MA2104 Fall 2006, Week 36: Solutions to exercises

Problem 2.3.5: We can differentiate this using standard rules:

$$
\frac{d}{d z} \frac{1}{z^{3}+1}=\frac{-3 z^{2}}{\left(z^{3}+1\right)^{2}}, \quad z \notin\left\{-1, \frac{1}{2} \sqrt{3}+\frac{i}{2}, \frac{1}{2} \sqrt{3}-\frac{i}{2}\right\}
$$

The stated exceptions are the points where $z^{3}=-1$, which happens at $z=e^{i(\pi / 3+2 j \pi / 3)}$, where $j=0,1,2$. The case $j=1$ gives $z=e^{\pi}=-1$, while $j=0$ gives $z=\cos \frac{\pi}{3}+$ $i \sin \frac{\pi}{3}=\frac{1}{2} \sqrt{2}+\frac{i}{2}$. The case $j=2$ produces $z=\frac{1}{2} \sqrt{2}-\frac{i}{2}$ similarly.
Problem 2.3.9: Write $z^{2 / 3}=e^{(2 / 3) \ln z}$ and differentiate:

$$
\frac{d}{d z} z^{2 / 3}=e^{(2 / 3) \ln z} \cdot \frac{2}{3 z}=\frac{2}{3} e^{(2 / 3) \ln z} e^{-\ln z}=\frac{2}{3} e^{(2 / 3) \ln z-\ln z}=\frac{2}{3} e^{-(1 / 3) \ln z}=\frac{2}{3} z^{-1 / 3}
$$

which is correct so long as one uses the same branch of the logarithm the whole way (in particular, using the principal branch is fine).

This simple principle works for all powers of the form z^{α}, with the same proof. Another proof is given in problem 2.3.21.
Problem 2.3.15: Rewrite:

$$
\begin{aligned}
\lim _{z \rightarrow 0}\left(\frac{1}{z \sqrt{1+z}}-\frac{1}{z}\right) & =\lim _{z \rightarrow 0} \frac{\frac{1}{\sqrt{1+z}}-1}{z} \\
& =\left.\lim _{z \rightarrow 0} \frac{\frac{1}{\sqrt{1+z}}-\frac{1}{\sqrt{1+0}}}{z} \frac{1}{\sqrt{1+z}}\right|_{z=0}=-\left.\frac{1}{2}(1+z)^{-3 / 2}\right|_{z=0}=-\frac{1}{2}
\end{aligned}
$$

where we have used the choice of the principal branch at the end. (See also the remark at the end of the previous solution.)

Problem 2.3.21: We use the identity

$$
\begin{equation*}
\left(z^{p / q}\right)^{q}=z^{p} . \tag{1}
\end{equation*}
$$

Since p and q are integers, only the inner $z^{p / q}$ suffers from multiple values, and the identity is easily proven

$$
\left(z^{p / q}\right)^{q}=\left(e^{(p / q) \ln z}\right)^{q}=e^{p \ln z}
$$

Here we relied on the identidy $\left(e^{w}\right)^{q}=e^{q w}$, which is proved using induction on q.
To use Theorem 2.3.4 (Asmar p. 96) with this identity, put $g(z)=z^{p / q}, f(w)=w^{q}$, and $h(z)=z^{p}$. The above identity states $h(z)=f(g(z))$.

So long as we are working in a region where $g(z)=z^{p / q}$ has a continuous branch and $z \neq 0$, the conditions of Theorem 4 are satisfied (in particular $f^{\prime}(g(z))=q(g(z))^{q-1} \neq$ 0), so the conclusion of the theorem is that g is differentiable, and

$$
\frac{d}{d z} z^{p / q}=g^{\prime}(z)=\frac{h^{\prime}(z)}{f^{\prime}(g(z))}=\frac{p z^{p-1}}{q\left(z^{p / q}\right)^{q-1}}
$$

Here we must pause to point out that the general rules $w^{m+n}=w^{m} w^{n}$ and $\left(w^{m}\right)^{n}=w^{m n}$ is never problematic for integers m and n, but they easily produce wrong results when used with non-integers. However, the special case (1) still holds, so we find

$$
\frac{d}{d z} z^{p / q}=\frac{p z^{p-1}}{q\left(z^{p / q}\right)^{q}\left(z^{p / q}\right)^{-1}}=\frac{p}{q} \frac{z^{p} z^{-1}}{z^{p}\left(z^{p / q}\right)^{-1}}=\frac{p}{q} \frac{z^{p / q}}{z}
$$

As above, this can be further simplified to $\alpha z^{\alpha-1}$ where $\alpha=p / q$, provided the powers z^{α} and $z^{\alpha-1}$ are computed using the same branch of the logarithm.

Problem 2.3.27: Since $g\left(z_{0}\right)=0$ but $g^{\prime}\left(z_{0}\right)=0$, there is a punctured neighbourhood of z_{0} in which $g(z) \neq 0$: For

$$
\frac{g(z)}{z-z_{0}}=\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}} \rightarrow g^{\prime}\left(z_{0}\right) \neq 0
$$

(convergence as $z \rightarrow z_{0}$) implies that the lefthand side must be nonzero when $\left|z-z_{0}\right|$ is small enough.

Thus we never risk divison by zero in the following calculation, so long as $\left|z-z_{0}\right|$ is small enough (and nonzero of course):

$$
\frac{f(z)}{g(z)}=\frac{\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}}{\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}} \rightarrow \frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}, \quad \text { when } z \rightarrow z_{0}
$$

Problem 2.3.28: (a) Since $\left(i^{2}+1\right)^{7}=0$ and $i^{6}+1=0$, we can use L'Hospital:

$$
\lim _{z \rightarrow i} \frac{\left(z^{2}+1\right)^{7}}{z^{6}+1}=\left.\frac{14 z\left(z^{2}+1\right)^{6}}{6 z^{5}}\right|_{z=i}=\frac{14 i\left(i^{2}+1\right)^{6}}{6 i^{5}}=0
$$

(b) Verify that $i^{3}+(1-3 i) i^{2}+(i-3) i+2+i=0$ (and $i-i=0$ of course) and use L'Hospital:

$$
\begin{aligned}
\lim _{z \rightarrow i} \frac{z^{3}+(1-3 i) z^{2}+(i-3) z+2+i}{z-i} & =\left.\frac{3 z^{2}+2(1-3 i) z+i-3}{1}\right|_{z=i} \\
& =-3+2(1-3 i) i+i-3=3 i
\end{aligned}
$$

Problem 2.4.6: We find

$$
\begin{aligned}
u & =\frac{y}{x^{2}+y^{2}}, & v & =\frac{-x}{x^{2}+y^{2}}, \\
u_{x} & =\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}, & v_{y} & =\frac{2 x y}{x^{2}+y^{2}}, \\
u_{y} & =\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, & v_{x} & =\frac{y^{2}-x^{2}}{x^{2}+y^{2}}
\end{aligned}
$$

Thus we have $u_{x}=-v_{y}$ and $u_{y}=v_{x}$, which looks like the Cauchy-Riemann equation, except the minus sign is in the wrong equation. Therefore the real Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ are satisfied only where $x y=0$ and $x^{2}=y^{2}$, respectively, and both are satisfied only where $x=y=0$. Oops, not even there, for then we divide by zero.

Thus the given function is nowhere differentiable.
This may come as no surprise if we rewrite a bit: When $z=x+i y$ then $-i x+y=$ $-i(x+i y)=-i z$, so the function under consideration is

$$
\frac{-i z}{|z|^{2}}=\frac{-i z}{z \bar{z}}=\frac{-i}{\bar{z}}
$$

and we already know that $z \mapsto \bar{z}$ is not analytic.
Problem 2.4.31: We can do better than the book, and define any branch of the inverse tangent by using any branch of the logarithm:

$$
\arctan z=\frac{i}{2} \ln \frac{1-i z}{1+i z}
$$

which we differentiate using the chain rule:

$$
\frac{d}{d z} \arctan z=\frac{i}{2} \frac{1+i z}{1-i z} \cdot \frac{-i(1+i z)-i(1-i z)}{(1+i z)^{2}}=\frac{1}{(1-i z)(1+i z)}=\frac{1}{1+z^{2}}
$$

just as it should be.

Problem 2.4.33: (a) The book gives two formulas for $f^{\prime}-$ equations (3) and (5) on p. 101:

$$
f^{\prime}=u_{x}+i v_{x}=v_{y}-i u_{y}
$$

Given the second Cauchy-Riemann equation $u_{y}=-v_{x}$, it is of course trivial to rewrite these as

$$
f^{\prime}=u_{x}-i u_{y}=v_{y}+i v_{x}
$$

(b) The stated identity follows at once from the above and the identity $|a+i b|^{2}=$ $a^{2}+b^{2}$ when a and b are real.
(c) If u or v is constant in Ω, then $f^{\prime}=0$ follows. Thus f is constant. (This requires the connectedness of Ω, which is part of the definition of Ω being a region.)
Problem 2.4.35: With $f_{x}=u_{x}+i v_{x}$ and $f_{y}=u_{y}+i v_{y}$ we find

$$
f_{x}+i f_{y}=u_{x}+i v_{x}+i\left(u_{y}+i v_{y}\right)=u_{x}-v_{y}+i\left(v_{x}+u_{y}\right)
$$

which is zero precisely when $u_{x}-v_{y}=0$ and $v_{x}+u_{y}=0$. These are the Cauchy-Riemann equations, rearranged.
Problem 2.4.38: (a) Since $|f|^{2}=u^{2}+v^{2}$, it is clear that $|f|$ is constant if and only if $u^{2}+v^{2}$ is constant. If $u^{2}+v^{2}=0$ then $f=0$, so there is nothing to prove.
(b) Differentiating $u^{2}+v^{2}=c$ first wrt x and then wrt y (and dividing both equations by 2), we get

$$
u u_{x}+v v_{x}=0, \quad u u_{y}+v v_{y}=0
$$

Substitute $v_{x}=-u_{y}$ and $v_{y}=u_{x}$ from the Cauchy-Riemann equations to get

$$
u u_{x}-v u_{y}=0, \quad u u_{y}+v u_{x}=0
$$

(c) These equations can be written

$$
\left(\begin{array}{cc}
u & -v \\
v & u
\end{array}\right)\binom{u_{x}}{u_{y}}=\binom{0}{0}
$$

The determinant of the matrix on the left is $u^{2}+v^{2}=c>0$, so we must have $u_{x}=u_{y}=0$.
(d) We can simply refer to problem 2.4 .33 to conclude that f is constant.

