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Reaction and basic model
The reaction looks like:
k1

5*+6*:C*—>p*+6*
k_1

which leads to the model

jj: = —kys*e* +k_ic*

(:1:: = kis*e* —k_ic* — koc*
ji: = —k1s*e* + k_i1c* + koc*
o

We shall use the initial conditions
s*(0)=35, ¢ (0)=0, e*(0)=e, p*(0)=0.

Immediate consequences. We get ¢* 4+ ¢* = € and s* + ¢* + p* = s.
Hence we need only solve for S* and c¢*. Substitute e* = € — ¢* into the
first two equations and get our final, non-scaled model:

d *
(1) dj* = —kyes* + (kis* + k_y)c*

dc* . « .
(2) prel kies™ — (kis™ + k_1+ ko)c
(3) s*(0)=3, ¢ (0)=0
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Enzyme kinetics ala Lin & Segel 2

Scaling
Put ;
s*=38s, c*=eéc, t'=-—
kie
and, with the nondimensional parameters
k_1+ ko ko e
R=———", A= T—, &=<
k13 k15 5

we have the problem on its non-dimensional form:
$=—-s+(s+Kr—Ac
ec= s—(s+k)c
s(0)=1, ¢(0)=0

For later reference, it will be useful to remember that 0 < A < k, and we
shall assume 0 < ¢ < 1.

Solution by perturbation

Outer solution. First, put ¢ = 0 in the differential equations. The second
equation becomes the algebraic equation s — (s + k)¢ = 0. We solve this
for ¢ and substitute in the first equation, which becomes § = —As/(s+k&).
We call the solution (sg, co):

S0

4 1 =Q — M, =
(4) so+klnsg =Q Co P

The integration constant Q might be determined by using so(0) = 1, so
@ = 1. But then the other initial condition is not satisified, and so we are
not quite sure whether even the first one is satisfied. So presumably, @
must be determined by matching.

Inner solution. Initially we expect s & 1, in which case e¢ = 1—(1+k)c.
Thus ¢ seems to tend towards 1 with a time constant €/(1+ k). Introduce
this time constant as a new time scale, and define the inner dimensionless

time T by!
€

t:
1—|—14:T

1Here we depart from Lin & Segel in a small way. It simplifies a few formulae, but
changes nothing important.
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3 Enzyme kinetics ala Lin & Segel

With s(t) = S(7) and ¢(t) = C(7) the equations become
(14+rK)S =e(=S+(S+r-A)0C)
(14+kr)C'=8—(S+k)C

and, of course, we can use the intial conditions as well, so S(0) = 1 and

C(0)=0.
With € = 0 we get S’ = 0, so the initial conditions imply S = 1. We
plug that into the second equation and get C’ = —— — C, which is easy

1+k
to solve with the initial condition C' = 0. Renaming this solution (Sp, Cj)

we thus have
1—e 7

SQ(T)ZL 00(7'): 1+I€

Matching. To this order, we can match inner and outer solutions by
simply requiring that lim,_,., S(7) = lim;_¢ s(¢). Thus @ = 1, as we
guessed before. The similar equation lim,_,. C(7) = lim;—qc(t) turns
out to be automatically satisfied.

To the next order. We try to substitute power series S = So+eS1+-- -,
C=Co+eCy+---,s=89+esy+---,and ¢ = ¢y +ec1 + --- into the
inner and outer equations. For Sy, Cy, sop and ¢y we find the equations
and solutions we have already discovered. Next, we find

S, = —ﬁo\ﬂr(lwf—)\)(l—e”))
1 “or
Cl:7W(AKT+I€(1+KZ*2>\)+(1+I€7>\)€ 2

1
+ [5)\72 +(1+r=N1=r)7T—((14+r)>=A=2cN)]eT)
while s; and ¢; are given by
51 = (CO — ].)81 + (FE - A + S())Cl, é(] = 81(]. — C()) — (Ii + 80)61

which requires an initial condition for s;.2 So we introduce the interme-
diate time scale ¥, put t = ¥r;, and note that

1 1 Y
T= +Ht=( + )
€ €

Ti

2 At this stage, we do not need an initial condition for ¢y, as this is system is actually
just one differential equation and one algebraic equation, c¢p being a known function.
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We get, therefore

S(r) = 50(7(1 +ER)\I]7'¢> + 51 (L +EH)\IITZ-) +

AU (14 k= MNe
—1- - TST 4 - -
1+k (1+k)? ST+

which needs to be matched to s(t) = so(t) +es1(t) + -+ with ¢t = ¥r;.

Thus we need a power series representation for sg in terms of ¢: Write
s0(t) = 14~t+--- and insert into the first part of (4): 1+~yt+rkyt+--- =
1—At,s0v=—-A/(1+ k), and we can write

/\Ti\If
1+kK

s(t) =so(m¥) +es1(m¥)+---=1— + 51(0) 4 - -

and we see that the required matching implies

(1—}—5—)\)5.

51(0) = (1 ¥ H)Q

Note: the next term in the approximation for s(¢) would contain a factor
U2, In order for our argument to remain valid, we need U? < ¢ as ¢ — 0;
thus we must have

A better scaling

The above analysis is due to Lin & Segel. An improved scaling was intro-
duced by Segel & Slemrod (see References, below).
They find the proper time scales first. (The choice of § as the scale for
s* is pretty obvious even at this stage, though.)
After the initial transient, in the quasi-steady state dc¢*/dt* =~ 0. As-
suming this is exact, we solve (2) for ¢* to get
" s* k_1+4 ko

c = e —|—Ké’ where K = "

Substitute into (1) and simplify, to get
ds*  kges”
dtr s+ K
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5 Enzyme kinetics ala Lin & Segel

(which is easily solved, but never mind that for now). Clearly the maximal
value of s* is §, and one good way to get a time scale is

max |s*| 5 5+ K
5 T= = = .
5) | 4 koc5 ko
dt* 5+ K

This, then is the long time scale of the problem.
On the other hand, during the initial transient s* ~ § and so (2)

becomes

de” k1es — k1 (5+ K)c*

I 1E5 1(5 + K)c*.
The equilibrium of this equation is at

es
s+ K’

so this value is actually a good scale for ¢*. Moreover, the approach to
this equilibrium is exponential with a time constant

1
k(5 + K)'

This is the appropriate choice of the short time constant. The ratio be-
tween the two time constants is

*

eT

k‘ge
E=—"-.
k1(5+ K)?
We must have € < 1, or else our assumptions of very different time scales
is wrong, and our analysis becomes suspect. (But in practice, we can get
surprisingly good results even for € ~ 1.)
We thus end up with the following scalings, for the outer solution:
5+ K
koe

_ es
s*=3s, "= - c,
s+ K

*

t.

For the inner solution the rescaled dimensionless time 7 is given by
t=c¢€T

where ¢ is given above.

Some principles

Segel & Slemrod used these general principles to derive their scaling:
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1. Dependent variables (s* and ¢* in our example) should be scaled ac-
cording to their maximal value, so that their dimensionless versions
vary between 0 and 1.

2. Independent variables (t* in our example) should be scaled so that
the dependent variables vary considerably over the chosen scale. In
other words, the derivatives of the dependent variables ought to
have a maximum value of 1 in the scaled model. (In our example,
this was achieved by equation (5).)
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