
MA2104 Fall 2006, Week 38: Solutions to exercises
Some pictures are at the end.

Problem 3.3.18: An antiderivative for the integrand is 1
3(z − 2 − i)3 + i ln(z − 2 −

i) + 3(z − 2 − i)−1. If we choose the principal branch for the logarithm defined by
0 ≤ arg z < 2π, this is defined for all z except where z − 2− i is real and ≥ 0. In other
words, everywhere except on the half line

{
2 + i + t : t ∈ [0,∞]

}
, which does not meet

the integration path C1(0). Since the path is closed, the integral is therefore zero. (The
principal part of the logarithm would not work here because the resulting branch cut for
the ln(z − 2 − i) term would be the half line

{
2 + i − t : t ∈ [0,∞]

}
, which touches the

integration path at one point.)

Problem 3.3.19: Using partial integration, we find an antiderivative for zez to be
(z − 1)ez (which is of course easy to verify by differentiation). This is good for all z, so
we immediately find∫

[z1,z2,z3]
zez dz =

[
(z−1)ez

]−1−iπ

π
= (−2−iπ)e−1−iπ−(π−1)eπ = (2+iπ)e−1−(π−1)eπ.

Problem 3.3.27: (a)

d

dz
zα =

d

dz
eα ln z =

α

z
eα ln z = αeα ln ze− ln z = αe(α−1) ln z = αzα−1

provided we use the same branch of the logarithm all the way. Replacing α by α + 1
and dividing by α + 1, we find

d

dz

zα+1

α + 1
= zα, if α 6= −1.

(b) Using the principal branch of the logarithm we note that the given path γ does
not come near the branch cut (the negative real axis), so we can write∫

γ

1√
z

dz =
∫

γ
z−1/2 dz =

[
2z1/2

]eiπ/2

e−iπ/2
= 2(eiπ/4 − e−iπ/4) = 4i sin π

4 = 2i
√

2.

Problem 3.3.29: (a) Assume |z0| > R. The wording is a bit funny here: What is meant
is that CR(z0) cannot intersect all four semi-axes

{
x : x ∈ [0,∞]

}
,

{
x : x ∈ [−∞, 0]

}
,{

iy : y ∈ [0,∞]
}

,
{
iy : y ∈ [−∞, 0]

}
. In fact, it cannot even intersect the first two (the

real semi-axes). (Quick proof: The closed ball B̄R(z0) is convex. If it contains the points
x1 ∈ [0,∞] and x2 ∈ [−∞, 0] then it contains 0, which is a convex combination of x1

and x2. But 0 /∈ BR(z0) since |z0| > R.) So we can pick either [−∞, 0] for the branch
cut (i.e., use the principal branch of the logarithm) or we can use [0,∞] (i.e., use the
branch defined by having the argument in [0, 2π) – this is the branch called log0 in the
book, and which we might call ln0) so that we have a branch of ln z analytic on CR(z0);
and this is of course an antiderivative of 1/z. Since the path is closed, the integral is
zero.

(b) Assume |z0| < R. The author of the book has really written out the proof so
much that there is little to add, other than that an antiderivative of 1/z along γ1 is the
principal branch of the logarithm, and an antiderivative along γ2 is the branch called
ln0. So ∫

γ

dz

z
=

∫
γ1

dz

z
+

∫
γ2

dz

z
= Ln z1 − Ln z2 + ln0 z2 − ln0 z1

= ln|z1|+ πi
2 − (ln|z2| − πi

2 ) + ln|z2|+ 3πi
2 − (ln|z1| − πi

2 ) = 2πi.
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Problem 3.3.32: The answer will of course be 2πi, as we can tell by looking forward
at the Cauchy integral theorem. But we can use the exact same procedure as in 3.3.29,
word for word as described above.

Problem 3.3.35: (a) With notation as in the problem, when t → t0 then γ(t) →
γ(t0) = z0, so that ε(γ(t)) → 0.

(b) The stated identity is just the consequence of replacing z in F (z) = F (z0) +
F ′(z0)(z − z0) + ε1(z)(z − z0) by γ(t) = γ(t0) + γ′(t0)(t − t0) + ε2(t)(t − t0), and z0 by
γ(t0). The result is better reorganized into

F (γ(t)) = F (γ(t0)) +

A︷ ︸︸ ︷
F ′(γ(t0))γ′(t0)(t− t0)

+ (ε1(γ(t))γ′(t0) + ε1(γ(t))ε2(t) + F ′(γ(t0))ε2(t))︸ ︷︷ ︸
ε(t)

(t− t0)

where ε(t) → 0 as t → t0, so that the term marked A must be the derivative of F (γ(t))
at t = t0.

Problem 3.4.1: Yes: Shrink γ0 to a point, move this point over to γ1, and unshrink (if
such a word exists) the point to γ1.

Problem 3.4.2: No: γ0 sorrounds two holes in the region, which γ1 does not.

Problem 3.4.3: No: There is a hole in the way. (The answer in the back of the book
is wrong.)

Problem 3.4.4: Yes: This is visually quite obvious. No holes in the way.

Problem 3.4.5: Yes: The region is convex. As always in a convex region, we can write
an explicit homotopy as H(t, s) = sγ1(t) + (1− s)γ0(t).

Problem 3.4.6: No: The two paths surround the same hole, but in opposite directions.

Problem 3.4.10: The region in figure 36 is convex, the others are not. See picture at
the end.

Problem 3.4.17: The integration path is C1(i) and the integrand is analytic in C\
{
−i

}
.

Since the integration path is closed and −i lies outside it, and the integrand is analytic,
the integral is zero.

Problem 3.4.29: Perhaps the easiest thing is to do a partial fraction decomposition of
the integrand? Write

1
(z + 1)2(z2 + 1)

=
A

z + 1
+

B

(z + 1)2
+

C

z + i
+

D

z − i

and multiply by the common denominator to get

1 = A(z + 1)(z2 + 1) + B(z2 + 1) + C(z + i)(z + 1)2 + D(z − i)(z + 1)2

= (A + C + D)z3 + (A + B + (2 + i)C + (2− i)D)z2

+ (A + (1 + 2i)C + (1− 2i)D)z + A + B + iC − iD,

leading to 
1 0 1 1
1 1 2 + i 2− i
1 0 1 + 2i 1− 2i
1 1 i −i




A
B
C
D

 =


0
0
0
1


with the solution A = B = 1

2 and C = D = −1
4 .
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The integral of A/(z + 1) is 2πiA = πi (from integrating once around z = −1 in the
positive direction).

The integral of B/(z+1)2 is zero since the integrand has an antiderivative −B/(z+1)
and the integration path is closed.

The integral of C/(z + i) is zero, since the point z = −i lies outside the integration
contour.

The integral of D/(z− i) is 2πiD = −1
2πi (from integrating once around z = i in the

positive direction).
So the total integral is πi + 0 + 0− 1

2πi = 1
2πi.

Problem 3.4.32: Again, try a partial fraction decomposition with and get

1
(z − α)(z − β)

=
1

(α− β)(z − α)
+

1
(β − α)(z − β)

.

By Jordan’s curve theorem, the simple, closed path C has just one inside and an outside.
It surrounds each point inside just once in the same direction, either positive or negative.
So if α is inside C, the first term on the righthand side above contributes

± 2πi

α− β

to the integral. Similarly, if β is inside, the second term contributes

± 2πi

β − α

If they are both inside, the contributions add to zero. So the possible values for the
integral are zero (if none or both of α, β lie inside), or

± 2πi

α− β

(with the plus sign if the curve is positively oriented and only α lies inside, or if the
curve is negatively oriented and only β lies inside).

Problem 3.4.33: (a) After multiplying through by the common denominator, the left
hand side is 1 while the right hand side is (A1 + A2 + · · · + An)zn−1 plus lower order
terms. So that sum must be zero.

(b) Integrating the partial fraction decomposition around C results in ±(A1 + A2 +
· · ·+ An)2πi = 0.

Problem 3.4.36: (a) This is sort of obvious.
(b) Equally obvious!
(c) The new map H is well defined because the two definitions for s = 1

2 agree: They
are H1(t, 1) = γ1(t) and H2(t, 0) = γ1(t). Then H is continuous because H1 and H2

are continuous, and we are done. (We need to check that H is a homotopy with closed
paths, or with fixed end points, if H1 and H2 are of these kinds. But this is easy too.)

(d) Well, it’s what the definition of reflexive says.

Problem 3.4.37: Something isn’t quite right with this problem. I’ll get back to it.
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