MA2104 Fall 2006, Week 38: Solutions to exercises

Some pictures are at the end.

Problem 3.3.18: An antiderivative for the integrand is $\frac{1}{3}(z-2-i)^{3}+i \ln (z-2-$ $i)+3(z-2-i)^{-1}$. If we choose the principal branch for the logarithm defined by $0 \leq \arg z<2 \pi$, this is defined for all z except where $z-2-i$ is real and ≥ 0. In other words, everywhere except on the half line $\{2+i+t: t \in[0, \infty]\}$, which does not meet the integration path $C_{1}(0)$. Since the path is closed, the integral is therefore zero. (The principal part of the logarithm would not work here because the resulting branch cut for the $\ln (z-2-i)$ term would be the half line $\{2+i-t: t \in[0, \infty]\}$, which touches the integration path at one point.)

Problem 3.3.19: Using partial integration, we find an antiderivative for $z e^{z}$ to be $(z-1) e^{z}$ (which is of course easy to verify by differentiation). This is good for all z, so we immediately find

$$
\int_{\left[z_{1}, z_{2}, z_{3}\right]} z e^{z} d z=\left[(z-1) e^{z}\right]_{\pi}^{-1-i \pi}=(-2-i \pi) e^{-1-i \pi}-(\pi-1) e^{\pi}=(2+i \pi) e^{-1}-(\pi-1) e^{\pi} .
$$

Problem 3.3.27: (a)

$$
\frac{d}{d z} z^{\alpha}=\frac{d}{d z} e^{\alpha \ln z}=\frac{\alpha}{z} e^{\alpha \ln z}=\alpha e^{\alpha \ln z} e^{-\ln z}=\alpha e^{(\alpha-1) \ln z}=\alpha z^{\alpha-1}
$$

provided we use the same branch of the logarithm all the way. Replacing α by $\alpha+1$ and dividing by $\alpha+1$, we find

$$
\frac{d}{d z} \frac{z^{\alpha+1}}{\alpha+1}=z^{\alpha}, \quad \text { if } \alpha \neq-1 .
$$

(b) Using the principal branch of the logarithm we note that the given path γ does not come near the branch cut (the negative real axis), so we can write

$$
\int_{\gamma} \frac{1}{\sqrt{z}} d z=\int_{\gamma} z^{-1 / 2} d z=\left[2 z^{1 / 2}\right]_{e^{-i \pi / 2}}^{e^{i \pi / 2}}=2\left(e^{i \pi / 4}-e^{-i \pi / 4}\right)=4 i \sin \frac{\pi}{4}=2 i \sqrt{2} .
$$

Problem 3.3.29: (a) Assume $\left|z_{0}\right|>R$. The wording is a bit funny here: What is meant is that $C_{R}\left(z_{0}\right)$ cannot intersect all four semi-axes $\{x: x \in[0, \infty]\},\{x: x \in[-\infty, 0]\}$, $\{i y: y \in[0, \infty]\},\{i y: y \in[-\infty, 0]\}$. In fact, it cannot even intersect the first two (the real semi-axes). (Quick proof: The closed ball $\bar{B}_{R}\left(z_{0}\right)$ is convex. If it contains the points $x_{1} \in[0, \infty]$ and $x_{2} \in[-\infty, 0]$ then it contains 0 , which is a convex combination of x_{1} and x_{2}. But $0 \notin B_{R}\left(z_{0}\right)$ since $\left|z_{0}\right|>R$.) So we can pick either $[-\infty, 0]$ for the branch cut (i.e., use the principal branch of the logarithm) or we can use $[0, \infty]$ (i.e., use the branch defined by having the argument in $[0,2 \pi)$ - this is the branch called $\log _{0}$ in the book, and which we might call $\left.\ln n_{0}\right)$ so that we have a branch of $\ln z$ analytic on $C_{R}\left(z_{0}\right)$; and this is of course an antiderivative of $1 / z$. Since the path is closed, the integral is zero.
(b) Assume $\left|z_{0}\right|<R$. The author of the book has really written out the proof so much that there is little to add, other than that an antiderivative of $1 / z$ along γ_{1} is the principal branch of the logarithm, and an antiderivative along γ_{2} is the branch called $\ln _{0}$. So

$$
\begin{aligned}
\int_{\gamma} \frac{d z}{z} & =\int_{\gamma_{1}} \frac{d z}{z}+\int_{\gamma_{2}} \frac{d z}{z}=\operatorname{Ln} z_{1}-\operatorname{Ln} z_{2}+\ln _{0} z_{2}-\ln _{0} z_{1} \\
& =\ln \left|z_{1}\right|+\frac{\pi i}{2}-\left(\ln \left|z_{2}\right|-\frac{\pi i}{2}\right)+\ln \left|z_{2}\right|+\frac{3 \pi i}{2}-\left(\ln \left|z_{1}\right|-\frac{\pi i}{2}\right)=2 \pi i .
\end{aligned}
$$

Problem 3.3.32: The answer will of course be $2 \pi i$, as we can tell by looking forward at the Cauchy integral theorem. But we can use the exact same procedure as in 3.3.29, word for word as described above.

Problem 3.3.35: (a) With notation as in the problem, when $t \rightarrow t_{0}$ then $\gamma(t) \rightarrow$ $\gamma\left(t_{0}\right)=z_{0}$, so that $\epsilon(\gamma(t)) \rightarrow 0$.
(b) The stated identity is just the consequence of replacing z in $F(z)=F\left(z_{0}\right)+$ $F^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\epsilon_{1}(z)\left(z-z_{0}\right)$ by $\gamma(t)=\gamma\left(t_{0}\right)+\gamma^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\epsilon_{2}(t)\left(t-t_{0}\right)$, and z_{0} by $\gamma\left(t_{0}\right)$. The result is better reorganized into

$$
\begin{aligned}
&F(\gamma(t))=F\left(\gamma\left(t_{0}\right)\right)+\overbrace{F^{\prime}\left(\gamma\left(t_{0}\right)\right) \gamma^{\prime}\left(t_{0}\right)}) \\
&+\underbrace{\left(\epsilon_{1}(\gamma(t)) \gamma^{\prime}\left(t_{0}\right)+t_{1}(\gamma(t)) \epsilon_{2}(t)+F^{\prime}\left(\gamma\left(t_{0}\right)\right) \epsilon_{2}(t)\right)}_{\epsilon(t)}\left(t-t_{0}\right)
\end{aligned}
$$

where $\epsilon(t) \rightarrow 0$ as $t \rightarrow t_{0}$, so that the term marked A must be the derivative of $F(\gamma(t))$ at $t=t_{0}$.

Problem 3.4.1: Yes: Shrink γ_{0} to a point, move this point over to γ_{1}, and unshrink (if such a word exists) the point to γ_{1}.
Problem 3.4.2: No: γ_{0} sorrounds two holes in the region, which γ_{1} does not.
Problem 3.4.3: No: There is a hole in the way. (The answer in the back of the book is wrong.)

Problem 3.4.4: Yes: This is visually quite obvious. No holes in the way.
Problem 3.4.5: Yes: The region is convex. As always in a convex region, we can write an explicit homotopy as $H(t, s)=s \gamma_{1}(t)+(1-s) \gamma_{0}(t)$.
Problem 3.4.6: No: The two paths surround the same hole, but in opposite directions.
Problem 3.4.10: The region in figure 36 is convex, the others are not. See picture at the end.

Problem 3.4.17: The integration path is $C_{1}(i)$ and the integrand is analytic in $\mathbb{C} \backslash\{-i\}$. Since the integration path is closed and $-i$ lies outside it, and the integrand is analytic, the integral is zero.
Problem 3.4.29: Perhaps the easiest thing is to do a partial fraction decomposition of the integrand? Write

$$
\frac{1}{(z+1)^{2}\left(z^{2}+1\right)}=\frac{A}{z+1}+\frac{B}{(z+1)^{2}}+\frac{C}{z+i}+\frac{D}{z-i}
$$

and multiply by the common denominator to get

$$
\begin{aligned}
1= & A(z+1)\left(z^{2}+1\right)+B\left(z^{2}+1\right)+C(z+i)(z+1)^{2}+D(z-i)(z+1)^{2} \\
= & (A+C+D) z^{3}+(A+B+(2+i) C+(2-i) D) z^{2} \\
& +(A+(1+2 i) C+(1-2 i) D) z+A+B+i C-i D,
\end{aligned}
$$

leading to

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 1 & 2+i & 2-i \\
1 & 0 & 1+2 i & 1-2 i \\
1 & 1 & i & -i
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

with the solution $A=B=\frac{1}{2}$ and $C=D=-\frac{1}{4}$.

The integral of $A /(z+1)$ is $2 \pi i A=\pi i$ (from integrating once around $z=-1$ in the positive direction).

The integral of $B /(z+1)^{2}$ is zero since the integrand has an antiderivative $-B /(z+1)$ and the integration path is closed.

The integral of $C /(z+i)$ is zero, since the point $z=-i$ lies outside the integration contour.

The integral of $D /(z-i)$ is $2 \pi i D=-\frac{1}{2} \pi i$ (from integrating once around $z=i$ in the positive direction).

So the total integral is $\pi i+0+0-\frac{1}{2} \pi i=\frac{1}{2} \pi i$.
Problem 3.4.32: Again, try a partial fraction decomposition with and get

$$
\frac{1}{(z-\alpha)(z-\beta)}=\frac{1}{(\alpha-\beta)(z-\alpha)}+\frac{1}{(\beta-\alpha)(z-\beta)} .
$$

By Jordan's curve theorem, the simple, closed path C has just one inside and an outside. It surrounds each point inside just once in the same direction, either positive or negative. So if α is inside C, the first term on the righthand side above contributes

$$
\pm \frac{2 \pi i}{\alpha-\beta}
$$

to the integral. Similarly, if β is inside, the second term contributes

$$
\pm \frac{2 \pi i}{\beta-\alpha}
$$

If they are both inside, the contributions add to zero. So the possible values for the integral are zero (if none or both of α, β lie inside), or

$$
\pm \frac{2 \pi i}{\alpha-\beta}
$$

(with the plus sign if the curve is positively oriented and only α lies inside, or if the curve is negatively oriented and only β lies inside).

Problem 3.4.33: (a) After multiplying through by the common denominator, the left hand side is 1 while the right hand side is $\left(A_{1}+A_{2}+\cdots+A_{n}\right) z^{n-1}$ plus lower order terms. So that sum must be zero.
(b) Integrating the partial fraction decomposition around C results in $\pm\left(A_{1}+A_{2}+\right.$ $\left.\cdots+A_{n}\right) 2 \pi i=0$.

Problem 3.4.36: (a) This is sort of obvious.
(b) Equally obvious!
(c) The new map H is well defined because the two definitions for $s=\frac{1}{2}$ agree: They are $H_{1}(t, 1)=\gamma_{1}(t)$ and $H_{2}(t, 0)=\gamma_{1}(t)$. Then H is continuous because H_{1} and H_{2} are continuous, and we are done. (We need to check that H is a homotopy with closed paths, or with fixed end points, if H_{1} and H_{2} are of these kinds. But this is easy too.)
(d) Well, it's what the definition of reflexive says.

Problem 3.4.37: Something isn't quite right with this problem. I'll get back to it.
3.3 .18

3.3 .29 (a)

(b)

3.3 .32

3.4 .17
 3.4 .32

ste: 8 possibilites totel: two orientations. α, β inside/outside.

