MA2104 Fall 2006, Week 40: Solutions to exercises

Problem 3.7.14: From $\lim _{z \rightarrow \infty}|f(z)|=c$ we find (using $\epsilon=1$ in the definition of limit) some M so that $||f(z)|-c|<1$ for $|z|>M$. Clearly then, for such z we get $|f(z)|<c+1$ (which we interpret as " $f(z)$ is bounded near infinity").

On the other hand $\{z:|z| \leq M\}$ is compact (closed and bounded) so the continuous function f is bounded on this set, say $|f(z)| \leq C$ when $|z| \leq M$.

Then in all cases, $|f(z)| \leq \max (C, c+1)$.
Problem 3.7.15: Assume f is entire and $f(z) \rightarrow 0$ as $z \rightarrow \infty$. It follows from problem 3.7.14 that f is bounded. So, by Liouville's theorem, it is constant: Say, $f(z)=C$ for all $z \in \mathbb{C}$. Letting $z \rightarrow \infty$, we conclude that $C=0$.

Problem 3.7.19: We are assuming f is entire and $f(z) / z \rightarrow 0$ as $z \rightarrow \infty$. We are asked to show that f is constant.

This seems stronger than the Liouville theorem, since the assumption is weaker than assumption in Liouville's theorem. We could imagine, for example, that $|f(z)|$ is approximately equal to $|z|^{1 / 2}$ for large $|z|$. But the result we are to prove shows that no entire function like that can exist. The result is also quite sharp, as the example $f(z)=z$ shows.
First proof: Use Cauchy's generalized formula

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{2}} d \zeta
$$

where γ is a closed path around z. Say $\gamma=C_{R}(0)$. Given $\epsilon>0$ we can find M so that $|f(z) / z|<\epsilon$ whenever $|z|>M$.

If $R>\max (M,|z|)$ then for ζ on $C_{R}(0),|f(\zeta)|<\epsilon|\zeta|=\epsilon R$. Also $|\zeta-z|^{2}>(R-|z|)^{2}$. The length of the integration path $C_{R}(0)$ is $2 \pi R$. Altgother, then, estimating the above integral we find

$$
\left|f^{\prime}(z)\right|<\frac{2 \pi R}{|2 \pi i|} \frac{\epsilon R}{(R-|z|)^{2}}=\frac{\epsilon R^{2}}{(R-|z|)^{2}}<4 \epsilon
$$

where we choose $R>2|z|$ for the final inequality. Since $\epsilon>0$ was arbitrary, $f^{\prime}(z)=0$. And since this holds for all z, f is constant.
Second proof: Recall (Theorem 4, p. 206) that the function $g(z)=(f(z)-f(0)) / z$ is analytic around $z=0$, if you just define $g(0)=f^{\prime}(0)$. But g is clearly analytic everywhere else too, so it is entire. It follows from the assumption that $g(z)=f(z) / z-f(0) / z \rightarrow 0$ as $z \rightarrow \infty$. So problem 3.7.15 shows that $g(z)=0$ for all z. Thus f is constant.

Problem 3.7.20: Just as in the second proof for problem 3.7.19, $g(z)=(f(z)-f(0)) / z$ is entire and bounded, and therefore constant. Since in fact $g(z) \rightarrow c$ when $z \rightarrow \infty$, that constant is c. Solving the equation $(f(z)-f(0)) / z=c$ for $f(z)$ we get the desired formula, with $b=f(0)$.

Problem 4.2.1:

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{\sin n x}{n}=0, \quad 0<x<\pi
$$

because $|(\sin n x) / n| \leq 1 / n \rightarrow 0$. This also shows the convergence is uniform, because $1 / n$ is independent of x.

To be overly pedantic, given $\epsilon>0$ pick N so that $1 / n<\epsilon$ whenever $n \geq N$. Then the above inequality shows that $\left|f_{n}(x)\right|<\epsilon$ for all x, when $n \geq N$. This is just what uniform convergence to zero means.

Problem 4.2.2:

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{\sin n x}{n x}=0, \quad 0<x<\pi
$$

because $|(\sin n x) / n| \leq 1 /(n x) \rightarrow 0$ for any given x.
But since the estimate $1 /(n x)$ is not independent of x, we cannot conclude that the convergence is uniform. Neither can we (yet) conclude it is not uniform, for there is a possibility that a better estimate could give us what we want.

However, the convergence is not uniform. One way to see this is to note that

$$
\lim _{x \rightarrow 0} f_{n}(x)=\lim _{x \rightarrow 0} \frac{\sin n x}{n x}=1, \quad n=1,2,3, \ldots
$$

This means, in particular, that for any n there is some x (near 0) so that $f_{n}(x) \geq \frac{1}{2}$.
But if $f_{n}(x) \rightarrow 0$ uniformly, there should be some N so that (and here we pick $\epsilon=\frac{1}{2}$ in the definition of uniform convergence) $f_{n}(x)<\frac{1}{2}$ for every x and every $n \geq N$. This is clearly contradicted by the previous paragraph.

Another way is to just look for places where $f_{n}(x)$ is large. Given any n we can pick x by setting $n x=\pi / 2$. Then $f_{n}(x)=2 / \pi$. Again this contradicts the definition of uniform convergence to zero, this time with $\epsilon=2 / \pi$.

We are asked to find a suitable interval where the sequence does converge uniformly. Since the problem arose near $x=0$, it seems reasonable to omit small values of x. At the start, we found the estimate $\left|f_{n}(x)\right| \leq 1 /(n x)$. If we pick any $\delta>0$ and insists on only considering $x \geq \delta$, the estimate implies $\left|f_{n}(x)\right| \leq 1 /(n \delta)$ which is independent of x, and clearly $1 /(n \delta) \rightarrow 0$ as $n \rightarrow \infty$, so we have uniform convergence to 0 on $[\delta, \infty)$ for any $\delta>0$.

Problem 4.2.13: We find

$$
\left|\frac{z^{n}}{n(n+1)}\right|<\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}, \quad|z| \leq 1
$$

and

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1<\infty
$$

(this is a telescoping series), so the Weierstrass M-test shows that the given series converges uniformly on the given set.

As an alternative, one can use

$$
\frac{1}{n(n+1)}<\frac{1}{n^{2}}
$$

and the fact that $\sum n^{-2}$ is finite, as follows from the integral test. In fact, the sum is $\pi^{2} / 6$. We shall show this later using a Fourier series.

Problem 4.2.18: In order to find a good upper bound on $\left|1 /(5-z)^{n}\right|$ we need a lower bound on $\left|(5-z)^{n}\right|$, and therefore on $|5-z|$. We are given $|z| \leq \frac{7}{2}$, so we use $|5-z| \geq 5-|z| \geq 5-\frac{7}{2}=\frac{3}{2}$. Therefore $\left|(5-z)^{n}\right| \geq\left(\frac{3}{2}\right)^{n}$, so $\left|(5-z)^{-n}\right| \leq\left(\frac{2}{3}\right)^{n}$, and we are done since $\sum\left(\frac{2}{3}\right)^{n}=1 /\left(1-\frac{2}{3}\right)=3<\infty$.
Problem 4.2.25: (a) Yes, since $\left|z-\frac{1}{2}\right|<\frac{1}{6}$ implies $|z|=\left|z-\frac{1}{2}+\frac{1}{2}\right| \leq\left|z-\frac{1}{2}\right|+\left|\frac{1}{2}\right|<$ $\frac{1}{6}+\frac{1}{2}=\frac{2}{3}$ so that $\left|z^{n}\right|<\left(\frac{2}{3}\right)^{n}$ and $\sum\left(\frac{2}{3}\right)^{n}=1 /\left(1-\frac{2}{3}\right)=3<\infty$.
(b) If we try to repeat the success from (a) the best estimate we get is $|z|<\frac{1}{2}+\frac{1}{2}=1$, and the proof breaks down. In fact, given only the requirement $\left|z-\frac{1}{2}\right|<\frac{1}{2}$ then we can get z as close to 1 as we wish, and this seems to get in the way of uniform convergence.

In this case we are fortunate that we can compute things explicitly: For a tail of the series, we find

$$
\sum_{n=N}^{\infty} z^{n}=\frac{z^{N+1}}{1-z} \rightarrow \infty \quad \text { as } z \rightarrow 1
$$

but if we had uniform convergence, the tails of the sequence should become uniformly small for all z, when N becomes large. So the series is not uniformly convergent on the region $\left|z-\frac{1}{2}\right|<\frac{1}{2}$.
Problem 4.4.21: We find

$$
\left|\frac{(z-2)^{n}}{3^{n}}\right| \leq\left|\frac{2.9^{n}}{3^{n}}\right| \quad \text { and } \quad\left|\frac{2^{n}}{(z-2)^{n}}\right| \leq\left|\frac{2^{n}}{2.01^{n}}\right|,
$$

so

$$
\left|\frac{(z-2)^{n}}{3^{n}}+\frac{2^{n}}{(z-2)^{n}}\right| \leq\left(\frac{2.9}{3}\right)^{n}+\left(\frac{2}{2.01}\right)^{n}
$$

and

$$
\sum_{n=0}^{\infty}\left(\left(\frac{2.9}{3}\right)^{n}+\left(\frac{2}{2.01}\right)^{n}\right)=231<\infty
$$

(except who cares about the exact sum anyway), and we're done.

