## Exercise Set 1

## Problem 1



The relevant physical quantities in this problem are the geometry of the vessel (parametrized by $d, D$ and $\delta$ ), the density $\rho$ and the height $h$ of the liquid which determine the action of the gravity and the modulus of elasticity $E$ which gives a relation between stress and deformation (it relates somehow the pressure and $\delta)$.

We sum up in the following table the units of all these quantities

|  | $\delta$ | $D$ | $h$ | $d$ | $\rho$ | $g$ | $E$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $k g$ | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $m$ | 1 | 1 | 1 | 1 | -3 | 1 | -1 |
| $s$ | 0 | 0 | 0 | 0 | 0 | -2 | -2 |

The columns given by $D, \rho$ and $g$ are independant. We take these variables as reference variables and we get $7-3=4$ independant dimensionless variables:

$$
\Pi_{1}=\frac{\delta}{D}, \Pi_{2}=\frac{h}{D}, \Pi_{3}=\frac{d}{D}, \Pi_{4}=\frac{E}{D \rho g}
$$

The Buckingham's pi theorem tells us that there exists a function $\Phi$ such that

$$
\Pi_{1}=\Phi\left(\Pi_{2}, \Pi_{3}, \Pi_{4}\right)
$$

i.e.

$$
\begin{equation*}
\frac{\delta}{D}=\Phi\left(\frac{h}{D}, \frac{d}{D}, \frac{E}{D \rho g}\right) \tag{1}
\end{equation*}
$$

In fact, the liquid deforms the vessel only through the pressure it exerts at the bottom (which is equal to $\rho g h$ ). As a consequence $\Pi_{2}=\frac{h}{D}$ and $\Pi_{4}=\frac{E}{D \rho g}$ are
not independant and we combine them to get the pressure term $\rho g h$ explicitly $\left(\Pi_{\text {new }}=\frac{\Pi_{4}}{\Pi_{2}}=\frac{E}{\rho g h}\right)$. Hence, we rewrite (1) as

$$
\frac{\delta}{D}=\Phi\left(\frac{E}{\rho g h}, \frac{d}{D}\right)
$$

We can obtain the same result in a more rigorous way by starting the dimension analysis again. The relevant physical quantities are now $\delta, D, d, E$ and $P=\rho g h$.

|  | $\delta$ | $D$ | $d$ | $E$ | $P$ |
| :---: | ---: | ---: | ---: | ---: | ---: |
| $k g$ | 0 | 0 | 0 | 1 | 1 |
| $m$ | 1 | 1 | 1 | -1 | -1 |
| $s$ | 0 | 0 | 0 | -2 | -2 |

The rank of the system is now 2 . We take $P$ and $D$ as reference variables and get $5-2=3$ independant variables, namely

$$
\Pi_{1}=\frac{\delta}{D}, \Pi_{2}=\frac{d}{D}, \Pi_{3}=\frac{E}{P}=\frac{E}{\rho g h}
$$

The Buckingham's pi theorem gives us directly that

$$
\frac{\delta}{D}=\Phi\left(\frac{E}{\rho g h}, \frac{d}{D}\right)
$$

## Problem 2



The time required to fill in the vessel depends directly on the flow coming out of the pipe. The flow depends on the diameter of the pipe $(D)$ and on the velocity of the liquid. The striving force in this experiment is the pressure (we assume gravity is not involved) which act through its gradient. Therefore $P=P_{i}-P_{o}$ and $L$ must be considered as relevant variables. Roughly speaking, the viscosity $\mu$ determines the fluid response to a given excitation and it must be taken into
consideration. At first sight it is not clear whether the density $\rho$ plays a role or not (this question arised during the class). $\rho$ is in fact important for modelling turbulent phenomenons but we put it aside for the moment.

We have

|  | $D$ | $L$ | $P$ | $V$ | $t$ | $\mu$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $k g$ | 0 | 0 | 1 | 0 | 0 | 1 |
| $m$ | 1 | 1 | -1 | 3 | 0 | -1 |
| $s$ | 0 | 0 | -2 | 0 | 1 | -1 |

The rank of the system is 3 . We take $V, t$ and $\mu$ as reference variables. We have $6-3=3$ independant variables. Let's take in details the first one.

$$
\Pi_{1}=\frac{P}{V^{x_{1}} t^{x_{2}} \mu^{x_{3}}}
$$

where $x_{1}, x_{2}, x_{3}$ are solutions of

$$
\left(\begin{array}{rrr}
0 & 0 & 1 \\
3 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-1 \\
-2
\end{array}\right)
$$

We solve this system and get:

$$
\Pi_{1}=\frac{P t}{\mu}
$$

similarly, we have:

$$
\Pi_{2}=\frac{D}{V^{1 / 3}}, \quad \Pi_{3}=\frac{L}{V^{1 / 3}}
$$

The buckingham's pi theorem gives us

$$
\frac{P t}{\mu}=\Phi\left(\frac{D}{V^{1 / 3}}, \frac{L}{V^{1 / 3}}\right)
$$

$\Phi$ depends only on the geometries of the pipe and the vessel which remain unchanged during all the experiments. Therefore

$$
\frac{P t}{\mu}=\text { Constant }
$$

hence

$$
\begin{equation*}
\log (P)=\log \left(\frac{1}{t}\right)+\log (\mu) \tag{2}
\end{equation*}
$$

which is exactly what give the graphs! Indeed, in the first graph, we have almost straight lines of slope 1 which only differ by their horizontal position which is determined by $\mu$ in (2).

If we take into consideration the density, we obtain an extra dimensionless independant variable. After some computation, we get the following dimensionless variables

$$
\Pi_{1}=\frac{P V^{2 / 3}}{\mu^{2}}, \Pi_{2}=\frac{D}{V^{1 / 3}}, \Pi_{3}=\frac{L}{V^{1 / 3}}, \Pi_{4}=\frac{\rho V^{1 / 3}}{t \mu}
$$

and finally, since $L, D, V$ are constant throughout the experiment, we get by the Buckingham's pi theorem

$$
\frac{P}{\mu^{2}}=\Phi\left(\frac{\rho}{\mu} \frac{1}{t}\right)
$$

This expression is much less explicit than (2) but it can take care of the fact that we do not have exactly staight lines.

