MA2104 Fall 2006, Week 37: Solutions to exercises

Some pictures are at the end.

Problem 3.1.3: $z=3 i+e^{i t}$ for $t \in[0,2 \pi]$ (eller et vilkårlig annet lukket intervall med lengde 2π).

Problem 3.1.6: $z=e^{-i t}$ for $t \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
Problem 3.1.7:

$$
z= \begin{cases}i t & 0 \leq t \leq 1, \\ 1-t+(2-t) i & 1 \leq t \leq 2 \\ t-3 & 2 \leq t \leq 3\end{cases}
$$

Problem 3.1.18: (Picture at end.)
Problem 3.1.23: Standard differentiation rules:

$$
f^{\prime}(t)=2 \frac{t+i}{t-i} \cdot \frac{t-i-(t+i)}{(t-i)^{2}}=-4 i \frac{t+i}{(t-i)^{3}} .
$$

Problem 3.2.3:

$$
\int_{-1}^{0} \sin (i x) d x=\left[\frac{-\cos (i x)}{i}\right]_{x=-1}^{0}=i(\cos 0-\cos (-i))=i(1-\cosh 1)
$$

Problem 3.2.6: The differentiation rule $\left(z^{\alpha}\right)^{\prime}=\alpha z^{\alpha-1}$ holds, so long as both powers are computed using the same branch of the logarithm.

In particular, we can use the standard rule for antiderivatives:

$$
\int_{1}^{2} x^{i} d x=\left[\frac{x^{1+i}}{1+i}\right]_{x=1}^{2}=\frac{2^{1+i}-1}{1+i}=\frac{e^{(1+i) \ln 2}-1}{1+i}=\frac{2(\cos \ln 2+\sin \ln 2)-1}{1+i} .
$$

Since we were instructed to use the principal branch of the power, that means using the principal branch of the logarithm, which in this case means that $\ln 2$ is the real value.

Problem 3.2.11: The direct way: Parametrize $C_{R}\left(z_{0}\right)$ using $z=z_{0}+R e^{i t}$ for $t \in[0,2 \pi]$ so that $\left(\overline{z-z_{0}}\right)^{n}=R^{n} e^{-i n t}$. Further $d z=i R e^{i t} d t$, so we find

$$
\int_{C_{r}\left(z_{0}\right)}\left(\overline{z-z_{0}}\right)^{n} d z=\int_{0}^{2 \pi} R^{n} e^{-i n t} \cdot i R e^{i t} d t=i R^{n+1} \int_{0}^{2 \pi} e^{-i(n-1) t} d t
$$

which has the stated values.
Another way is to use the fact that $\left(\overline{z-z_{0}}\right)\left(z-z_{0}\right)=\left|z-z_{0}\right|^{2}=R^{2}$ for z on $C_{R}\left(z_{0}\right)$, so that

$$
\int_{C_{R}\left(z_{0}\right)}\left(\overline{z-z_{0}}\right)^{n} d z=R^{2 n} \int_{C_{R}\left(z_{0}\right)} \frac{d z}{\left(z-z_{0}\right)^{n}}
$$

and use the fact that we already know the value of the latter integral: It is 0 unless $n=1$, in which case it is $2 \pi i$.
Problem 3.2.16: Since $2 z+i$ has the antiderivative $z^{2}+i z$ and the path is closed, the integral is zero. Computed directly, it becomes

$$
\int_{0}^{2 \pi}\left(2 e^{i t}+i\right) \cdot i e^{i t} d t=\int_{0}^{2 \pi}\left(2 i e^{2 i t}-e^{i t}\right) d t=0
$$

Problem 3.2.17: First, with the parametrization $z=t i+(1-t)=1+(i-1) t$ for $t \in[0,1]:$

$$
\int_{[1, i]} 2 \bar{z} d z=2 \int_{0}^{1}(1+(-i-1) t) \cdot(i-1) d t=(2-(i+1))(i-1)=2 i
$$

Next, with $z=t(1+i)+(1-t) i=t+i$:

$$
\int_{[i, 1+i]} 2 \bar{z} d z=2 \int_{0}^{1}(t-i) d t=1-2 i
$$

Adding the integrals together, we have

$$
\int_{[1, i, 1+i]} 2 \bar{z} d z=1
$$

Problem 3.2.21: The integrand has the antiderivative $\frac{1}{2} z^{2}$, and the path is closed, so the integral is zero. You were perhaps not supposed to know this yet when this exercise was due, so a direct computation is

$$
\int_{0}^{1} x d x+\int_{0}^{1}(1+i y) \cdot i d y-\int_{0}^{1}(x+i) d x-\int_{0}^{1} i y \cdot i d y=\frac{1}{2}+\left(i-\frac{1}{2}\right)-\left(\frac{1}{2}+i\right)+\frac{1}{2}=0
$$

Problem 3.2.26: I interpret the problem as having $\gamma(t)=8 e^{i t}+5 e^{-4 i t}$ for $t \in[0,2 \pi]$. Thus

$$
\begin{aligned}
\int_{\gamma} \bar{z} d z & =\int_{0}^{2 \pi}\left(8 e^{-i t}+5 e^{4 i t}\right) \cdot\left(8 i e^{i t}-20 i e^{-4 i t}\right) d t \\
& =i \int_{0}^{2 \pi}\left(64-100+40 e^{3 i t}-160 e^{-5 i t}\right) d t \\
& =-72 i \pi
\end{aligned}
$$

Problem 3.2.31: $\gamma(t)=\frac{1}{5} t^{5}+\frac{i}{4} t^{4}$ implies $\gamma^{\prime}(t)=t^{4}+i t^{3}$, so $\left|\gamma^{\prime}(t)\right|=\sqrt{t^{8}+t^{6}}=$ $t^{3} \sqrt{t^{2}+1}$. Therefore the length of the curve is (substituting $u=t^{2}$, which gives $d u=$ $2 t d t)$:

$$
\begin{aligned}
\int_{0}^{1} t^{3} \sqrt{t^{2}+1} d t & =\frac{1}{2} \int_{0}^{1} u \sqrt{u+1} d u=\frac{1}{2} \int_{0}^{1}(u+1-1) \sqrt{u+1} d u \\
& =\frac{1}{2} \int_{0}^{1}\left((u+1)^{3 / 2}-(u+1)^{1 / 2}\right) d u \\
& =\frac{1}{2}\left(\frac{2}{5}\left(2^{5 / 2}-1\right)-\frac{2}{3}\left(2^{3 / 2}-1\right)\right)=\frac{2}{15}(\sqrt{2}+1)
\end{aligned}
$$

Problem 3.2.40: From the definition of the integral as limits of sums: Each summand has a factor $z_{j}-z_{j-1}=0$, so the whole sum is zero.

Or from the definition for piecewise smooth paths: $\gamma^{\prime}(t)=0$ along the whole parameter interval means we're integrating the constant zero.
Problem 3.3.8: $\frac{1}{2} e^{z^{2}}-\ln z$ is an antiderivative, valid in any region in which we can define a continuous branch of the logarithm.
Problem 3.3.11: Even partial integration is allowed in the search for an antiderivative. This results in the candidate $\frac{1}{2} z^{2} \operatorname{Ln} z-\frac{1}{4} z^{2}$, and differentiation shows that it is indeed an antiderivative.
Problem Extra: Find all the values of i^{i} ?
Now $\ln i=\ln |i|+i \arg i=0+i \frac{\pi}{2}+2 i k \pi$ with $k \in \mathbb{Z}$, which yields

$$
i^{i}=e^{i \ln i}=e^{-\pi / 2+2 k \pi}, \quad k \in \mathbb{Z}
$$

3.1 .3

3.1 .6

A Horrible dmowna: it's A parabola, symmetric about 3.2 .21 THE REAL AXIS.

