up with

v1(φ) = (1 +
e2

2
) −

e2

6
cos 2φ − (1 +

e2

3
) cosφ

which is 2π-periodic with respect to φ

(d) The system has period 2π with respect to φ. φ = 2π when

θ =
2π

1 + εh

= 2π(1 − εh) (at first order in ε)

= 2π + 2πε

since h = −1.

The perihelion (the point where the planet is the closest to the sun) moves
forward with an angle 2πε at each rotation.
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