MA2104 Fall 2006, Week 39: Solutions to exercises

Problem 3.6.1: Cauchy's formula for the cosine function applied to the closed path $C_{1}(0)$ and the point $z=0$, which is inside it:

$$
\cos 0=\frac{1}{2 \pi i} \int_{C_{1}(0)} \frac{\cos \zeta}{\zeta-0} d \zeta .
$$

This is OK because the cosine function is entire, so in particular it is analytic on and inside $C_{1}(0)$. Multiply by $2 \pi i$ and change the name of the integration variable to get

$$
\int_{C_{1}(0)} \frac{\cos z}{z-0} d z=2 \pi i
$$

(This was much too detailed; in the next problems, I shall assume that the name of the integration variable causes no difficulty.)

Problem 3.6.2: This uses the Cauchy formula for the point i, which is inside $C_{3}(0)$, and applied to the function $f(z)=e^{z^{2}} \cos z$:

$$
\int_{C_{3}(0)} \frac{e^{z^{2}} \cos z}{z-i} d z=2 \pi i e^{i^{2}} \cos i=2 \pi i e^{-1} \frac{e^{i^{2}}+e^{-i^{2}}}{2}=2 \pi i e^{-2} .
$$

Problem 3.6.3: Factor the denominator in the integrand. Find its zeros by the formula for the solution of the quadratic equation, or just complete the square: $z^{2}-5 z+4=$ $\left(z-\frac{5}{2}\right)^{2}-\frac{9}{4}=\left(z-\frac{5}{2}+\frac{3}{2}\right)\left(z-\frac{5}{2}-\frac{3}{2}\right)=(z-1)(z-4)$. Of the two zeros $z=1$ and $z=4$, the former lies inside the circle $C_{2}(1)$, and the latter outside it: So the integral can be viewed as the Cauchy integral formula applied to the function $f(z)=1 /(z-4)$ and the point $z=1$:

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{C_{2}(1)} \frac{1}{z^{2}-5 z+4} d z & =\frac{1}{2 \pi i} \int_{C_{2}(1)} \frac{1}{(z-1)(z-4)} d z \\
& =\frac{1}{2 \pi i} \int_{C_{2}(1)} \frac{1 /(z-4)}{z-1} d z=\frac{1}{1-4}=-\frac{1}{3} .
\end{aligned}
$$

Problem 3.6.17: We would like to factor the denominator again. This time it is a cubic polynomial, with the factorization

$$
z^{3}-3 z+2=(z-1)^{2}(z+2)
$$

We could have found that out just by looking for a rational root: If the polynomial has one, the root must be an integer (the denominator divides the coefficient of the highest order term), and that integer must divide 2 . So the numbers ± 1 and ± 2 are the only possible candidates for a rational root. We try them all, and find that the rational roots are $z=1$ and $z=-2$. Either polynomial division or the realization that $z=1$ must be a double root because it is also a root of the derivative $3 z^{2}-3$ finishes the factorization effort.

Next we find out the location of the roots $z=1$ and $z=-2$ relative to the integration path $C_{3 / 2}(0)$: Clearly, $z=1$ is inside and $z=-2$ is outside. So this will look like Cauchy's integral formula applied for the derivative of the function $f(z)=1 /(z+2)$:

$$
\begin{aligned}
\int_{C_{3 / 2}(0)} \frac{1}{z^{3}-3 z+2} d z & =\int_{C_{3 / 2}(0)} \frac{1}{(z-1)^{2}(z+2)} d z=\int_{C_{3 / 2}(0)} \frac{f(z)}{(z-1)^{2}} d z \\
& =\frac{2 \pi i}{1!} f^{\prime}(1)=-\left.\frac{2 \pi i}{(z+2)^{2}}\right|_{z=1}=-\frac{2 \pi i}{9} .
\end{aligned}
$$

Problem 3.6.20: Here we get the factorization $\left(z^{4}-1\right)=(z-1)(z+1)(z-i)(z+i)$, but since all the zeros lie inside the integration path $C_{2}(0)$ we cannot use the trick of the previous two questions.

However we can use partial fraction decomposition instead. (Note: This method could have been used on problems 3.6.3 and 3.6.17 too.)

In fact, remembering back to problem 3.4.33, we see immediately that the answer must be zero!

But we can verify that by computing the coefficients of the partial fraction decomposition

$$
\frac{1}{z^{4}-1}=\frac{1}{(z-1)(z+1)(z-i)(z+i)}=\frac{A}{z-1}+\frac{B}{z+1}+\frac{C}{z-i}+\frac{D}{z+i}
$$

We can save a bit of work by doing it in two steps: Put $z^{2}=w$ and note that

$$
\begin{aligned}
\frac{1}{z^{4}-1} & =\frac{1}{w^{2}-1}=\frac{1}{2}\left(\frac{1}{w-1}-\frac{1}{w+1}\right)=\frac{1}{2}\left(\frac{1}{z^{2}-1}-\frac{1}{z^{2}+1}\right) \\
& =\frac{1}{4}\left(\frac{1}{z-1}-\frac{1}{z+1}+\frac{i}{z-i}-\frac{i}{z+i}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\int_{C_{2}(0)} \frac{1}{z^{4}-1} d z & =\frac{1}{4} \int_{C_{2}(0)}\left(\frac{1}{z-1}-\frac{1}{z+1}+\frac{i}{z-i}-\frac{i}{z+i}\right) d z \\
& =\frac{2 \pi i}{4}(1-1+i-i)=0
\end{aligned}
$$

Problem 3.6.21: (a) The integrand is an analytic function of z for z in the unit disk, and it is continuous as a function of z and t. So the integral is also analytic.
(b) With $\gamma(t)=\zeta=e^{i t}$ we find $d \zeta=i e^{i t} d t$, and we recognize the given integral as a path integral:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}}{e^{i t}-z} d t=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}-z} d t=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{\zeta-z} d \zeta=1
$$

Problem 3.6.28: (a) It's just Cauchy's integral formula for the exponential function:

$$
\frac{1}{2 \pi i} \int_{C_{1}(0)} \frac{e^{z}}{z} d z=e^{0}=1
$$

(b) With the parametrization as in problem 3.6.21, $\gamma(t)=z=e^{i t}$, we write that as

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{e^{i t}} e^{i t}}{e^{i t}} d t=1, \quad \text { which simplifies into } \quad \int_{0}^{2 \pi} e^{e^{i t}} d t=2 \pi
$$

Next,

$$
e^{e^{i t}}=e^{\cos t+i \sin t}=e^{\cos t}(\cos \sin t+i \sin \sin t)
$$

which we will substitute in the above formula. The functions we are integrating are periodic with period 2π. So we may replace the limits of the integral as well:

$$
\int_{-\pi}^{\pi} e^{\cos t}(\cos \sin t+i \sin \sin t) d t=2 \pi
$$

The term $e^{\cos t} \sin \sin t$ is an odd function of t, so its integral will be zero. The term $e^{\cos t} \cos \sin t$ is odd, so its integral is twice the integral from 0 to π, and we have arrived at the desired conclusion

$$
\int_{0}^{\pi} e^{\cos t} \cos \sin t d t=\pi
$$

Problem 3.6.31: Do a partial fraction decomposition:

$$
\frac{1}{(\zeta-z) \zeta}=\frac{1}{z}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta}\right),
$$

substitute this in the integral, and use Cauchy's integral formula twice.
Problem 3.7.3: $f(z)=e^{-z^{2}}$ is analytic, so the maximum and minimum values of $|f(z)|$ must happen on the boundary. (The only exception is if $f(z)=0$ somewhere, but this doesn't happen.) The boundary here is the union of the two circles $|z|=1$ and $|z|=2$. We also note that $\left|e^{-z^{2}}\right|=e^{-\operatorname{Re} z^{2}}=e^{y^{2}-x^{2}}$, which is maximal on a circle where $x=0$, and minimal where $y=0$. (In fact, if $|z|=x^{2}+y^{2}=r^{2}$ then $e^{r^{2}-2 x^{2}}$.) The most extreme values clearly happen on the circle $z=2$, with the maximum value e^{4} at $z= \pm 2 i$ and the minimum value e^{-4} at $z= \pm 2$.

We should not be surprised that the extreme values happen on the outer circle, since f is not analytic not only in the annulus, but in the whole disk $|z| \leq 2$.
Problem 3.7.9: We find $|\operatorname{Ln} z|=|\ln | z|+i \operatorname{Arg} z|=\sqrt{(\ln |z|)^{2}+(\operatorname{Arg} z)^{2}}$, so it doesn't take a lot of theory to realize that the maximum happens where both $|z|$ and $|\operatorname{Arg} z|$ are maximal, while the minimum happens where these are both minimal. So the maximum value $\sqrt{(\ln 2)^{2}+\left(\frac{\pi}{4}\right)^{2}}$ happens at $z=2 e^{i \pi / 4}=\sqrt{2}(1+i)$, and the minimum value 0 happens at $z=1$.
Problem 3.7.11: Note that $\left|e^{e^{z}}\right|=e^{\operatorname{Re} e^{z}}=e^{e^{\mathrm{Re} z} \cos \operatorname{Im} z}=e^{0}=1$ when $\operatorname{Im} z= \pm \frac{\pi}{2}$. But in the middle of the strip, z is real, so e^{z} is real and goes to infinity as $z \rightarrow+\infty$, and then $e^{e^{z}} \rightarrow+\infty$ as well. So this function is very unbounded in the strip, even though it is bounded on its boundary. This does not contradict the maximum modulus principle because the region is unbounded.

