
MA2104 Fall 2006, Week 34: Solutions to exercises
Some pictures are at the end.

Problem 1.2.12:∣∣∣ 1 + i

(1− i)(1 + 3i)

∣∣∣ =
|1 + i|

|1− i| · |1 + 3i|
=

√
2√

2 ·
√

10
=

1√
10

Problem 1.2.23: Some people are having difficulties here because the problem is too
easy, and they think there must be more to it! Write as usual z = x + iy with x, y ∈ R
below. (a) Re z = a becomes x = a. (b) Im z = b becomes y = b. (c) It’s just a repeat of
the standard parametrization of a line in the plane. But if you really wish to work harder,
you can write z2−z1 on polar form as z2−z1 = reiθ and note that then z = z1+t(z2−z1)
can be multiplied by e−iθ to become e−iθz = e−iθz1 + tr, from which you can take the
imaginary part to get Im(e−iθz) = b, where b = Im(e−iθz1) is constant. So this says that
multiplying by e−iθ maps the given curve to a horizontal line. But that is just rotating
by an angle iθ, and a line rotated is still a line.

Problem 1.2.24: My preferred solution: The given equation is equivalent to z1 − z2 =
t(z1 − z3) with t ∈ R, which says that z1 − z2 and z1 − z3 are parallel. And elementary
geometry says that happens if and only if the points are on a line.

But if you wish to use 1.2.23(c), note that that problem concluded that z3 is on
the line through z1 and z2 if and only if we can write z3 = z1 + t(z2 − z1) with t ∈ R.
But that equation is equivalent to z3 − z1 = t(z2 − z1), which can be rewritten as
z1 − z2 = t−1(z1 − z3), which is of the same form as the given equation with t replaced
by t−1. Since t3 6= t2 by assumption then t = 0 or t−1 = 0 in these equations is not a
worry.

Problem 1.2.38: We are given |z − i| ≤ 1
2 and asked for an upper bound to 1/|z − 1|.

That is, we are asked for the constant c in an inequality 1/|z − 1| ≤ c. That inequality
is equivalent to |z − 1| ≥ 1/c, se we are looking for an lower bound on |z − 1|.

A bit of geometric reasoning can help: The given inequality says that z is no farther
than 1

2 from i. The distance from i to 1 is
√

2, and the closest z can get to 1 is by being
on that line, at a distance of

√
2− 1

2 .
Or, using the triangle inequality:

|1− i| = |1− z + z − i| ≤ |1− z|+ |z − i|

so that |z − 1| ≥
√

2− |z − i| ≥
√

2− 1
2 . So we get the upper bound

∣∣∣ 1
1− z

∣∣∣ ≤ 1√
2− 1

2

=
2

2
√

2− 1
· 2
√

2 + 1
2
√

2 + 1
=

2
2
√

2− 1
=

4
√

2 + 2
7

.

(Pick the simplest answer for yourself.)

Problem 1.3.34: z3 = 1 + i can be written on polar form with z = reiθ as r3e3iθ =√
2eiπ/4, from which r3 =

√
2 (so r = 21/6) and 3θ = 1

4π + 2kπ, with k ∈ Z1 In other
words θ = 1

12π + 2kπ/3, but only the values k = 0, 1, 2 yield different z. Final solution:
z must be one of

21/6eiπ/12, 21/6e9iπ/12, 21/6e17iπ/12.

The principal root is the first of these.

1Z is the set of integers.
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Problem 1.3.36: Same idea as above, but now −30 = 30eiπ, and we get the solutions

z = 301/5eiπ/5, z = 301/5e3iπ/5, z = 301/5e5iπ/5 = −301/5,

z = 301/5e7iπ/5, z = 301/5e9iπ/5.

Again the principal root is the first, although the middle root (at the end of the first
line) seems like a more natural root when you’re used to real variables.

Problem 1.3.43: Just use the standard formula for quadratic equations! Or complete
the square:

z2 − 2(1 + i)z + i = 0

z2 − 2(1 + i)z + (1 + i)2 = −i + (1 + i)2 = 1 + i + i2 = i

(z − 1− i)2 = i

z − 1− i = ±
√

i = ±1
2

√
2(1 + i)

z = 1 + i± 1
2

√
2(1 + i)

and you can write the final answers in various forms.

Problem 1.3.48: De Moivre’s identity, for third powers, in extremely shortened version,
is (eiθ)3 = e3iθ, or written out:

(cos θ + i sin θ)3 = cos 3θ + i sin 3θ

cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ = cos 3θ + i sin 3θ

(the coefficients on the left are i0, 3i1, 3i2, i3), and it’s now just a question of comparing
imaginary parts to solve the problem (and real parts to do 1.3.47).

Problem 1.3.51: Write z = reiθ. Then zn = 1 becomes rneinθ = 1, which implies
r = 1 and nθ = 2kπ with k ∈ Z. Write the latter as θ = 2kπ/n and note that adding
a whole multiple of 2π to θ does not change z, so only k = 0, 1, 2, . . . , n − 1 produce
different values. We write

ωk = e2ikπ/n, k = 0, 1, . . . , n− 1

(or k = 1, 2, . . . n as the book says). ω0 = 1 (ωn if you wish) is the trivial root, and also
the principal root.

(The primitive roots are the ωk for which k and n have no nontrivial factors in
common. Equivalently, a primitive root of zn = 1 is a number ω so that every root of
the equation is some integral power of ω. In particular, if n is prime then all nontrivial
roots are primitive.)

Problem 1.3.53: Now we get into a bit of a terminology problem. Let me write just
ω for one of the ωk with k ∈

{
1, 2, . . . , n− 1

}
.

(a) Trivial: (ωωj)n = ωnωn
j = 1 · 1 = 1.

(b) Also trivial: Multiply ωj 6= ωk by the nonzero ω.
(c) By (b), the roots are both

{
ω1, . . . , ωn

}
and

{
ωω1, . . . , ωωn

}
. Summing, we get

ω1 + · · ·+ ωn = ωω1 + · · ·+ ωωn = ω(ω1 + · · ·+ ωn)

so ω1 + · · ·+ ωn = 0 because ω 6= 1.
(d) This is much prettier:

(1− ω)(1 + ω + · · ·+ ωn−1) = 1 + ω + · · ·+ ωn−1 − (ω + ω2 + · · ·+ ωn) = 1− ωn = 0.

Since (1 − ω) 6= 0, the sum is zero. You recognize the derivation of the formula for the
sum of a finite geometric series here, right?
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Problem 1.4.24: Notice that multiplying by i rotates S by 90 degrees in the positive
direction, while adding 2 moves the result two units to the right. See the drawings
further back.

Problem 1.5: Find the image f [S] of the set S =
{
x + iy : x ≤ 0 and − π ≤ y ≤ 0

}
where f(z) = ez.

Now f(x + iy) = ex+iy = ex(cos y + i sin y). x ≤ 0 translates into 0 < ex ≤ 1, and
−π ≤ y ≤ 0 places the point in the lower halfplane. The image is a half disk 0 < |w| ≤ 1,
Im w ≤ 0. (Note that the origin is not part of the image.) See drawings further back.
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