
MA2104 Fall 2006, Week 42: Solutions to exercises
Some pictures are at the end.

Problem 7.1.8: (a) We are given f(x) = cos x + cos πx and asked to show that there
is only one solution to f(x) = 2. (Clearly, what is meant is that there is only one real
solution. I am sure there are many complex solutions, though I have not worked out the
details.) Since cos x ≤ 1 and cos πx ≤ 1 as well, their sum is always ≤ 2, with equality
if and only if both summands equal 1. From cos x = 1 we get x = mπ with m ∈ Z,
and from cos πx = 1 we get πx = nπ with n ∈ Z. Dividing the two formulas, we get
π = n/m, which is a contradiction because π is irrational. The division is not allowed
in the special case x = 0, which obviously is a solution and therefore the only solution.

(b) If f were periodic with period T , then we would have f(nT ) = 2 for all n ∈ Z
because f(0) = 2.

Problem 7.1.12: Since the integral is over a whole period, we can move the interval
wherever we wish, so

∫ π/2

−π/2
f(x) dx =

∫ π

0
f(x) dx =

∫ π

0
cos x dx = sinπ − sin 0 = 0.

Problem 7.1.15: If f and F (x) =
∫ x
a dx are 2π-periodic, then F (a + 2π) = F (a) = 0,

so
∫ a+2π
a f(x) dx = 0. Then

∫ 2π
0 f(x) dx = 0 as well (by Theorem 1).

On the other hand, if
∫ 2π
0 f(x) dx = 0 then (once more using Theorem 1)

F (x + 2π)− F (x) =
∫ x+2π

x
f(x), dx =

∫ 2π

0
f(x), dx = 0,

so F is 2π-periodic.

In general, if
∫ 2π

0
f(x) dx = b then F (x + 2nπ) = F (x) + nb whenever n ∈ Z, so F grows roughly

linearly. More precisely, F (x) is the sum of bx and a 2π-periodic function.

Problem 7.2.5: (a) Since the given function is even, its Fourier series will be a cosine
series. On the interval [0, π] we have f(x) = x, which simplifies the integral somewhat.
For the coefficients we find

a0 =
1
π

∫ π

0
x dx =

π

2

and

an =
2
π

∫ π

0
x cos nx dx =

2
πn

[
x sinnx

]π

0
− 2

πn

∫ π

0
sinnx dx =

2
πn2

(
(−1)n − 1

)
which is zero for even n, leaving the nonzero coefficients as

a2k+1 =
4

π(2k + 1)2
, k = 0, 1, 2, . . .

resulting in the Fourier series given in the problem.
(b) The function is continuous and piecewise smooth, so its Fourier series converges

uniformly to the function everywhere. See picture at the end.
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Problem 7.2.9: As in 7.2.5, we compute a cosine series.

a0 =
1
π

∫ π

0
x2 dx =

π2

3

and

an =
2
π

∫ π

0
x2 cos nx dx =

2
πn

[
x2 sinnx

]π

0
− 4

πn

∫ π

0
x sinnx dx

=
4

πn2

[
x cos nx

]π

0
− 4

πn2

∫ π

0
cos nx dx =

(−1)n4π

n2
,

again resulting in the given Fourier series.
(b) Just like 7.2.5(b).

Problem 7.2.13: (a) The function is odd, so we are looking for a sine series.

bn =
2
π

∫ π

0
x sinnx dx = − 2

πn

[
x cos nx

]π

0
+

2
πn

∫ π

0
cos nx dx = − 2

πn
π(−1)n = 2

(−1)n+1

n

once more resulting in the given Fourier series.
(b) This function is piecewise smooth, but it has a jump discontinuity at x = π+2kπ,

k ∈ Z. The series converges to the value in the middle of the jump, that is the arithmetic
mean of the left and right limits, which is 0 at the jump. The convergence is non-uniform.
(The partial sums of the Fourier series are continuous, so the limit would have to be
continuous if the convergence was uniform.)

Problem 7.2.17: We can put x = π in the series from problem 7.2.9. Since cos nπ =
(−1)n, we have two factors (−1)n in each term that cancel out, and we are left with

f(π) = π2 =
π2

3
+ 4

∞∑
n=1

1
n2

,

and so
∞∑

n=1

1
n2

=
1
4

(
π2 − π2

3

)
=

π2

6
.

Problem 7.5.11: The problem refers to Example 1 on page 493, with

eax =
sinhπa

π

∞∑
n=−∞

(−1)n

a2 + n2
(a + in)einx for −π < x < π.

In particular, for x = 0 the lefthand side is 1, and einx on the righthand side is also 1,
so we find

π

sinhπa
=

∞∑
n=−∞

(−1)n

a2 + n2
(a + in) =

∞∑
n=−∞

(−1)n

a2 + n2
a +

∞∑
n=−∞

(−1)n

a2 + n2
in

where the last sum is zero because of the antisymmetry of the summed expression.
Dropping that term and dividing by a we get the expansion mentioned in the problem.
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