
MA2104 Fall 2006, Week 46: Solutions to exercises

Problem MNFMA213 1998–12–10 #5:
a) The equation becomes 4X ′′T = XT ′′. Standard methods yield X = sinnx, n =
1, 2, 3, . . . so the T equation becomes T ′′ = −4n2T . The answer is on the form

un(x, t) = sin nx · (bn cos 2nt + b∗n sin 2nt), n = 1, 2, 3, . . .

b) Adding up solutions as above, we have a more general candidate for a solution:

u(x, t) =
∞∑

n=1

sinnx · (bn cos 2nt + b∗n sin 2nt).

The given initial data become

∞∑
n=1

bn sinnx = sin 2x + 3 sin 5x,

∞∑
n=1

2nb∗n sinnx = 3 sin 4x− sin 3x.

These are trivial to satisfy – the righthand sides are already tiny little Fourier series! So
we just match coefficients: b2 = 1, b5 = 3, all other bn = 0, and 8b∗4 = 3, 6b∗3 = −1, all
other b∗n = 0.

u(x, t) = sin 2x cos 4t− 1
6 sin 3x sin 6t + 3

8 sin 4x sin 8t + 3 sin 5x cos 10t.

Problem MNFMA214 2002–05–16 #2:
a) The given function is rational, so all its singularities are poles. We factor the denom-
inator:

z3 − 3z2 − 2z = (z2 − 3z − 2)z =
(
(z − 3

2)2 − 17
4

)
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2 −
1
2

√
17)(z − 3
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2

√
17)z

(it is of course OK to use the formula for the solution of the quadratic equation to find
the roots).

All of the zeroes z = z± = 3
2 ±

1
2

√
17, z = 0 of the denominator are simple, and they

are not zeroes of the numerator, so each is a simple pole.
b) Note: Unless I have made a mistake, this question produces way too much calculation
for a good exam problem. There is a good chance that I did make a mistake in there
somewhere, so read this solution with a critical eye. And let me know if you find a
mistake. (I don’t quite have time to check the solution carefully.)

Apart from z = 0, the pole closest to the origin is z = 3
2 −

1
2

√
17 ≈ 3

2 −
4
2 = −1

2 , so
the problem is wrong in assuming there is a Laurent series valid for 0 < |z| < 1. We
shall have to settle for a series valid for 0 < |z| < 1

2

√
17− 3

2 instead.
I think the easiest way to get such a series is to perform a partial fraction decompo-

sition of the function, and for that it is handy to have all the residues (this technique
only works when all the poles are simple):

Res(f, 0) =
3z2 − 6z + 2
z2 − 3z − 2

∣∣∣∣
z=0

= −1,

and
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±
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√
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In the second row, I have used the fact that z+z− = −2 (since they are the zeroes of
z2 − 3z − 2: the constant term is the product of the roots).

Now, the whole point of this is that in the partial fraction decomposition

f(z) =
A

z
+

B+

z − z+
+

B−
z − z−

we can immediately read off the residues: They are A at z = 0 and B± at z = z±.
Turning this around, since we know the residues that means

A = −1, B± = Res(f, z±) = 34∓ 3
√

17,

so that
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z

+
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√
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and the desired Laurent series is
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c) Fortunately, we do not need the full results from above to answer this one. We only
need to know that only one pole, the one at z = 0, is inside the given circle. (The next
one is just outside it.) And the residue at z = 0 was the easiest one to compute above:
It is −1. So the integral is −2πi.

Problem MNFMA214 2003–05–19 #5: The function ef(z) is also entire, and |ef(z)| =
eRe f(x) ≤ eM . By Liouville’s theorem, ef(z) is constant. Hence so is f .

Problem MA2104 2004–12–13 #3:

a) The singular points are where cosh z = 0. That is ez + e−z = 0, or multiplying by
ez we get e2z + 1 = 0. This happens precisely when 2z = (2k + 1)iπ for k ∈ Z, in other
words when z = (k + 1

2)iπ, k ∈ Z.
The derivative of cosh z at these points is sinh z = sinh(k + 1

2)iπ = i sin(k + 1
2)π =

(−1)k 6= 0, so the poles are simple.

b) The rectangle is a closed contour surrounding precisely one of the poles, namely
the one at z = 1

2 iπ. The residual there is 1/ sinh 1
2 iπ = 1/i, so the given integral is

2πi/i = 2π.

c) We need to show that cosh z becomes large: Write z = x + iy with x = ±R and
0 ≤ y ≤ π.

Now when x = R then |ez| = ex = eR and |e−z| = e−x = e−R < 1, so |cosh z| =
1
2 |e

z +e−z| ≥ 1
2eR − 1. One gets the same estimate when x = −R. So |f(z)| ≤ 2/(eR−1)

for z on one of the vertial sides of the rectangle. Therefore the absolute value of the
integral along one of the vertical sides is at most 2π/(eR − 1) → 0 as R →∞.

d) We find cosh(x + πi) = − coshx, so the integrals along the top and bottom of the
rectangle are equal when performed with the orientation shown. So

∫∞
−∞ f(x) dx = π.

By symmetry, the requested integral is half that:∫ ∞

0

1
coshx

dx =
π

2
.

2



Problem MA2104 2004–12–13 #5: The given integral is a path integral:∫ 2π

0

cos θ√
2 + cos θ

dθ =
∫

C1(0)

1
2(z + z−1)

√
2 + 1

2(z + z−1)
dz

iz
= −i

∫
C1(0)

z2 + 1
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√
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dz

We need to further factor the denominator: z2 + 2
√

2z + 1 = (z +
√

2)2 − 1 = (z + 1 +√
2)(z − 1 +

√
2). Only one zero is within the unit circle, namely z = 1−

√
2.

The integrand has a pole at z = 0, with residue 1, and another pole at z = 1−
√

2,
with residue
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