MA2104 Fall 2006, Week 46: Solutions to exercises

Problem MNFMA213 1998-12-10 \#5:

a) The equation becomes $4 X^{\prime \prime} T=X T^{\prime \prime}$. Standard methods yield $X=\sin n x, n=$ $1,2,3, \ldots$ so the T equation becomes $T^{\prime \prime}=-4 n^{2} T$. The answer is on the form

$$
u_{n}(x, t)=\sin n x \cdot\left(b_{n} \cos 2 n t+b_{n}^{*} \sin 2 n t\right), \quad n=1,2,3, \ldots
$$

b) Adding up solutions as above, we have a more general candidate for a solution:

$$
u(x, t)=\sum_{n=1}^{\infty} \sin n x \cdot\left(b_{n} \cos 2 n t+b_{n}^{*} \sin 2 n t\right)
$$

The given initial data become

$$
\sum_{n=1}^{\infty} b_{n} \sin n x=\sin 2 x+3 \sin 5 x, \quad \sum_{n=1}^{\infty} 2 n b_{n}^{*} \sin n x=3 \sin 4 x-\sin 3 x
$$

These are trivial to satisfy - the righthand sides are already tiny little Fourier series! So we just match coefficients: $b_{2}=1, b_{5}=3$, all other $b_{n}=0$, and $8 b_{4}^{*}=3,6 b_{3}^{*}=-1$, all other $b_{n}^{*}=0$.

$$
u(x, t)=\sin 2 x \cos 4 t-\frac{1}{6} \sin 3 x \sin 6 t+\frac{3}{8} \sin 4 x \sin 8 t+3 \sin 5 x \cos 10 t
$$

Problem MNFMA214 2002-05-16 \#2:

a) The given function is rational, so all its singularities are poles. We factor the denominator:

$$
z^{3}-3 z^{2}-2 z=\left(z^{2}-3 z-2\right) z=\left(\left(z-\frac{3}{2}\right)^{2}-\frac{17}{4}\right) z=\left(z-\frac{3}{2}-\frac{1}{2} \sqrt{17}\right)\left(z-\frac{3}{2}+\frac{1}{2} \sqrt{17}\right) z
$$

(it is of course OK to use the formula for the solution of the quadratic equation to find the roots).

All of the zeroes $z=z_{ \pm}=\frac{3}{2} \pm \frac{1}{2} \sqrt{17}, z=0$ of the denominator are simple, and they are not zeroes of the numerator, so each is a simple pole.
b) Note: Unless I have made a mistake, this question produces way too much calculation for a good exam problem. There is a good chance that I did make a mistake in there somewhere, so read this solution with a critical eye. And let me know if you find a mistake. (I don't quite have time to check the solution carefully.)

Apart from $z=0$, the pole closest to the origin is $z=\frac{3}{2}-\frac{1}{2} \sqrt{17} \approx \frac{3}{2}-\frac{4}{2}=-\frac{1}{2}$, so the problem is wrong in assuming there is a Laurent series valid for $0<|z|<1$. We shall have to settle for a series valid for $0<|z|<\frac{1}{2} \sqrt{17}-\frac{3}{2}$ instead.

I think the easiest way to get such a series is to perform a partial fraction decomposition of the function, and for that it is handy to have all the residues (this technique only works when all the poles are simple):

$$
\operatorname{Res}(f, 0)=\left.\frac{3 z^{2}-6 z+2}{z^{2}-3 z-2}\right|_{z=0}=-1
$$

and

$$
\begin{aligned}
\operatorname{Res}\left(f, z_{ \pm}\right) & =\left.\frac{3 z^{2}-6 z+2}{\left(z-z_{\mp}\right) z}\right|_{z=z_{ \pm}}=\frac{3 z_{ \pm}^{2}-6 z_{ \pm}+2}{\left(z_{ \pm}-z_{\mp}\right) z_{ \pm}} \\
& =\frac{3 z_{ \pm}-6+2 / z_{ \pm}}{ \pm \sqrt{17}}=\frac{3 z_{ \pm}-6-z_{\mp}}{ \pm \sqrt{17}}=\frac{-3 \pm 2 \sqrt{17}}{ \pm \sqrt{17}}=34 \mp 3 \sqrt{17}
\end{aligned}
$$

In the second row, I have used the fact that $z_{+} z_{-}=-2$ (since they are the zeroes of $z^{2}-3 z-2$: the constant term is the product of the roots).

Now, the whole point of this is that in the partial fraction decomposition

$$
f(z)=\frac{A}{z}+\frac{B_{+}}{z-z_{+}}+\frac{B_{-}}{z-z_{-}}
$$

we can immediately read off the residues: They are A at $z=0$ and $B_{ \pm}$at $z=z_{ \pm}$. Turning this around, since we know the residues that means

$$
A=-1, \quad B_{ \pm}=\operatorname{Res}\left(f, z_{ \pm}\right)=34 \mp 3 \sqrt{17},
$$

so that

$$
f(z)=-\frac{1}{z}+\frac{34-3 \sqrt{17}}{z-z_{+}}+\frac{34+3 \sqrt{17}}{z-z_{-}}
$$

and the desired Laurent series is

$$
\begin{aligned}
f(z) & =-\frac{1}{z}-(34-3 \sqrt{17}) \sum_{n=0}^{\infty} \frac{z^{n}}{z_{+}^{n+1}}-(34+3 \sqrt{17}) \sum_{n=0}^{\infty} \frac{z^{n}}{z_{-}^{n+1}} \\
& =-\frac{1}{z}-\sum_{n=0}^{\infty}\left(\frac{34-3 \sqrt{17}}{\left(\frac{3}{2}+\frac{1}{2} \sqrt{17}\right)^{n+1}}+\frac{34-3 \sqrt{17} 34+3 \sqrt{17}}{\left(\frac{3}{2}-\frac{1}{2} \sqrt{17}\right)^{n+1}}\right) z^{n} .
\end{aligned}
$$

c) Fortunately, we do not need the full results from above to answer this one. We only need to know that only one pole, the one at $z=0$, is inside the given circle. (The next one is just outside it.) And the residue at $z=0$ was the easiest one to compute above: It is -1 . So the integral is $-2 \pi i$.

Problem MNFMA214 2003-05-19 \#5: The function $e^{f(z)}$ is also entire, and $\left|e^{f(z)}\right|=$ $e^{\operatorname{Re} f(x)} \leq e^{M}$. By Liouville's theorem, $e^{f(z)}$ is constant. Hence so is f.

Problem MA2104 2004-12-13 \#3:

a) The singular points are where $\cosh z=0$. That is $e^{z}+e^{-z}=0$, or multiplying by e^{z} we get $e^{2 z}+1=0$. This happens precisely when $2 z=(2 k+1) i \pi$ for $k \in \mathbb{Z}$, in other words when $z=\left(k+\frac{1}{2}\right) i \pi, k \in \mathbb{Z}$.

The derivative of $\cosh z$ at these points is $\sinh z=\sinh \left(k+\frac{1}{2}\right) i \pi=i \sin \left(k+\frac{1}{2}\right) \pi=$ $(-1)^{k} \neq 0$, so the poles are simple.
b) The rectangle is a closed contour surrounding precisely one of the poles, namely the one at $z=\frac{1}{2} i \pi$. The residual there is $1 / \sinh \frac{1}{2} i \pi=1 / i$, so the given integral is $2 \pi i / i=2 \pi$.
c) We need to show that $\cosh z$ becomes large: Write $z=x+i y$ with $x= \pm R$ and $0 \leq y \leq \pi$.

Now when $x=R$ then $\left|e^{z}\right|=e^{x}=e^{R}$ and $\left|e^{-z}\right|=e^{-x}=e^{-R}<1$, so $|\cosh z|=$ $\frac{1}{2}\left|e^{z}+e^{-z}\right| \geq \frac{1}{2} e^{R}-1$. One gets the same estimate when $x=-R$. So $|f(z)| \leq 2 /\left(e^{R}-1\right)$ for z on one of the vertial sides of the rectangle. Therefore the absolute value of the integral along one of the vertical sides is at most $2 \pi /\left(e^{R}-1\right) \rightarrow 0$ as $R \rightarrow \infty$.
d) We find $\cosh (x+\pi i)=-\cosh x$, so the integrals along the top and bottom of the rectangle are equal when performed with the orientation shown. So $\int_{-\infty}^{\infty} f(x) d x=\pi$. By symmetry, the requested integral is half that:

$$
\int_{0}^{\infty} \frac{1}{\cosh x} d x=\frac{\pi}{2}
$$

Problem MA2104 2004-12-13 \#5: The given integral is a path integral:

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{\sqrt{2}+\cos \theta} d \theta=\int_{C_{1}(0)} \frac{\frac{1}{2}\left(z+z^{-1}\right)}{\sqrt{2}+\frac{1}{2}\left(z+z^{-1}\right)} \frac{d z}{i z}=-i \int_{C_{1}(0)} \frac{z^{2}+1}{\left(z^{2}+2 \sqrt{2} z+1\right) z} d z
$$

We need to further factor the denominator: $z^{2}+2 \sqrt{2} z+1=(z+\sqrt{2})^{2}-1=(z+1+$ $\sqrt{2})(z-1+\sqrt{2})$. Only one zero is within the unit circle, namely $z=1-\sqrt{2}$.

The integrand has a pole at $z=0$, with residue 1 , and another pole at $z=1-\sqrt{2}$, with residue

$$
\left.\frac{z^{2}+1}{(z+1+\sqrt{2}) z}\right|_{z=1-\sqrt{2}}=\frac{4-2 \sqrt{2}}{2(1-\sqrt{2})}=-\sqrt{2} .
$$

