MA2104 Fall 2006, Week 34: Solutions to exercises

Some pictures are at the end.

Problem 1.2.12:

1+ 11+ 4 V2 1

1—9)(1+3) J1—d[-[1+3] +2-v10 10

Problem 1.2.23: Some people are having difficulties here because the problem is too
easy, and they think there must be more to it! Write as usual z = z + iy with z,y € R
below. (a) Rez = a becomes z = a. (b) Im z = b becomes y = b. (c) It’s just a repeat of
the standard parametrization of a line in the plane. But if you really wish to work harder,
you can write zo — z1 on polar form as zo —z; = re?? and note that then z = 21 +t(zo—21)
can be multiplied by e=% to become e "z = e~z + tr, from which you can take the
imaginary part to get Im(e~%2) = b, where b = Im(e~?2) is constant. So this says that
multiplying by e~* maps the given curve to a horizontal line. But that is just rotating
by an angle 6, and a line rotated is still a line.

Problem 1.2.24: My preferred solution: The given equation is equivalent to z; — zo =
t(z1 — z3) with ¢ € R, which says that z; — 29 and z; — z3 are parallel. And elementary
geometry says that happens if and only if the points are on a line.

But if you wish to use 1.2.23(c), note that that problem concluded that z3 is on
the line through z; and 2o if and only if we can write z3 = 21 + t(22 — 21) with ¢t € R.
But that equation is equivalent to z3 — 23 = ¢(22 — z1), which can be rewritten as
21 — 23 =t 1(21 — 23), which is of the same form as the given equation with ¢ replaced
by t~!. Since t3 # to by assumption then ¢t = 0 or t~! = 0 in these equations is not a
WOITY.

Problem 1.2.38: We are given |z — i| < 3 and asked for an upper bound to 1/|z — 1|.
That is, we are asked for the constant ¢ in an inequality 1/|z — 1| < ¢. That inequality
is equivalent to |z — 1| > 1/c¢, se we are looking for an lower bound on |z — 1.

A Dbit of geometric reasoning can help: The given inequality says that z is no farther
than % from i. The distance from i to 1 is v/2, and the closest z can get to 1 is by being
on that line, at a distance of v/2 — %

Or, using the triangle inequality:

1—il=1—z4+z—14 <|l—2z|+]z—1]
so that |z — 1] > /2 — |z —i| > V2 — 1. So we get the upper bound

‘1‘< 12 2V2+1 2 4V2+2
l—2l7v2-L1 " 2v2-1 2v2+1 2v2-1 T

(Pick the simplest answer for yourself.)

Problem 1.3.34: 22 = 1 + i can be written on polar form with z = re? as r3e3?¢ =

V2ei™/4 from which 3 = /2 (so 7 = 2/0) and 36 = im + 2km, with k € Z! In other
words 0 = 1—127T + 2k7/3, but only the values k = 0,1, 2 yield different z. Final solution:

z must be one of
21/66i7r/127 21/6691‘%/12, 91/6 1Tim/12

The principal root is the first of these.

17 is the set of integers.



Problem 1.3.36: Same idea as above, but now —30 = 30e'", and we get the solutions
2= 301/56im/5 L — 301/5e3im/5 L g1/55im/5 — _301/5.
2 = 301/5Tim/5 L — 301/59im/5,
Again the principal root is the first, although the middle root (at the end of the first
line) seems like a more natural root when you’re used to real variables.
Problem 1.3.43: Just use the standard formula for quadratic equations! Or complete
the square:
2221 +i)z+i=0
220 +i)z4+(1+i) =—i+Q+i) 2 =1+i+i®=i

(z—1—-1i)2 =i
1
z—1—z‘=i\fz‘=i§x/§(1+i)
1
z:1+ii§\@(1+i)

and you can write the final answers in various forms.
Problem 1.3.48: De Moivre’s identity, for third powers, in extremely shortened version,
is (¢9)3 = €3 or written out:
(cos@ + isinf)® = cos 30 + isin 36
cos® 0 + 3icos? Osin ) — 3cos O sin? 0 — isin® 0 = cos 30 + 4 sin 30

(the coefficients on the left are i°, 3i, 342, %), and it’s now just a question of comparing
imaginary parts to solve the problem (and real parts to do 1.3.47).

Problem 1.3.51: Write z = re®. Then 2" = 1 becomes "¢ = 1, which implies
r =1 and nf = 2km with k € Z. Write the latter as § = 2k7/n and note that adding
a whole multiple of 27 to 6 does not change z, so only kK = 0,1,2,...,n — 1 produce
different values. We write

wy = eXFT/n o k=01,...,n—1

(or k=1,2,...n as the book says). wg =1 (wy, if you wish) is the trivial root, and also
the principal root.

(The primitive roots are the wy for which k£ and n have no nontrivial factors in
common. Equivalently, a primitive root of z” = 1 is a number w so that every root of
the equation is some integral power of w. In particular, if n is prime then all nontrivial
roots are primitive.)

Problem 1.3.53: Now we get into a bit of a terminology problem. Let me write just
w for one of the wy with k£ € {1,2,...,n — 1}.

(a) Trivial: (ww;)" =w"w? =1-1=1.

(b) Also trivial: Multiply w; # wy, by the nonzero w.

(¢) By (b), the roots are both {wl, . ,wn} and {wwl, ... ,wwn}. Summing, we get
W4 Fwp = wwy + -+ wwp = w(w) + -+ wy)

SO0 w1 + - -+ + wy = 0 because w # 1.

(d) This is much prettier:

QI-wl4w+ - Fo" H=l4wt -+ (W + - Fw)=1-w"=0.

Since (1 —w) # 0, the sum is zero. You recognize the derivation of the formula for the
sum of a finite geometric series here, right?



Problem 1.4.24: Notice that multiplying by ¢ rotates S by 90 degrees in the positive
direction, while adding 2 moves the result two units to the right. See the drawings
further back.

Problem 1.5: Find the image f[S] of the set S = {x +iy: <0 and — 7 <y < 0}
where f(z) = €*.

Now f(x + iy) = ¥ = e%(cosy + isiny). x < 0 translates into 0 < ¢® < 1, and
—7 <y < 0 places the point in the lower halfplane. The image is a half disk 0 < |w| < 1,
Imw < 0. (Note that the origin is not part of the image.) See drawings further back.
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