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Reaction and basic model
The reaction looks like:

s∗ + e∗
k1

�
k−1

c∗ → p∗ + e∗

which leads to the model

ds∗

dt∗
= −k1s

∗e∗ + k−1c
∗

dc∗

dt∗
= k1s

∗e∗ − k−1c
∗ − k2c

∗

de∗

dt∗
= −k1s

∗e∗ + k−1c
∗ + k2c

∗

dp∗

dt∗
= k2c

∗

We shall use the initial conditions

s∗(0) = s̄, c∗(0) = 0, e∗(0) = ē, p∗(0) = 0.

Immediate consequences. We get c∗ + e∗ = ē and s∗ + c∗ + p∗ = s̄.
Hence we need only solve for S∗ and c∗. Substitute e∗ = ē − c∗ into the
first two equations and get our final, non-scaled model:

ds∗

dt∗
= −k1ēs

∗ + (k1s
∗ + k−1)c∗(1)

dc∗

dt∗
= k1ēs

∗ − (k1s
∗ + k−1 + k2)c∗(2)

s∗(0) = s̄, c∗(0) = 0(3)
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Scaling
Put

s∗ = s̄s, c∗ = ēc, t∗ =
t

k1ē

and, with the nondimensional parameters

κ =
k−1 + k2

k1s̄
, λ =

k2

k1s̄
, ε =

ē

s̄

we have the problem on its non-dimensional form:

ṡ = −s + (s + κ− λ)c
εċ = s− (s + κ)c

s(0) = 1, c(0) = 0

For later reference, it will be useful to remember that 0 < λ < κ, and we
shall assume 0 < ε � 1.

Solution by perturbation

Outer solution. First, put ε = 0 in the differential equations. The second
equation becomes the algebraic equation s − (s + κ)c = 0. We solve this
for c and substitute in the first equation, which becomes ṡ = −λs/(s+κ).
We call the solution (s0, c0):

(4) s0 + κ ln s0 = Q− λt, c0 =
s0

s0 + κ

The integration constant Q might be determined by using s0(0) = 1, so
Q = 1. But then the other initial condition is not satisified, and so we are
not quite sure whether even the first one is satisfied. So presumably, Q
must be determined by matching.

Inner solution. Initially we expect s ≈ 1, in which case εċ ≈ 1−(1+κ)c.
Thus c seems to tend towards 1 with a time constant ε/(1+κ). Introduce
this time constant as a new time scale, and define the inner dimensionless
time τ by1

t =
ε

1 + κ
τ

1Here we depart from Lin & Segel in a small way. It simplifies a few formulae, but
changes nothing important.
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With s(t) = S(τ) and c(t) = C(τ) the equations become

(1 + κ)S′ = ε
(
− S + (S + κ− λ)C

)
(1 + κ)C ′ = S − (S + κ)C

and, of course, we can use the intial conditions as well, so S(0) = 1 and
C(0) = 0.

With ε = 0 we get S′ = 0, so the initial conditions imply S = 1. We
plug that into the second equation and get C ′ = 1

1+κ − C, which is easy
to solve with the initial condition C = 0. Renaming this solution (S0, C0)
we thus have

S0(τ) = 1, C0(τ) =
1− e−τ

1 + κ

Matching. To this order, we can match inner and outer solutions by
simply requiring that limτ→∞ S(τ) = limt→0 s(t). Thus Q = 1, as we
guessed before. The similar equation limτ→∞ C(τ) = limt→0 c(t) turns
out to be automatically satisfied.

To the next order. We try to substitute power series S = S0+εS1+· · · ,
C = C0 + εC1 + · · · , s = s0 + εs1 + · · · , and c = c0 + εc1 + · · · into the
inner and outer equations. For S0, C0, s0 and c0 we find the equations
and solutions we have already discovered. Next, we find

S1 = − 1
(1 + κ)2

(
λτ + (1 + κ− λ)(1− e−τ )

)
C1 = − 1

(1 + κ)4
(
λκτ + κ(1 + κ− 2λ) + (1 + κ− λ)e−2τ

+
[1
2
λτ2 + (1 + κ− λ)(1− κ)τ − ((1 + κ)2 − λ− 2κλ)

]
e−τ

)
while s1 and c1 are given by

ṡ1 = (c0 − 1)s1 + (κ− λ + s0)c1, ċ0 = s1(1− c0)− (κ + s0)c1

which requires an initial condition for s1.2 So we introduce the interme-
diate time scale Ψ, put t = Ψτi, and note that

τ =
1 + κ

ε
t =

(1 + κ)Ψ
ε

τi

2At this stage, we do not need an initial condition for c1, as this is system is actually
just one differential equation and one algebraic equation, c0 being a known function.
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We get, therefore

S(τ) = S0

( (1 + κ)Ψ
ε

τi

)
+ εS1

( (1 + κ)Ψ
ε

τi

)
+ · · ·

= 1− λτiΨ
1 + κ

− (1 + κ− λ)ε
(1 + κ)2

+ TST + · · ·

which needs to be matched to s(t) = s0(t) + εs1(t) + · · · with t = Ψτi.
Thus we need a power series representation for s0 in terms of t: Write

s0(t) = 1+γt+ · · · and insert into the first part of (4): 1+γt+κγt+ · · · =
1− λt, so γ = −λ/(1 + κ), and we can write

s(t) = s0(τiΨ) + εs1(τiΨ) + · · · = 1− λτiΨ
1 + κ

+ s1(0)ε + · · ·

and we see that the required matching implies

s1(0) = − (1 + κ− λ)ε
(1 + κ)2

.

Note: the next term in the approximation for s(t) would contain a factor
Ψ2. In order for our argument to remain valid, we need Ψ2 � ε as ε → 0;
thus we must have

lim
ε→0

Ψ
ε

= ∞, lim
ε→0

Ψ√
ε

= 0.

A better scaling
The above analysis is due to Lin & Segel. An improved scaling was intro-
duced by Segel & Slemrod (see References, below).

They find the proper time scales first. (The choice of s̄ as the scale for
s∗ is pretty obvious even at this stage, though.)

After the initial transient, in the quasi-steady state dc∗/dt∗ ≈ 0. As-
suming this is exact, we solve (2) for c∗ to get

c∗ =
s∗

s∗ + K
ē, where K =

k−1 + k2

k1
.

Substitute into (1) and simplify, to get

ds∗

dt∗
= − k2ēs

∗

s∗ + K
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(which is easily solved, but never mind that for now). Clearly the maximal
value of s∗ is s̄, and one good way to get a time scale is

(5) T =
max |s∗|

max
∣∣∣ds∗

dt∗

∣∣∣ =
s̄

k2ēs̄

s̄ + K

=
s̄ + K

k2ē
.

This, then is the long time scale of the problem.
On the other hand, during the initial transient s∗ ≈ s̄ and so (2)

becomes
dc∗

dt∗
≈ k1ēs̄− k1(s̄ + K)c∗.

The equilibrium of this equation is at

c∗ =
ēs̄

s̄ + K
,

so this value is actually a good scale for c∗. Moreover, the approach to
this equilibrium is exponential with a time constant

εT =
1

k1(s̄ + K)
.

This is the appropriate choice of the short time constant. The ratio be-
tween the two time constants is

ε =
k2ē

k1(s̄ + K)2
.

We must have ε � 1, or else our assumptions of very different time scales
is wrong, and our analysis becomes suspect. (But in practice, we can get
surprisingly good results even for ε ≈ 1.)

We thus end up with the following scalings, for the outer solution:

s∗ = s̄s, c∗ =
ēs̄

s̄ + K
c, t∗ =

s̄ + K

k2ē
t.

For the inner solution the rescaled dimensionless time τ is given by

t = ετ

where ε is given above.

Some principles
Segel & Slemrod used these general principles to derive their scaling:
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1. Dependent variables (s∗ and c∗ in our example) should be scaled ac-
cording to their maximal value, so that their dimensionless versions
vary between 0 and 1.

2. Independent variables (t∗ in our example) should be scaled so that
the dependent variables vary considerably over the chosen scale. In
other words, the derivatives of the dependent variables ought to
have a maximum value of 1 in the scaled model. (In our example,
this was achieved by equation (5).)
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