
MA2104 Fall 2006, Week 36: Solutions to exercises

Problem 2.3.5: We can differentiate this using standard rules:

d

dz

1
z3 + 1

=
−3z2

(z3 + 1)2
, z /∈

{
−1, 1

2

√
3 + i

2 , 1
2

√
3− i

2

}
.

The stated exceptions are the points where z3 = −1, which happens at z = ei(π/3+2jπ/3),
where j = 0, 1, 2. The case j = 1 gives z = eπ = −1, while j = 0 gives z = cos π

3 +
i sin π

3 = 1
2

√
2 + i

2 . The case j = 2 produces z = 1
2

√
2− i

2 similarly.

Problem 2.3.9: Write z2/3 = e(2/3) ln z and differentiate:

d

dz
z2/3 = e(2/3) ln z · 2

3z
= 2

3e(2/3) ln ze− ln z = 2
3e(2/3) ln z−ln z = 2

3e−(1/3) ln z = 2
3z−1/3

which is correct so long as one uses the same branch of the logarithm the whole way (in
particular, using the principal branch is fine).

This simple principle works for all powers of the form zα, with the same proof.
Another proof is given in problem 2.3.21.

Problem 2.3.15: Rewrite:

lim
z→0

( 1
z
√

1 + z
− 1

z

)
= lim

z→0

1√
1 + z

− 1

z
= lim

z→0

1√
1 + z

− 1√
1 + 0

z

=
d

dz

1√
1 + z

∣∣∣∣
z=0

= −1
2(1 + z)−3/2

∣∣∣
z=0

= −1
2

where we have used the choice of the principal branch at the end. (See also the remark
at the end of the previous solution.)

Problem 2.3.21: We use the identity(
zp/q

)q = zp. (1)

Since p and q are integers, only the inner zp/q suffers from multiple values, and the
identity is easily proven (

zp/q
)q =

(
e(p/q) ln z

)q = ep ln z

Here we relied on the identidy (ew)q = eqw, which is proved using induction on q.
To use Theorem 2.3.4 (Asmar p. 96) with this identity, put g(z) = zp/q, f(w) = wq,

and h(z) = zp. The above identity states h(z) = f(g(z)).
So long as we are working in a region where g(z) = zp/q has a continuous branch and

z 6= 0, the conditions of Theorem 4 are satisfied (in particular f ′
(
g(z)

)
= q

(
g(z)

)q−1 6=
0), so the conclusion of the theorem is that g is differentiable, and

d

dz
zp/q = g′(z) =

h′(z)
f ′

(
g(z)

) =
pzp−1

q
(
zp/q

)q−1 .

Here we must pause to point out that the general rules wm+n = wmwn and
(
wm

)n = wmn

is never problematic for integers m and n, but they easily produce wrong results when
used with non-integers. However, the special case (1) still holds, so we find

d

dz
zp/q =

pzp−1

q
(
zp/q

)q(
zp/q

)−1 =
p

q

zpz−1

zp
(
zp/q

)−1 =
p

q

zp/q

z
.

As above, this can be further simplified to αzα−1 where α = p/q, provided the powers
zα and zα−1 are computed using the same branch of the logarithm.
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Problem 2.3.27: Since g(z0) = 0 but g′(z0) = 0, there is a punctured neighbourhood
of z0 in which g(z) 6= 0: For

g(z)
z − z0

=
g(z)− g(z0)

z − z0
→ g′(z0) 6= 0

(convergence as z → z0) implies that the lefthand side must be nonzero when |z − z0| is
small enough.

Thus we never risk divison by zero in the following calculation, so long as |z − z0| is
small enough (and nonzero of course):

f(z)
g(z)

=

f(z)− f(z0)
z − z0

g(z)− g(z0)
z − z0

→ f ′(z0)
g′(z0)

, when z → z0.

Problem 2.3.28: (a) Since (i2 + 1)7 = 0 and i6 + 1 = 0, we can use L’Hospital:

lim
z→i

(z2 + 1)7

z6 + 1
=

14z(z2 + 1)6

6z5

∣∣∣∣
z=i

=
14i(i2 + 1)6

6i5
= 0

(b) Verify that i3 + (1 − 3i)i2 + (i − 3)i + 2 + i = 0 (and i − i = 0 of course) and use
L’Hospital:

lim
z→i

z3 + (1− 3i)z2 + (i− 3)z + 2 + i

z − i
=

3z2 + 2(1− 3i)z + i− 3
1

∣∣∣∣
z=i

= −3 + 2(1− 3i)i + i− 3 = 3i.

Problem 2.4.6: We find

u =
y

x2 + y2
, v =

−x

x2 + y2
,

ux =
−2xy

(x2 + y2)2
, vy =

2xy

x2 + y2
,

uy =
x2 − y2

(x2 + y2)2
, vx =

y2 − x2

x2 + y2
.

Thus we have ux = −vy and uy = vx, which looks like the Cauchy–Riemann equation,
except the minus sign is in the wrong equation. Therefore the real Cauchy–Riemann
equations ux = vy and uy = −vx are satisfied only where xy = 0 and x2 = y2, respec-
tively, and both are satisfied only where x = y = 0. Oops, not even there, for then we
divide by zero.

Thus the given function is nowhere differentiable.
This may come as no surprise if we rewrite a bit: When z = x + iy then −ix + y =

−i(x + iy) = −iz, so the function under consideration is
−iz

|z|2
=
−iz

zz̄
=
−i

z̄

and we already know that z 7→ z̄ is not analytic.

Problem 2.4.31: We can do better than the book, and define any branch of the inverse
tangent by using any branch of the logarithm:

arctan z =
i

2
ln

1− iz

1 + iz

which we differentiate using the chain rule:

d

dz
arctan z =

i

2
1 + iz

1− iz
· −i(1 + iz)− i(1− iz)

(1 + iz)2
=

1
(1− iz)(1 + iz)

=
1

1 + z2

just as it should be.
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Problem 2.4.33: (a) The book gives two formulas for f ′ – equations (3) and (5) on
p. 101:

f ′ = ux + ivx = vy − iuy.

Given the second Cauchy–Riemann equation uy = −vx, it is of course trivial to rewrite
these as

f ′ = ux − iuy = vy + ivx.

(b) The stated identity follows at once from the above and the identity |a + ib|2 =
a2 + b2 when a and b are real.

(c) If u or v is constant in Ω, then f ′ = 0 follows. Thus f is constant. (This requires
the connectedness of Ω, which is part of the definition of Ω being a region.)

Problem 2.4.35: With fx = ux + ivx and fy = uy + ivy we find

fx + ify = ux + ivx + i(uy + ivy) = ux − vy + i(vx + uy),

which is zero precisely when ux−vy = 0 and vx+uy = 0. These are the Cauchy–Riemann
equations, rearranged.

Problem 2.4.38: (a) Since |f |2 = u2 + v2, it is clear that |f | is constant if and only if
u2 + v2 is constant. If u2 + v2 = 0 then f = 0, so there is nothing to prove.

(b) Differentiating u2+v2 = c first wrt x and then wrt y (and dividing both equations
by 2), we get

uux + vvx = 0, uuy + vvy = 0.

Substitute vx = −uy and vy = ux from the Cauchy–Riemann equations to get

uux − vuy = 0, uuy + vux = 0.

(c) These equations can be written(
u −v
v u

) (
ux

uy

)
=

(
0
0

)
.

The determinant of the matrix on the left is u2+v2 = c > 0, so we must have ux = uy = 0.
(d) We can simply refer to problem 2.4.33 to conclude that f is constant.
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