
MA2104 Fall 2006, Week 40: Solutions to exercises

Problem 3.7.14: From limz→∞|f(z)| = c we find (using ε = 1 in the definition of limit)
some M so that

∣∣|f(z)|−c
∣∣ < 1 for |z| > M . Clearly then, for such z we get |f(z)| < c+1

(which we interpret as “f(z) is bounded near infinity”).
On the other hand

{
z : |z| ≤ M

}
is compact (closed and bounded) so the continuous

function f is bounded on this set, say |f(z)| ≤ C when |z| ≤ M .
Then in all cases, |f(z)| ≤ max(C, c + 1).

Problem 3.7.15: Assume f is entire and f(z) → 0 as z →∞. It follows from problem
3.7.14 that f is bounded. So, by Liouville’s theorem, it is constant: Say, f(z) = C for
all z ∈ C. Letting z →∞, we conclude that C = 0.

Problem 3.7.19: We are assuming f is entire and f(z)/z → 0 as z →∞. We are asked
to show that f is constant.

This seems stronger than the Liouville theorem, since the assumption is weaker than assump-
tion in Liouville’s theorem. We could imagine, for example, that |f(z)| is approximately equal
to |z|1/2 for large |z|. But the result we are to prove shows that no entire function like that can
exist. The result is also quite sharp, as the example f(z) = z shows.

First proof : Use Cauchy’s generalized formula

f ′(z) =
1

2πi

∫
γ

f(ζ)
(ζ − z)2

dζ

where γ is a closed path around z. Say γ = CR(0). Given ε > 0 we can find M so that
|f(z)/z| < ε whenever |z| > M .

If R > max(M, |z|) then for ζ on CR(0), |f(ζ)| < ε|ζ| = εR. Also |ζ−z|2 > (R−|z|)2.
The length of the integration path CR(0) is 2πR. Altgother, then, estimating the above
integral we find

|f ′(z)| < 2πR

|2πi|
εR

(R− |z|)2
=

εR2

(R− |z|)2
< 4ε

where we choose R > 2|z| for the final inequality. Since ε > 0 was arbitrary, f ′(z) = 0.
And since this holds for all z, f is constant.

Second proof: Recall (Theorem 4, p. 206) that the function g(z) =
(
f(z) − f(0)

)
/z is

analytic around z = 0, if you just define g(0) = f ′(0). But g is clearly analytic everywhere
else too, so it is entire. It follows from the assumption that g(z) = f(z)/z− f(0)/z → 0
as z →∞. So problem 3.7.15 shows that g(z) = 0 for all z. Thus f is constant.

Problem 3.7.20: Just as in the second proof for problem 3.7.19, g(z) =
(
f(z)−f(0)

)
/z

is entire and bounded, and therefore constant. Since in fact g(z) → c when z → ∞,
that constant is c. Solving the equation

(
f(z)− f(0)

)
/z = c for f(z) we get the desired

formula, with b = f(0).

Problem 4.2.1:

lim
n→∞

fn(x) = lim
n→∞

sinnx

n
= 0, 0 < x < π

because |(sinnx)/n| ≤ 1/n → 0. This also shows the convergence is uniform, because
1/n is independent of x.

To be overly pedantic, given ε > 0 pick N so that 1/n < ε whenever n ≥ N . Then the above
inequality shows that |fn(x)| < ε for all x, when n ≥ N . This is just what uniform convergence
to zero means.
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Problem 4.2.2:
lim

n→∞
fn(x) = lim

n→∞

sinnx

nx
= 0, 0 < x < π

because |(sinnx)/n| ≤ 1/(nx) → 0 for any given x.
But since the estimate 1/(nx) is not independent of x, we cannot conclude that the

convergence is uniform. Neither can we (yet) conclude it is not uniform, for there is a
possibility that a better estimate could give us what we want.

However, the convergence is not uniform. One way to see this is to note that

lim
x→0

fn(x) = lim
x→0

sinnx

nx
= 1, n = 1, 2, 3, . . .

This means, in particular, that for any n there is some x (near 0) so that fn(x) ≥ 1
2 .

But if fn(x) → 0 uniformly, there should be some N so that (and here we pick ε = 1
2

in the definition of uniform convergence) fn(x) < 1
2 for every x and every n ≥ N . This

is clearly contradicted by the previous paragraph.
Another way is to just look for places where fn(x) is large. Given any n we can

pick x by setting nx = π/2. Then fn(x) = 2/π. Again this contradicts the definition of
uniform convergence to zero, this time with ε = 2/π.

We are asked to find a suitable interval where the sequence does converge uniformly.
Since the problem arose near x = 0, it seems reasonable to omit small values of x. At
the start, we found the estimate |fn(x)| ≤ 1/(nx). If we pick any δ > 0 and insists on
only considering x ≥ δ, the estimate implies |fn(x)| ≤ 1/(nδ) which is independent of
x, and clearly 1/(nδ) → 0 as n →∞, so we have uniform convergence to 0 on [δ,∞) for
any δ > 0.

Problem 4.2.13: We find∣∣∣ zn

n(n + 1)

∣∣∣ <
1

n(n + 1)
=

1
n
− 1

n + 1
, |z| ≤ 1.

and
∞∑

n=1

( 1
n
− 1

n + 1

)
= 1 < ∞

(this is a telescoping series), so the Weierstrass M -test shows that the given series con-
verges uniformly on the given set.

As an alternative, one can use
1

n(n + 1)
<

1
n2

and the fact that
∑

n−2 is finite, as follows from the integral test. In fact, the sum is π2/6. We
shall show this later using a Fourier series.

Problem 4.2.18: In order to find a good upper bound on |1/(5 − z)n| we need a
lower bound on |(5 − z)n|, and therefore on |5 − z|. We are given |z| ≤ 7

2 , so we use
|5 − z| ≥ 5 − |z| ≥ 5 − 7

2 = 3
2 . Therefore |(5 − z)n| ≥

(
3
2

)n, so |(5 − z)−n| ≤
(

2
3

)n, and
we are done since

∑(
2
3

)n = 1/(1− 2
3) = 3 < ∞.

Problem 4.2.25: (a) Yes, since |z − 1
2 | <

1
6 implies |z| = |z − 1

2 + 1
2 | ≤ |z −

1
2 |+ |

1
2 | <

1
6 + 1

2 = 2
3 so that |zn| <

(
2
3

)n and
∑(

2
3

)n = 1/(1− 2
3) = 3 < ∞.

(b) If we try to repeat the success from (a) the best estimate we get is |z| < 1
2 + 1

2 = 1,
and the proof breaks down. In fact, given only the requirement |z − 1

2 | <
1
2 then we can

get z as close to 1 as we wish, and this seems to get in the way of uniform convergence.
In this case we are fortunate that we can compute things explicitly: For a tail of the

series, we find
∞∑

n=N

zn =
zN+1

1− z
→∞ as z → 1,
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but if we had uniform convergence, the tails of the sequence should become uniformly
small for all z, when N becomes large. So the series is not uniformly convergent on the
region |z − 1

2 | <
1
2 .

Problem 4.4.21: We find∣∣∣(z − 2)n

3n

∣∣∣ ≤ ∣∣∣2.9n

3n

∣∣∣ and
∣∣∣ 2n

(z − 2)n

∣∣∣ ≤ ∣∣∣ 2n

2.01n

∣∣∣,
so ∣∣∣(z − 2)n

3n
+

2n

(z − 2)n

∣∣∣ ≤ (2.9
3

)n
+

( 2
2.01

)n
,

and
∞∑

n=0

((2.9
3

)n
+

( 2
2.01

)n
)

= 231 < ∞

(except who cares about the exact sum anyway), and we’re done.
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