
MA2104 Fall 2006, Week 45: Solutions to exercises

Problem 5.1.15: The function has a triple pole (pole of order 3) at z = 1 + i and a
single pole at z = i. The latter is outside the given contour, so we only need worry about
the triple one. Perhaps the easiest recipe for the residue in this case is (8) on p. 322 in
the book, which becomes

Res
( z + i

(z − 1− i)3(z − i)

)
= lim

z→1+i

1
2!

( d

dz

)2 z + i

z − i

=
1
2!

( d

dz

)2(
1 +

2i

z − i

)∣∣∣∣
z=1+i

=
2i

(z − i)3

∣∣∣∣
z=1+i

= 2i.

(In the second equality I used z + i = z − i + 2i to simplify the calculation.) So the
integral is 2πi · 2i = −4π.

Problem 5.1.20: The integrand has a singularity at any point where eπz = −1. That
is, where πz = (2k +1)πi, for k ∈ Z, The only such point within the integration contour
is z = −i.

Since the derivative of the denominator is πeπz 6= 0 everywhere, each zero of the
denominator is a simple zero, and so the poles of the integrand are all simple. Moreover,

Res
( 1

1 + eπz
,−i

)
=

1
d(1 + eπz)/dz

∣∣∣∣
z=−i

=
1

πeπz

∣∣∣∣
z=−i

= − 1
π

.

So the integral is −2πi/π = −2i.

Problem 5.1.25: The integrand has a quintuple pole at z = 0 (the denominator has a
zero of order 6, but the simple zero in the numerator lowers the order of the pole to 5).

We can differentiate sin z five times, put z = 0 and divide by 5! to get the residue
(cos 0)/5! = 1/5!, so the integral is 2πi/5!.

Alternatively, we can use the known power series for sin z:

sin z

z6
=

1
z6

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1 =

∞∑
k=0

(−1)k

(2k + 1)!
z2k−5

The z−1 term in this series is the one with k = 2, and the corresponding coefficient gives
the residue at zero: Its value is (−1)2/5! = 1/5! as before.

Problem 5.2.7: The half-angle trick is useful to keep the degree of polynomials down.
Just remember the formula cos 2θ = 2 cos2 θ−1 = cos2 θ− sin2 θ = 1−2 sin2 θ. The final
one is useful here: It gives sin2 θ = 1

2(1− cos 2θ). Insert that into the given integral and
change the variable (put 2θ = ϕ, then rename ϕ back to θ):

I =
∫ π

0

dθ

9 + 16 sin2 θ
=

∫ π

0

dθ

17− 8 cos 2θ
=

1
2

∫ 2π

0

dθ

17− 8 cos θ
.

Next, we parametrize the unit circle using z = eiθ, so that dz = ieiθ dθ, or dθ = −i dz/z:

I = − i

2

∫
C1(0)

dz

z(17− 4z − 4z−1)
=

i

8

∫
C1(0)

dz

z2 − 17
4 z + 1

.

We factor the denominator of the integral as follows:

z2 − 17
4 z + 1 =

(
z − 17

8

)2 − 225
64 =

(
z − 17

8 − 15
8

)(
z − 17

8 + 15
8

)
=

(
z − 4

)(
z − 1

4

)
(In the process of this calculation, I became aware of the Pythagorean triple (8, 15, 17),
which I had forgotten about.)
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Only the zero z = 1
4 is inside the unit circle, and the residue there will be

1
z − 4

∣∣∣∣
z=1/4

= − 4
15

,

so the integral is (don’t forget the factor i/8 that we put outside)

2πi · i

8
· −4

15
=

π

15
.

Problem 5.2.11: Same as the previous problem, except we don’t need the half-angle
trick: ∫ 2π

0

dθ

1 + a cos θ
= −i

∫
C1(0)

dz

z(1 + 1
2az + 1

2az−1)
= −2i

a

∫
C1(0)

dz

z2 +
2z

a
+ 1

Again, factor the denominator of the integrand:

z2 +
2z

a
+ 1 =

(
z +

1
a

)2
+ 1− 1

a2
=

(
z +

1
a

)2
− 1− a2

a2

=
(

z +
1−

√
1− a2

a

)(
z +

1 +
√

1− a2

a

)
.

The product of the two zeros

z± =
−1±

√
1− a2

a

is one, and clearly |z−| > 1/|a| > 1, so |z+| < 1, and z+ is the one pole inside the unit
circle. The residue at that pole will be

1
z − z−

∣∣∣∣z = z+ =
1

z+ − z−
=

a

2
√

1− a2
.

Don’t forget the factor −2i/a that we left outside the integral. The final answer for the
integral will be

2πi · −2i

a
· a

2
√

1− a2
=

2π√
1− a2

.

Problem 5.2.13: The double angle trick yields cos2 θ = 1
2(1 + cos 2θ), so we substitute

that, replace 2θ by θ, and finally note that we are integrating over two periods, so we
integrate over one period instead and double the answer:

I =
∫ 2π

0

dθ

a + b cos2 θ
=

∫ 2π

0

dθ

a + 1
2b + 1

2b cos 2θ
=

1
2

∫ 4π

0

dθ

a + 1
2b + 1

2b cos θ

=
∫ 2π

0

dθ

a + 1
2b + 1

2b cos θ
.

Next we could rewrite this as a contour integral as before, but it is a lot easier to just
rewrite this integral a bit further, so it looks like the integral we solved in the previous
problem! In fact

I =
1

a + 1
2b

∫ 2π

0

dθ

1 + A cos θ
, A =

b

2a + b

so that
I =

2π

(a + 1
2b)

√
1−A2

=
2π√

a(a + b)
.

For this to be valid we need |A| < 1. But given that a and b are positive, this is equivalent
to the given condition b < a.

2



Problem 8.2.8: The equation with c = 1/π is

∂2u

∂t2
=

1
π2

∂2u

∂x2

The usual separation of variables with u = XT yields XT ′′ = X ′′T/π2, which becomes
X ′′/X = π2T ′′/T . Both sides have to be constants.

Now the length of the string is 1 and endpoints are held fixed, which yield boundary
conditions X(0) = X(1) = 1. Thus the only nontrivial solutions are of the form (constant
times) X = cos nπx with n = 1, 2, . . ..

For the T equations we find T ′′ = −n2T , with solutions T = bn cos nt + b∗n sinnt. So
we have the candidate solution:

u(x, t) =
∞∑

n=1

sinnπx · (bn cos nt + b∗n sinnt).

The intial conditions u(x, 0) = f(x) and ∂u/∂t(x, 0) = g(x) become

∞∑
n=1

bn sinnπx = f(x),
∞∑

n=1

nb∗n sinnπx = g(x).

Since g(x) = 0, b∗n = 0, the coefficients bn must be the Fourier sine coefficients of f :

bn = 2
∫ 1

0
f(x) sinnπx dx = 2

∫ 1

0
x sinπx sinnπx dx

=
∫ 1

0
x
(
cos(n− 1)πx− cos(n + 1)πx

)
dx.

A quick partial integration gives∫ 1

0
x cos mπxdx =

1
mπ

[
x sinmπx

]1

x=0
− 1

mπ

∫ 1

0
sinmπxdx =

(−1)m − 1
m2π2

for m = 1, 2, 3, . . . while for m = 0 the answer is clearly 1
2 . We plug this into the formula

for bn and get b1 = 1, bn = 0 for n = 3, 5, 7, . . . and

bn = − 2
π2

(
1

(n− 1)2
− 1

(n + 1)2

)
= − 8n

π2(n2 − 1)2
, n = 2, 4, 6, . . .

so that

u(x, t) = sin πx · sin t− 8
π2

∞∑ 2k(
(2k)2 − 1

)2 sinnπx · sinnt

Problem 2003–12–15 #1:
The solution for this entire exam is posted on the web (in Norwegian.)

Problem 2003–12–15 #4:
The solution for this entire exam is posted on the web (in Norwegian.)
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