MA2104 Fall 2006, Week 34: Solutions to exercises

Some pictures are at the end.

Problem 1.2.12:

$$
\left|\frac{1+i}{(1-i)(1+3 i)}\right|=\frac{|1+i|}{|1-i| \cdot|1+3 i|}=\frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{10}}=\frac{1}{\sqrt{10}}
$$

Problem 1.2.23: Some people are having difficulties here because the problem is too easy, and they think there must be more to it! Write as usual $z=x+i y$ with $x, y \in \mathbb{R}$ below. (a) Re $z=a$ becomes $x=a$. (b) $\operatorname{Im} z=b$ becomes $y=b$. (c) It's just a repeat of the standard parametrization of a line in the plane. But if you really wish to work harder, you can write $z_{2}-z_{1}$ on polar form as $z_{2}-z_{1}=r e^{i \theta}$ and note that then $z=z_{1}+t\left(z_{2}-z_{1}\right)$ can be multiplied by $e^{-i \theta}$ to become $e^{-i \theta} z=e^{-i \theta} z_{1}+t r$, from which you can take the imaginary part to get $\operatorname{Im}\left(e^{-i \theta} z\right)=b$, where $b=\operatorname{Im}\left(e^{-i \theta} z_{1}\right)$ is constant. So this says that multiplying by $e^{-i \theta}$ maps the given curve to a horizontal line. But that is just rotating by an angle $i \theta$, and a line rotated is still a line.

Problem 1.2.24: My preferred solution: The given equation is equivalent to $z_{1}-z_{2}=$ $t\left(z_{1}-z_{3}\right)$ with $t \in \mathbb{R}$, which says that $z_{1}-z_{2}$ and $z_{1}-z_{3}$ are parallel. And elementary geometry says that happens if and only if the points are on a line.

But if you wish to use 1.2.23(c), note that that problem concluded that z_{3} is on the line through z_{1} and z_{2} if and only if we can write $z_{3}=z_{1}+t\left(z_{2}-z_{1}\right)$ with $t \in \mathbb{R}$. But that equation is equivalent to $z_{3}-z_{1}=t\left(z_{2}-z_{1}\right)$, which can be rewritten as $z_{1}-z_{2}=t^{-1}\left(z_{1}-z_{3}\right)$, which is of the same form as the given equation with t replaced by t^{-1}. Since $t_{3} \neq t_{2}$ by assumption then $t=0$ or $t^{-1}=0$ in these equations is not a worry.
Problem 1.2.38: We are given $|z-i| \leq \frac{1}{2}$ and asked for an upper bound to $1 /|z-1|$. That is, we are asked for the constant c in an inequality $1 /|z-1| \leq c$. That inequality is equivalent to $|z-1| \geq 1 / c$, se we are looking for an lower bound on $|z-1|$.

A bit of geometric reasoning can help: The given inequality says that z is no farther than $\frac{1}{2}$ from i. The distance from i to 1 is $\sqrt{2}$, and the closest z can get to 1 is be being on that line, at a distance of $\sqrt{2}-\frac{1}{2}$.

Or, using the triangle inequality:

$$
|1-i|=|1-z+z-i| \leq|1-z|+|z-i|
$$

so that $|z-1| \geq \sqrt{2}-|z-i| \geq \sqrt{2}-\frac{1}{2}$. So we get the upper bound

$$
\left|\frac{1}{1-z}\right| \leq \frac{1}{\sqrt{2}-\frac{1}{2}}=\frac{2}{2 \sqrt{2}-1} \cdot \frac{2 \sqrt{2}+1}{2 \sqrt{2}+1}=\frac{2}{2 \sqrt{2}-1}=\frac{4 \sqrt{2}+2}{7} .
$$

(Pick the simplest answer for yourself.)
Problem 1.3.34: $z^{3}=1+i$ can be written on polar form with $z=r e^{i \theta}$ as $r^{3} e^{3 i \theta}=$ $\sqrt{2} e^{i \pi / 4}$, from which $r^{3}=\sqrt{2}$ (so $r=2^{1 / 6}$) and $3 \theta=\frac{1}{4} \pi+2 k \pi$, with $k \in \mathbb{Z}^{1}$ In other words $\theta=\frac{1}{12} \pi+2 k \pi / 3$, but only the values $k=0,1,2$ yield different z. Final solution: z must be one of

$$
2^{1 / 6} e^{i \pi / 12}, \quad 2^{1 / 6} e^{9 i \pi / 12}, \quad 2^{1 / 6} e^{17 i \pi / 12}
$$

The principal root is the first of these.

[^0]Problem 1.3.36: Same idea as above, but now $-30=30 e^{i \pi}$, and we get the solutions

$$
\begin{gathered}
z=30^{1 / 5} e^{i \pi / 5}, \quad z=30^{1 / 5} e^{3 i \pi / 5}, \quad z=30^{1 / 5} e^{5 i \pi / 5}=-30^{1 / 5} \\
z=30^{1 / 5} e^{7 i \pi / 5}, \quad z=30^{1 / 5} e^{9 i \pi / 5}
\end{gathered}
$$

Again the principal root is the first, although the middle root (at the end of the first line) seems like a more natural root when you're used to real variables.

Problem 1.3.43: Just use the standard formula for quadratic equations! Or complete the square:

$$
\begin{gathered}
z^{2}-2(1+i) z+i=0 \\
z^{2}-2(1+i) z+(1+i)^{2}=-i+(1+i)^{2}=1+i+i^{2}=i \\
(z-1-i)^{2}=i \\
z-1-i= \pm \sqrt{i}= \pm \frac{1}{2} \sqrt{2}(1+i) \\
z=1+i \pm \frac{1}{2} \sqrt{2}(1+i)
\end{gathered}
$$

and you can write the final answers in various forms.
Problem 1.3.48: De Moivre's identity, for third powers, in extremely shortened version, is $\left(e^{i \theta}\right)^{3}=e^{3 i \theta}$, or written out:

$$
\begin{gathered}
(\cos \theta+i \sin \theta)^{3}=\cos 3 \theta+i \sin 3 \theta \\
\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta=\cos 3 \theta+i \sin 3 \theta
\end{gathered}
$$

(the coefficients on the left are $i^{0}, 3 i^{1}, 3 i^{2}, i^{3}$), and it's now just a question of comparing imaginary parts to solve the problem (and real parts to do 1.3.47).
Problem 1.3.51: Write $z=r e^{i \theta}$. Then $z^{n}=1$ becomes $r^{n} e^{i n \theta}=1$, which implies $r=1$ and $n \theta=2 k \pi$ with $k \in \mathbb{Z}$. Write the latter as $\theta=2 k \pi / n$ and note that adding a whole multiple of 2π to θ does not change z, so only $k=0,1,2, \ldots, n-1$ produce different values. We write

$$
\omega_{k}=e^{2 i k \pi / n}, \quad k=0,1, \ldots, n-1
$$

(or $k=1,2, \ldots n$ as the book says). $\omega_{0}=1$ (ω_{n} if you wish) is the trivial root, and also the principal root.
(The primitive roots are the ω_{k} for which k and n have no nontrivial factors in common. Equivalently, a primitive root of $z^{n}=1$ is a number ω so that every root of the equation is some integral power of ω. In particular, if n is prime then all nontrivial roots are primitive.)
Problem 1.3.53: Now we get into a bit of a terminology problem. Let me write just ω for one of the ω_{k} with $k \in\{1,2, \ldots, n-1\}$.
(a) Trivial: $\left(\omega \omega_{j}\right)^{n}=\omega^{n} \omega_{j}^{n}=1 \cdot 1=1$.
(b) Also trivial: Multiply $\omega_{j} \neq \omega_{k}$ by the nonzero ω.
(c) By (b), the roots are both $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and $\left\{\omega \omega_{1}, \ldots, \omega \omega_{n}\right\}$. Summing, we get

$$
\omega_{1}+\cdots+\omega_{n}=\omega \omega_{1}+\cdots+\omega \omega_{n}=\omega\left(\omega_{1}+\cdots+\omega_{n}\right)
$$

so $\omega_{1}+\cdots+\omega_{n}=0$ because $\omega \neq 1$.
(d) This is much prettier:

$$
(1-\omega)\left(1+\omega+\cdots+\omega^{n-1}\right)=1+\omega+\cdots+\omega^{n-1}-\left(\omega+\omega^{2}+\cdots+\omega^{n}\right)=1-\omega^{n}=0
$$

Since $(1-\omega) \neq 0$, the sum is zero. You recognize the derivation of the formula for the sum of a finite geometric series here, right?

Problem 1.4.24: Notice that multiplying by i rotates S by 90 degrees in the positive direction, while adding 2 moves the result two units to the right. See the drawings further back.

Problem 1.5: Find the image $f[S]$ of the set $S=\{x+i y: x \leq 0$ and $-\pi \leq y \leq 0\}$ where $f(z)=e^{z}$.

Now $f(x+i y)=e^{x+i y}=e^{x}(\cos y+i \sin y) . x \leq 0$ translates into $0<e^{x} \leq 1$, and $-\pi \leq y \leq 0$ places the point in the lower halfplane. The image is a half disk $0<|w| \leq 1$, $\operatorname{Im} w \leq 0$. (Note that the origin is not part of the image.) See drawings further back.
1.2 .23

1.2 .38

1.3 .34

1.3 .51

1.4 .24

1.5

[^0]: ${ }^{1} \mathbb{Z}$ is the set of integers.

