MA2104 Fall 2006, Week 40: Solutions to exercises

Problem 3.7.14: From lim,_,o|f(2)| = ¢ we find (using e = 1 in the definition of limit)
some M so that || f(z)|—c| < 1 for |z| > M. Clearly then, for such z we get | f(2)| < c+1
(which we interpret as “f(z) is bounded near infinity”).

On the other hand {z: |z| < M} is compact (closed and bounded) so the continuous
function f is bounded on this set, say |f(z)| < C when |z| < M.

Then in all cases, |f(z)| < max(C,c+ 1).

Problem 3.7.15: Assume f is entire and f(z) — 0 as z — oo. It follows from problem
3.7.14 that f is bounded. So, by Liouville’s theorem, it is constant: Say, f(z) = C for
all z € C. Letting z — oo, we conclude that C' = 0.

Problem 3.7.19: We are assuming f is entire and f(z)/z — 0 as z — co. We are asked
to show that f is constant.

This seems stronger than the Liouville theorem, since the assumption is weaker than assump-
tion in Liouville’s theorem. We could imagine, for example, that |f(z)| is approximately equal
to |z|/2 for large |z|. But the result we are to prove shows that no entire function like that can
exist. The result is also quite sharp, as the example f(z) = z shows.

First proof: Use Cauchy’s generalized formula
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where 7y is a closed path around z. Say v = Cr(0). Given € > 0 we can find M so that
|f(2)/z| < € whenever |z| > M.

If R > max(M, |z|) then for ¢ on C(0), |f(¢)| < €[¢| = €R. Also |¢ —z|> > (R—|z])%.
The length of the integration path Cr(0) is 2w R. Altgother, then, estimating the above
integral we find
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where we choose R > 2|z| for the final inequality. Since € > 0 was arbitrary, f'(z) = 0.
And since this holds for all z, f is constant.

Second proof: Recall (Theorem 4, p. 206) that the function g(z) = (f(z) — f(0))/z is
analytic around z = 0, if you just define g(0) = f’(0). But g is clearly analytic everywhere
else too, so it is entire. It follows from the assumption that g(z) = f(z)/z — f(0)/z — 0
as z — 0o. So problem 3.7.15 shows that g(z) = 0 for all z. Thus f is constant.

Problem 3.7.20: Just as in the second proof for problem 3.7.19, g(z) = (f(z)— f(0))/z
is entire and bounded, and therefore constant. Since in fact g(z) — ¢ when z — oo,
that constant is c. Solving the equation (f(z) — f(0))/z = ¢ for f(z) we get the desired
formula, with b = f(0).

Problem 4.2.1:

lim f,(x) = lim =0, O<z<m
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because |(sinnx)/n| < 1/n — 0. This also shows the convergence is uniform, because
1/n is independent of x.

To be overly pedantic, given € > 0 pick N so that 1/n < € whenever n > N. Then the above
inequality shows that |f,(z)| < € for all , when n > N. This is just what uniform convergence
to zero means.



Problem 4.2.2: .
lim fo(z) = lim 2% —0,  O<z<m
n—oo
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because |(sinnz)/n| < 1/(nz) — 0 for any given x.

But since the estimate 1/(nx) is not independent of x, we cannot conclude that the
convergence is uniform. Neither can we (yet) conclude it is not uniform, for there is a
possibility that a better estimate could give us what we want.

However, the convergence is not uniform. One way to see this is to note that
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This means, in particular, that for any n there is some z (near 0) so that f,(z) > 3.

But if f,(z) — 0 uniformly, there should be some N so that (and here we pick € = %
in the definition of uniform convergence) f,(z) < % for every x and every n > N. This
is clearly contradicted by the previous paragraph.

Another way is to just look for places where f,(z) is large. Given any n we can
pick z by setting nz = w/2. Then f,(z) = 2/m. Again this contradicts the definition of
uniform convergence to zero, this time with e = 2/7.

We are asked to find a suitable interval where the sequence does converge uniformly.
Since the problem arose near x = 0, it seems reasonable to omit small values of x. At
the start, we found the estimate |f,(z)| < 1/(nz). If we pick any 6 > 0 and insists on
only considering = > ¢, the estimate implies |f,(z)| < 1/(nd) which is independent of
x, and clearly 1/(nd) — 0 as n — oo, so we have uniform convergence to 0 on [, c0) for
any 6 > 0.

Problem 4.2.13: We find
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(this is a telescoping series), so the Weierstrass M-test shows that the given series con-

verges uniformly on the given set.

As an alternative, one can use
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and the fact that > n~2 is finite, as follows from the integral test. In fact, the sum is 72/6. We
shall show this later using a Fourier series.

Problem 4.2.18: In order to find a good upper bound on |1/(5 — 2)"| we need a
lower bound on |(5 — 2)"|, and therefore on [5 — z|. We are given |z| < I, so we use
5— 2] >5—|z| >5— 1 =3 Therefore |(5—2)"| > (3)", 50 [(5—2)™"| < (3)", and
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we are done since Y (3)" =1/(1 - %) =3 < 0.

Problem 4.2.25: (a) Yes, since |z — 3| < ¢ implies |2| = [z — F + [ < [z — |+ |3] <
t+1i=2sothat |z"| < (3)"and }(3)" =1/(1-3%) =3 < .

(b) If we try to repeat the success from (a) the best estimate we get is |2| < 3435 = 1,
and the proof breaks down. In fact, given only the requirement |z — %\ < % then we can
get z as close to 1 as we wish, and this seems to get in the way of uniform convergence.

In this case we are fortunate that we can compute things explicitly: For a tail of the
series, we find
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but if we had uniform convergence, the tails of the sequence should become uniformly
small for all z, when N becomes large. So the series is not uniformly convergent on the
region |z — 1| < 3.

Problem 4.4.21: We find
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(except who cares about the exact sum anyway), and we’re done.



