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Abstract

Dynamic Positioning (DP) of ships is a control mode that seeks to maintain a specific position
(stationkeeping) or perform low-speed maneuvers. In this paper, a static Neural Network (NN)
is proposed for control allocation of an over-actuated ship. The thruster force and commands are
measured during a trial run of the simulated vessel to gather data for training of the NN. Then
the network is trained and used to transform the virtual force commands from a motion controller
into individual thruster commands. A standard Proportional Integral Derivative (PID) controller,
using wave-filtered position and heading measurements, is implemented as motion controller for
each Degree Of Freedom (DOF) of the ship. For a DP application the controllable DOFs are the
translational motion in surge and sway directions, as well as the rotation about its up/down axis.
Simulation tests were performed to verify the feasibility of this approach.
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1 Introduction

Ships that are involved in safety-critical operations related to drilling, cargo-transfer, subsea crane op-
erations and pipe-laying typically have an extended actuator setup to allow for redundancy in case of
system errors. During such operations the vessel is required to control its position and heading. This
operational mode is known as Dynamic Positioning (DP), which performs stationkeeping or low-speed
maneuvering. In terms of the degrees of freedom (DOF) of the vessel, DP normally controls the surge
(longitudinal), sway (lateral) and yaw (rotation about the up/down axis) simultaneously. Conventional
ships use either tunnel thrusters, azimuth thrusters or main thrusters for thrust generation

In order to perform DP operations a modular approach to motion control is often applied (Johansen
and Fossen (2013)). A top-level motion controller converts the error between the desired state and the
actual state of the ship, into a generalized force vector in surge/sway direction and moment about the yaw
axis. Then a control allocation module distributes that force vector into individual thruster commands
to fulfill the requirements of the motion controller.

Historically, optimization-based control allocation techniques have dominated. This allows for flex-
ibility in terms of optimization goal (and sub-goals), motivating advances in minimum power schemes
and minimization of actuator wear. Lindegaard and Fossen (2003) exploited the operation of a rudder
for lateral thrust to derive an energy-efficient thrust allocation algorithm for low speed operations. An
explicit two-step solution was suggested to calculate a feasible thrust vector, u. The approach was limited
to one rudder at a time. Their algorithm was extended by Johansen et al. (2008) to allow any number
of rudders. Magnitude and rate constraints were also accounted for. Perez and Donaire (2009) handled
both magnitude constraints and rate constraints in the top-level motion controller by an anti-windup
controller. By constraining the virtual control vector from the motion controller, they could perform
unconstrained control allocation which was posed as an optimization problem. The solution to this
unconstrained control allocation may be found in (Fossen (2011)).
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Sørdalen (1997) used filtering techniques to tackle the problem of azimuth angle rate constraints for
rotatable thrusters. Without this constraint consideration, a singular thruster configuration may occur
when rotatable thrusters are used actively. The result is failing to meet the control commands of the
control law.

An adaptive genetic algorithm was used to solve the thrust allocation problem in (Zhao et al. (2010)).
A fitness function was constructed based on an objective function with constraints. They considered
thrust allocation for a semi-submersible rig using rotatable thrusters. Constraints considered were
thruster force limits, its change rate, angular rate of thrusters and respective forbidden azimuth an-
gles. Bui and Kim (2011) presented a control allocation scheme that involved the use of external thrust
providers in the form of autonomous tugboats for ship berthing application. A constrained optimization
problem was used, which they solved using a redistributed pseudo-inverse algorithm.

Chen and Jiang (2012) transformed the constrained allocation task into a convex quadratic program-
ming problem for constrained control allocation. To solve this they applied a recurrent neural network.
A neural network control algorithm was applied in (Zhang et al. (2017)) to overcome actuator gain un-
certainties and to compensate for unmodelled environmental disturbances. The algorithm was tested in
a simulator using six thrusters, where one of them was rotatable. Realistic environmental disturbances
were applied in the simulation test.

Except for the approach described by Zhang et al. (2017), the methods described above require
knowledge about the command-to-force relationship of each thruster.

Within the aerospace industry, control allocation has also received significant attention. An overview
of methods used within this domain is given in Oppenheimer et al. (2006), while an evaluation of methods
is given in Bodson (2002).

In this article we propose to use a neural network to obtain the mapping between the virtual general-
ized force, commanded by the motion controller, and the individual thruster commands. It will consider
thruster rate constraints as well as limiting the maximum and minimum commands of the thrusters
(magnitude constraint) for non-rotatable thrusters. Manual operation of the thrusters is used to gener-
ate the training data. Sequentially, each thruster was put through its entire operational range by first
ordering a maximum command. Then, when maximum was reached, a minimum command was issued.
In addition to reaching maximum/minimum thruster command values, this commands the maximum
change rate as well. In this paper, no explicit support for relative weighting between thrusters exist. To
achieve this, the designer would have to supply the network with a training set that reflected the desired
weighting. This could be a restricted operational range for the main thrusters, resulting in lower force
output by those thrusters. Two assumptions were made:

• The forces and moments imparted by each thruster on the vessel are measurable.

• The command-to-force relation gathered in the test set for calm seas is representative for command-
to-force relations in all other sea states.

To validate the scheme, and for collecting training data for the NN allocation mapping, a simulated
vessel will be used.

2 Control scheme

As noted by Johansen and Fossen (2013) there typically exists a hierarchy in the control system for
over-actuated mechanical systems. This hierarchy allows for a modular design where each module is self-
contained. Figure 1 gives an overview of the complete system used in this paper. τc is the commanded
virtual force and moment given in the vessel frame of reference. u is the vector of individual control
commands. τ is the individual horizontal plane forces imparted on the virtual ship by the thrusters.
τenv are the forces acting on the vessel through environmental disturbances. Included in the PID Motion
controller module (section 2.2) is a wave filter, which will be described in section 2.1. The NN control
allocation module of figure 1 contains both an initial training algorithm and a forward calculation of the
control vector u. The latter operation is executed at each step of the complete system. An update rate
of 20 Hz was used. The output of the control allocation module will be input directly to each thruster.

2.1 Wave filter

Prior to sending the relevant measurements to a control system it is customary to filter the signals to
avoid compensating for high-frequency wave-induced motion (Fossen and Perez (2009)). This process is



Figure 1: Overview of the proposed scheme for DP using NN allocation.

therefore often referred to as wave-filtering and is a necessary step to reduce wear and tear on actuators.
Several tools can be used for this purpose including low-pass filters, Kalman filters and observers (Fossen
(2011)). Low-pass filters are utilized in this stage. Although it has limited effect due to the phase lag
incurred, they do not require prior knowledge of either vessel dynamics or the impact of environmental
forces on the vessel.

2.2 PID motion controller

A standard PID controller was used to obtain the virtual forces necessary to converge to a given desired
state. The need for integral action is evident when considering the drift force exerted on the vessel by
wind, low frequency wave drift forces and ocean currents. Position measurements were given in the local
North East Down (NED) frame. This made it necessary to rotate the position in the horizontal plane
in order to provide error metrics aligned with the coordinate frame of the vessel. For DP operation, we
define the state vector in the NED reference frame as [N,E,ψ]T and [X,Y, ψ]T for the state vector in
the vessel reference frame. ψd is the desired heading angle of the vessel. Figure 2 shows the X and Y
axis of the vessel-bound state vector.

Equation 1 yields the error signal which will act as input to the PID motion controller.Xerr

Yerr
ψerr

 = R−1(ψ)

NdEd
ψd

−

NE
ψ

 (1)

Obtaining the virtual control vector is achieved by applying a PID controller for each DOF represented
in the vessel fixed state vector.

τc =

FXFY
Mψ

 =

PID(Xerr)
PID(Yerr)
PID(ψerr)

 (2)

where PID(e) = Kp ∗ (e+ 1/Ti ∗
∫ t
0
e+ Td ∗ ė) and Kp, Ti and Td are parameters of the PID regulator

subject to tuning for desired response. FX is the surge force, FY is the sway force and Mψ is the yaw
moment required by the motion controller.

2.3 Neural network control allocation

A NN was used to provide the transformation between desired generalized forces (input) and the indi-
vidual thruster commands (output). More specifically the learning methodology adopted was that of the
Extreme Learning Machine (ELM) introduced by Guang-Bin Huang et al. (2004). Two main approaches
exist with regards to adapting structure and weight parameters of the network. The most basic one
involves a single, initial, calculation of weights, either using a fixed structure or adapting the structure
by means of pruning/constructive methods. Alternatively, one may update both structure and weights
iteratively, termed online learning, to adapt the network to time-varying properties of the process which
produces the data. In this paper we adopt the first approach, fixing the structure and the weights of
the network initially. Furthermore, the ELM is capable of approximating any continuous target function
given proper architecture and sufficient training data. This, along with the efficiency of the algorithm,
motivated the choice of using a shallow network structure as opposed to a deep neural network. The
learning process of the ELM is outlined below using the same notation as Huang et al. (2011).

H =

G(a1, b1,x1) . . . G(aL, bL,x1)
... . . .

...
G(a1, b1,xN ) . . . G(aL, bL,xN )

 (3)



H is a N-by-L matrix, where N represents the number of input vectors available and L is the number
of hidden layer neurons. Each node in the middle/hidden layer applies the activation function G(a, b,x),
where a is a vector of incoming weights, b is a random bias value and x is the input vector. A sigmoid
activation function was applied for each hidden layer neuron. The only remaining unknown is the output
layer weight matrix β. This is determined using the Moore-Penrose generalized inverse as shown in
equation 4. The learning scheme falls under the category of supervised learning and T therefore signifies
the known true output of the system given an input vector.

β = H†T (4)

The condensed stepwise algorithm is given below for readability.

1. Assign random numbers to the input-to-hidden layer weights

2. Calculate the hidden layer output matrix according to equation 3

3. Determine the output layer weight parameters according to equation 4

We define two variations of the control allocation unit for comparison of performance. They differ
only in terms of the structure of the NN allocator:

• Allocator 1: Only the generalized forces were applied as input to the network.

• Allocator 2: The input thrust command is augmented using the applied commands from the
previous time step.

2.3.1 Allocator 1

As mentioned, the implementation of Allocator 1 used only the generalized force/moment vector issued
from the motion controller as input. This is the common interface signal used by the methods referenced
in the introduction. The output was the five individual command signals. To determine the proper hidden
layer neuron number several different neuron numbers were tested. The neuron number corresponding
to the lowest Root Mean Square Error (RMSE), based on validation by randomly selected input/target
pairs of the entire training set, was selected. This approach yielded a NN structure of 3 input neurons,
20 hidden layer neurons and 6 output neurons. This mapping remained fixed for the duration of the test
case given in section 3.2.

2.3.2 Allocator 2

As a means to add additional information about the rate changes experienced in the training set the
input to the allocation unit was augmented. The new input consisted of the same generalized forces as
in Allocator 1, in addition to the commands issued to each thruster at the previous time step. Otherwise
the two allocation implementations (1 and 2) were identical. For both allocators a training set of 7800
samples was used.

3 Simulation results

Simulations were carried out in a commercial marine vessel simulator developed by the Norwegian com-
pany Offshore Simulator Centre (OSC) AS. Test case parameters are given in section 3.1.

3.1 Test case description

The vessel, shown in figure 2, was ordered to remain fixed at a position of (0,0) m in the NED reference
frame and a heading angle of 0 degrees. To achieve this the vessel utilized 6 thrusters. The two stern-
mounted main thrusters, which were operated in tandem, required a command of blade pitch angle
(thrusters marked 5 and 6 in figure 2). Two sets of individually operated tunnel thrusters were located
at the bow and stern of the vessel (thrusters marked 1-4 in figure 2). Both set of thrusters were operated
using RPM commands. All thrusters were considered non-rotatable, producing positive thrust in the
direction of the arrow accompanying each thruster in figure 2. Considering that the vessel is controlled
in three DOFs and the number of individually operated thrusters are 5, the vessel is over-actuated.
External disturbances were applied at a fixed direction, from north to south. Initially a uniform wind



Figure 2: The vessel and its thruster layout. Note that the two leftmost thrusters (main thrusters)
supply thrust in the positive/negative x-direction only.

velocity of 4 m/s affects the vessel. At the start of figure 3, a step change in wind is applied with a final
value of 8 m/s. Waves generated using the JONSWAP spectrum, were applied. Both first and second
order wave forces affected the vessel in the same direction as the wind and with a significant wave height
of 2 meters.

In order to initialize the control allocation mapping described in section 2.3, a test set of previously
recorded simulation data was used. Commanded thruster setpoint, actual thrust in Newton and the
torque in Newton meter imparted by each thruster on the vessel, were recorded for the purpose of
training the neural network. Each thruster was operated to its maximum and minimum command value,
thus exposing its complete operational range. The model of the virtual vessel is derived from a real
vessel and thus its thrusters have specific constraints with regards to command magnitude and change
rate. Table 1 shows the thruster constraints.

Table 1: Specification of thruster operational constraints.
Thruster Max Min Rate change

1,2 204.00 RPM -204.00 RPM 20.40 RPM/s
3,4 276.00 RPM -276.00 RPM 27.60 RPM/s
5,6 28.70 deg -21.50 deg 1.44 deg/s

Although the motion controller is not the main focus of this paper, a reasonable performance is still
required to provide sensible input data to the allocation unit. For this purpose a standard PID controller
was applied to each of the DOFs of the vessel. To reduce the adverse effects of high frequency wave-
induced motion a low-pass filter was applied to the input signals in the motion controller shown in figure
1. This was done prior to calculating the generalized forces.

3.2 Allocator 1

Figure 3 shows the performance of the complete system, which is to remain at a fixed location and
heading. The red lines of figure 3 describe the performance of the system using allocator 1. The rapid
change rate of this allocator allows it to compensate for the step change quickly and therefore minimize
the deviation from the desired desired position. However, the red line of the middle plot of figure 3
reveals slow convergence in the East direction. The high-frequency overloaded signal seen in all plots in
figure 3 is caused by the vessel interacting with waves.

Figure 4 shows the output from the allocation unit for allocator 1. It is evident that the commands
generated by the allocation unit is very sensitive to variation in the generalized force command. This
might suggest that further wave-filtering and controller tuning might be required for this implementation
to be useful. The excessive changes in thruster commands are also visible in figure 5, showing the change
in command between time steps and also the maximum change allowed for each thruster. The sampling
frequency of the system was set to 20 Hz, yielding the rate limit in figures 5 and 7 based on table 1

3.3 Allocator 2

Allocator 2 is less aggressive relative to allocator 1, although the same parameters for the PID regulators
have been used. The derived thruster commands change more slowly, yielding increased settling times.
Similar to allocator 1, the East direction (middle plot of figure 3) response shows the slowest convergence.
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Figure 3: The position and heading of the vessel recorded during the test case run for both allocator 1
and 2.
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Figure 4: The commands input to each of the thrusters for the test case using allocator 1. Top: RPM
commands issued to the bow tunnel thrusters. Middle: RPM commands to the stern tunnel thrusters.
Bottom: Blade pitch angle commands issued to the two aft main thrusters.
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Figure 5: Shows the change rate of the commands issued to each thruster.
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Figure 6: The commands input to each of the thrusters for the test case using allocator 2. Top: RPM
commands issued to the bow tunnel thrusters. Middle: RPM commands to the stern tunnel thrusters.
Bottom: Blade pitch angle commands issued to the two aft main thrusters.
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Figure 7: Shows the change rate of the commands issued to each thruster.

The commands issued by this allocator implementation result in a significant reduction in command rate
of change.

Figure 7 shows the reduction in rate change due to the augmented input vector of Allocator 2. Rate
constraints for all thrusters were satisfied using this implementation.

3.4 Magnitude constraint

More severe external disturbances were necessary to approach the maximum thrust limits for the
thrusters. The wind and wave direction was set to act from west to east while the vessel attempted
to maintain zero heading and position. Significant wave height was increased to 3 meters and the wind
velocity was set to increase from 4 m/s to 20 m/s. This wind velocity increase took place at t = 2500
seconds. The result of increasing the lateral force imparted on the vessel is given in figure 8.

Figure 9 gives the corresponding thruster setpoint commands issued from the allocation unit. For
this specific test Allocator 2 was used. The figure shows that the commands for thrusters 1-4 saturates,
rendering the vessel under-powered in the lateral direction. Insufficient thrust force causes the vessel to
drift off in the east direction (see the middle plot of figure 8) as well as failing to converge to a zero
heading angle.
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Figure 8: Recorded position and heading during the magnitude constraint test.
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Figure 9: Displays the thruster setpoint commands for all thrusters. Top and middle plot shows satura-
tion due to the environmental disturbances impacting the port side of the vessel.



4 Discussion

With an augmented input vector, the control allocation NN has been shown to provide constraint han-
dling for rate change and magnitude of thrusters on a simulated vessel. Allocator 2 displays the most
realistic implementation, adhering to the rate constraints present in the dataset used for training. It is
therefore necessary to provide a training set that reflects the constraints of the vessel, meaning that to
achieve the maximum rate change the thrusters on the vessel must be operated at its maximum rate
when logging the training data. The use of thrust force measurements limits the applicability of this
approach to simulators.

The test constructed to verify the ability of the NN allocator to deal with thruster magnitude con-
straints may not represent conditions that will be faced by a real vessel. However, it pushes the NN
allocation to its thresholds, showing that it is able to constrain the commands based on the dataset used
for training the NN.

Although not verified in this paper, thruster failure scenarios may be handled by a re-training step
of the NN allocation mapping. For the training set and NN architecture used in this paper, the entire
re-training procedure is performed in 1.3 seconds. More sophisticated functionality such as power min-
imization, support for thrusters rotatable in the range [−180, 180 > degrees and support for forbidden
zones of rotatable thrusters were not considered. They will be the aim for future improvements of the
suggested approach.

5 Conclusion

In this paper we introduce a neural network thruster allocation scheme that only relies on thruster
force and command measurements. Though systems onboard real vessels do not accomodate thrust force
measurements, we seek here to promote an approach to control allocation that does not rely on knowledge
about the specific thruster parameters. The augmented version of the neural network allocator is able
to learn the relationship between the generalized thrust and thruster commands as well as handling
maximum/minimum and rate constraints.
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