
MA2104 Fall 2006, Week 35: Solutions to exercises
Some pictures are at the end.

Problem 1.2.12:∣∣∣ 1 + i

(1− i)(1 + 3i)

∣∣∣ =
|1 + i|

|1− i| · |1 + 3i|
=

√
2√

2 ·
√

10
=

1√
10

Problem 1.5.4: Remember that e2ikπ = 1 and eiπ = −1, so e201iπ = e200iπeiπ =
1 · (−1) = −1.

Problem 1.5.10: As above. Notice that 701/4 = 1751
4 = 174 + 5

4 so that e701iπ/4 =
e5iπ/4 = −eiπ/4 = −1

2

√
2(1 + i) = −1

2

√
2− i

2

√
2.

Problem 1.5.12: We find (
−
√

3
2

)2
+

(1
2

)2
= 1

so the number has absolute value (modules) one. We’re looking for solutions to cos θ =
−1

2

√
3 and sin θ = 1

2 , and θ = π − 1
6π = 5

6π fits the bill. So

−
√

3
2

+
i

2
= e5iπ/6.

Problem 1.5.17: Simplify first:

1 + i

1− i
=

1 + i

1− i
· 1 + i

1 + i
=

(1 + i)2

1− i2
=

1 + 2i− i2

2
= i = eiπ/2.

The reason behind the first trick is that we know that zz̄ is real, so we get a real
denominator by multiplying and dividing by the conjugate of 1− i.

Problem 1.5.29: Since ex+iy = exeiy has absolute value |ex+iy| = ex, and by assump-
tion x1 ≤ x ≤ x2, we find ex1 ≤ |ex+iy| ≤ ex2 so that ex+iy lies between the circles of
radius ex1 and ex2 respectively.

Similarly, Argex+iy = y so long as −π < y ≤ π. In this case, 0 ≤ α1 ≤ y ≤ α2 ≤ π,
so certainly the argument lies between α1 and α2 as in the picture.

I think the argument that the image fills out the entire sector shown is easy enough?

Problem 1.6.22: If you pick purely imaginary values for z, that is z = iy with y ∈ R,
then cos z = cos iy = cosh y which is unbounded. Similarly sin iy = i sinh y which is also
unbounded.

Problem 1.6.40:

cosh2 z − sinh2 z =
(ez + e−z

2

)2
−

(ez − e−z

2

)2
=

e2z + 2 + e−2z

4
− e2z − 2 + e−2z

4
= 1.

Problem 1.7.2: Write the number on polar form. |−3−3i| = 3
√

2, and (−3−3i)/|−3−
3i| = −1

2

√
2(1 + i) = e5iπ/4. So ln(−3 − 3i) = ln(3

√
2) + i arg(−3 − 3i) = ln(3

√
2) +

5iπ/4 + 2kiπ, for some (any) k ∈ Z.

Problem 1.7.14: Write 1 + i =
√

2eiπ/4, so taking logarithms we get −z = ln
√

2 +
iπ/4 + 2kiπ, that is z = −1

2 ln 2 + iπ/4− 2kiπ for k ∈ Z.

Problem 1.7.19b: By definition Lnw = ln|w|+ iArg w, and so −π < Im Lnw ≤ π for
all w. In particular, Ln ez = z implies −π < Im z ≤ π.

Conversely, note that ez = eRe zei Im z has argument Im z. If −π < Im z ≤ π then
this must be the principal value of the argument, i.e., Arg ez = Im z. Thus Ln ez =
ln|ez|+ i Im z = ln eRe z + i Im z = Re z + i Im z = z.
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Problem 1.7.31: The given equation has these equivalent forms:

cos z = sin z

eiz + e−iz

2
=

eiz − e−iz

2i

i(eiz + e−iz) = eiz − e−iz

i(e2iz + 1) = e2iz − 1

1 + i = (1− i)e2iz

e2iz =
1 + i

1− i
= i = eiπ/2 see problem 1.5.17

2iz =
i

2
π + 2k, k ∈ Z

z =
1
4
π − ik, k ∈ Z.

Problem 1.7.32a: We define w = arccos z by solving cos w = z for w. Rewrite as
follows:

cos w = z

eiw + e−iw = 2z

e2iw − 2zeiw = −1(
eiw − z

)2 = −1 + z2

eiw = z ±
√

z2 − 1

iw = ln
(
z ±

√
z2 − 1

)
w = −i ln

(
z ±

√
z2 − 1

)
The book does not write the ± in front of the square roots, but then it should be implicit
that either branch of the square root may be chosen. And after that, there are infinitely
many branches of the logarithm to choose from.

Good choices of the branches for the arccos function are not at all obvious, except for z = x
real and between −1 and 1. Then the number in the square root is negative, so it is better to
write w = −i ln

(
x ± i

√
1− x2

)
. The expression in the logarithm lies on the upper half of the

unit circle, so if we chose the principal branch of the logarithm, w works out to lie in [0, π], just
like the arccos of a real number in [−1, 1] should do.

Problem 2.1.4:
{
z : 1 < |z − i| ≤ 2

}
has interior

{
z : 1 < |z − i| < 2

}
and boundary{

z : |z − i| = 1 or |z − i| = 2
}

.

Problem 2.1.8:
{
z : z 6= 0, |Arg z| < 1

4π
}

is open, connected (and hence a region),
but not closed.

Problem 2.1.17: A boundary point of S is defined by the requirement that every
neighbourhood contains some points of S and some points from the complement. Since
this requirement is symmetric in S and its complement (it does not change when S is
replaced by its complement), then S and C \ S have the same boundary.

If S is open then any point in S has a neighbourhood contained in S, and so that
point is not a boundary point. Conversely, if S is not open then some point z ∈ S is
such that every neighbourhood of z contains a point not in S. Since z itself belongs to
any neighbourhood, then z is a boundary point.

In other words, S is open if and only if it contains no boundary point. In other words,
it is open if and only if the boundary is contained in the complement, which means the
complement is closed.

(There must be lots of different ways to organize the above reasoning. Don’t assume
that yours is wrong just because it didn’t look like mine.)
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Problem 2.1.21: First, if A and B are open then A∪B is open. For if z ∈ A∪B then
z ∈ A or z ∈ B. If z ∈ A then, since A is open, some neighbourhood of z is contained in
A. But then that neighbourhood is also contained in A∪B. The same applies if z ∈ B.

Second, if A and B are connected and z0 ∈ A∩B then there is a path in either A or
in B to any given point in A ∪ B, since both sets are connected. Thus there is a path
in A ∪B from z0 to any other point in A ∪B. So we can find a path in A ∪B between
any two points, by going from one of them to z0 and from there to the other one.

Problem 2.2.6: Arg z is bounded, since |Arg z| ≤ π. The squeeze law thus guarantees
that z Arg z → 0 when z → 0.

Problem 2.2.9: Roughly speaking, Arg z → π if z approaches the negative real axis
from above, while Arg z → −π if it does so from below. In either case, (Arg z)2 → π2,
so we should have limz→−3(Arg z)2 = π2.

Problem 2.2.23: When z → 0 along the real axis, then 1/z → ±∞, with the plus sign
if we come from the right, and the minus sign if we come from the left. In the former
case e1/z →∞, and in the latter case, e1/z → 0. So the given limit does not exist. (Also,
with an imaginary valu z = iy, e1/z = e−i/y which has absolute value 1, but spins round
the unit circle infinitely often as y → 0 from either side.)
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