
MA2104 Fall 2006, Week 39: Solutions to exercises

Problem 3.6.1: Cauchy’s formula for the cosine function applied to the closed path
C1(0) and the point z = 0, which is inside it:

cos 0 =
1

2πi

∫
C1(0)

cos ζ

ζ − 0
dζ.

This is OK because the cosine function is entire, so in particular it is analytic on and
inside C1(0). Multiply by 2πi and change the name of the integration variable to get∫

C1(0)

cos z

z − 0
dz = 2πi.

(This was much too detailed; in the next problems, I shall assume that the name of the
integration variable causes no difficulty.)

Problem 3.6.2: This uses the Cauchy formula for the point i, which is inside C3(0),
and applied to the function f(z) = ez2

cos z:∫
C3(0)

ez2
cos z

z − i
dz = 2πiei2 cos i = 2πie−1 ei2 + e−i2

2
= 2πie−2.

Problem 3.6.3: Factor the denominator in the integrand. Find its zeros by the formula
for the solution of the quadratic equation, or just complete the square: z2 − 5z + 4 =
(z− 5

2)2− 9
4 = (z− 5

2 + 3
2)(z− 5

2 −
3
2) = (z− 1)(z− 4). Of the two zeros z = 1 and z = 4,

the former lies inside the circle C2(1), and the latter outside it: So the integral can be
viewed as the Cauchy integral formula applied to the function f(z) = 1/(z − 4) and the
point z = 1:

1
2πi

∫
C2(1)

1
z2 − 5z + 4

dz =
1

2πi

∫
C2(1)

1
(z − 1)(z − 4)

dz

=
1

2πi

∫
C2(1)

1/(z − 4)
z − 1

dz =
1

1− 4
= −1

3
.

Problem 3.6.17: We would like to factor the denominator again. This time it is a
cubic polynomial, with the factorization

z3 − 3z + 2 = (z − 1)2(z + 2).

We could have found that out just by looking for a rational root: If the polynomial has one, the
root must be an integer (the denominator divides the coefficient of the highest order term), and
that integer must divide 2. So the numbers ±1 and ±2 are the only possible candidates for a
rational root. We try them all, and find that the rational roots are z = 1 and z = −2. Either
polynomial division or the realization that z = 1 must be a double root because it is also a root
of the derivative 3z2 − 3 finishes the factorization effort.

Next we find out the location of the roots z = 1 and z = −2 relative to the integration
path C3/2(0): Clearly, z = 1 is inside and z = −2 is outside. So this will look like
Cauchy’s integral formula applied for the derivative of the function f(z) = 1/(z + 2):∫

C3/2(0)

1
z3 − 3z + 2

dz =
∫

C3/2(0)

1
(z − 1)2(z + 2)

dz =
∫

C3/2(0)

f(z)
(z − 1)2

dz

=
2πi

1!
f ′(1) = − 2πi

(z + 2)2

∣∣∣∣
z=1

= −2πi

9
.
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Problem 3.6.20: Here we get the factorization (z4 − 1) = (z − 1)(z + 1)(z − i)(z + i),
but since all the zeros lie inside the integration path C2(0) we cannot use the trick of
the previous two questions.

However we can use partial fraction decomposition instead. (Note: This method
could have been used on problems 3.6.3 and 3.6.17 too.)

In fact, remembering back to problem 3.4.33, we see immediately that the answer
must be zero!

But we can verify that by computing the coefficients of the partial fraction decom-
position

1
z4 − 1

=
1

(z − 1)(z + 1)(z − i)(z + i)
=

A

z − 1
+

B

z + 1
+

C

z − i
+

D

z + i
.

We can save a bit of work by doing it in two steps: Put z2 = w and note that

1
z4 − 1

=
1

w2 − 1
=

1
2

( 1
w − 1

− 1
w + 1

)
=

1
2

( 1
z2 − 1

− 1
z2 + 1

)
=

1
4

( 1
z − 1

− 1
z + 1

+
i

z − i
− i

z + i

)
so that ∫

C2(0)

1
z4 − 1

dz =
1
4

∫
C2(0)

( 1
z − 1

− 1
z + 1

+
i

z − i
− i

z + i

)
dz

=
2πi

4
(1− 1 + i− i) = 0.

Problem 3.6.21: (a) The integrand is an analytic function of z for z in the unit disk,
and it is continuous as a function of z and t. So the integral is also analytic.

(b) With γ(t) = ζ = eit we find dζ = ieit dt, and we recognize the given integral as a
path integral:

1
2π

∫ 2π

0

eit

eit − z
dt =

1
2πi

∫ 2π

0

ieit

eit − z
dt =

1
2πi

∫
γ

1
ζ − z

dζ = 1

Problem 3.6.28: (a) It’s just Cauchy’s integral formula for the exponential function:

1
2πi

∫
C1(0)

ez

z
dz = e0 = 1.

(b) With the parametrization as in problem 3.6.21, γ(t) = z = eit, we write that as

1
2π

∫ 2π

0

eeit
eit

eit
dt = 1, which simplifies into

∫ 2π

0
eeit

dt = 2π.

Next,
eeit

= ecos t+i sin t = ecos t(cos sin t + i sin sin t),

which we will substitute in the above formula. The functions we are integrating are
periodic with period 2π. So we may replace the limits of the integral as well:∫ π

−π
ecos t(cos sin t + i sin sin t) dt = 2π.

The term ecos t sin sin t is an odd function of t, so its integral will be zero. The term
ecos t cos sin t is odd, so its integral is twice the integral from 0 to π, and we have arrived
at the desired conclusion ∫ π

0
ecos t cos sin t dt = π.
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Problem 3.6.31: Do a partial fraction decomposition:

1
(ζ − z)ζ

=
1
z

( 1
ζ − z

− 1
ζ

)
,

substitute this in the integral, and use Cauchy’s integral formula twice.

Problem 3.7.3: f(z) = e−z2 is analytic, so the maximum and minimum values of |f(z)|
must happen on the boundary. (The only exception is if f(z) = 0 somewhere, but this
doesn’t happen.) The boundary here is the union of the two circles |z| = 1 and |z| = 2.
We also note that |e−z2 | = e−Re z2

= ey2−x2 , which is maximal on a circle where x = 0,
and minimal where y = 0. (In fact, if |z| = x2+y2 = r2 then er2−2x2 .) The most extreme
values clearly happen on the circle z = 2, with the maximum value e4 at z = ±2i and
the minimum value e−4 at z = ±2.

We should not be surprised that the extreme values happen on the outer circle, since f is
not analytic not only in the annulus, but in the whole disk |z| ≤ 2.

Problem 3.7.9: We find |Ln z| = |ln|z|+ iArg z| =
√

(ln|z|)2 + (Arg z)2, so it doesn’t
take a lot of theory to realize that the maximum happens where both |z| and |Arg z| are
maximal, while the minimum happens where these are both minimal. So the maximum
value

√
(ln 2)2 + (π

4 )2 happens at z = 2eiπ/4 =
√

2(1 + i), and the minimum value 0
happens at z = 1.

Problem 3.7.11: Note that |eez | = eRe ez
= eeRe z cos Im z = e0 = 1 when Im z = ±π

2 .
But in the middle of the strip, z is real, so ez is real and goes to infinity as z → +∞, and
then eez → +∞ as well. So this function is very unbounded in the strip, even though it
is bounded on its boundary. This does not contradict the maximum modulus principle
because the region is unbounded.
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