MA2104 Fall 2006, Week 43: Solutions to exercises

Since the function $e^{-z^{2}}$ is entire, its integral around any closed path is zero according to Cauchy's theorem.

For the given triangular path $[0, M, M+i M, 0]$ we may wish to consider the integral along the hypothenuse in reverse, so we write this as

$$
\begin{equation*}
\underbrace{\int_{[0, M]} e^{-z^{2}} d z}_{A(M)}+\underbrace{\int_{[M, M+i M]} e^{-z^{2}} d z}_{B(M)}-\underbrace{\int_{[0, M+i M]} e^{-z^{2}} d z}_{C(M)}=0 . \tag{1}
\end{equation*}
$$

Now

$$
\begin{equation*}
A(M)=\int_{0}^{M} e^{-x^{2}} d x \rightarrow \frac{\sqrt{\pi}}{2} \quad \text { as } M \rightarrow+\infty \tag{2}
\end{equation*}
$$

Next, with the parametrization of $M, M+i M$ given by $z=M+i y$ with $0 \leq y \leq M$ we find

$$
B(M)=i \int_{0}^{M} e^{-(M+i y)^{2}} d y=i \int_{0}^{M} e^{-M^{2}+y^{2}+2 i M y} d y
$$

so that

$$
|B(M)| \leq \int_{0}^{M}\left|e^{-M^{2}+y^{2}+2 i M y}\right| d y=\int_{0}^{M} e^{-M^{2}+y^{2}} d y=\int_{0}^{M} e^{(y+M)(y-M)} d y
$$

Now in the integration interval $y-M \leq 0$ and $y+M \geq M$, so $(y+M)(y-M) \leq M(y-M)$ and therefore

$$
|B(M)| \leq \int_{0}^{M} e^{M(y-M)} d y=\frac{1-e^{-M^{2}}}{M}<\frac{1}{M}
$$

so that

$$
\begin{equation*}
B(M) \rightarrow 0 \quad \text { as } M \rightarrow+\infty . \tag{3}
\end{equation*}
$$

Combining equations (1), (2) and (3), we conclude that

$$
\begin{equation*}
C(M) \rightarrow \frac{\sqrt{\pi}}{2} \quad \text { as } M \rightarrow+\infty \tag{4}
\end{equation*}
$$

Finally, we integrate along the hypothenuse $[0, M+i M]$ by setting $z=(x+i x) / \sqrt{2}$ for $0 \leq x \leq \sqrt{2} M$, so that $d z=(1+i) / \sqrt{2} d x$, and also $z^{2}=-x^{2}$ (which is my reason for dividing by $\sqrt{2}-$ it saves a change of variables later)
$C(M)=\frac{1+i}{\sqrt{2}} \int_{0}^{M} e^{-i x^{2}} d x=\frac{1}{\sqrt{2}} \int_{0}^{M}\left(\cos x^{2}+\sin x^{2}\right) d x+\frac{i}{\sqrt{2}} \int_{0}^{M}\left(\cos x^{2}-\sin x^{2}\right) d x$.
But equation (4) tells us this has a real limit as $M \rightarrow \infty$, so the imaginary part of the above - that is the final integral - must go to zero, while the real part - the next-tolast integral - must converge to the righthand side of (4). From the first of these two conclusions we find

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x
$$

and substituting this into the second conclusion we find

$$
\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{1}{2} \int_{0}^{\infty}\left(\cos x^{2}+\sin x^{2}\right) d x=\sqrt{\frac{\pi}{2}}
$$

(The finite versions of these integrals are known as Fresnel integrals. Together, they parametrize the so-called Cornu spiral.)

