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Abstract

Researchers have been investigating data-driven modeling as a key way to achieve ship intelligence

for years. This paper presents a novel data analysis approach to data-driven modeling of ship motion.

We propose a global sensitivity analysis (GSA) approach combining artificial neural network (ANN) and

sparse polynomial chaos expansion (SPCE) techniques to accommodate high-dimensional sensor data

collected from ship motion. An ANN is constructed as a surrogate model to associate ship sensor data

with particular a certain type of ship motion. To account for the computational efficiency of GSA, an

SPCE is integrated into the GSA to decrease the need for Monte Carlo (MC) samples generated by the

ANN. A probe variable is designed to couple with the MC samples, which plays a role in determining

degree of convergence of variable importance. A test on benchmark function demonstrates the efficiency

and accuracy of the proposed approach. A case study of ship heading with and without environment

effects is conducted. The experimental results show that the proposed approach can identify and rank

the most sensitive factors of ship motion. The proposed approach highlights the application of GSA in

data-driven modeling for ship intelligence.
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I. INTRODUCTION

THE digital agenda is one of the pillars of the European Strategy for Growth, which pro-

poses to increase Europe’s exploitation of the potential of Information and Communication

Technologies (ICTs) to foster innovation, economic growth, and progress. The strategy lists “Ship

Intelligence” as one of the main areas through which to achieve growth. Ship intelligence has

become a key aspect of making the maritime and offshore industries more innovative, efficient,

and fit for future operations. Interest in developing and employing digital twins [1], big data

[2] and cloud computing [3] for ship intelligence, particularly autonomous ships, has recently

increased. Autonomy will require various technologies, including data collection, modeling, and

intelligent applications. Data-driven modeling is a fundamental component of this innovation,

which can provide support for higher-level applications, such as ship motion prediction, on-board

support, and auto-pilot.

To date, various novel intelligent data-driven techniques, such as extended Kalman filtering,

Bayesian network, fuzzy logic, regression analysis, and artificial neural network (ANN) have been

applied to ship motion modeling. In general, data-driven models have been highly dependent on

sensor data. Regarding to data-driven modeling of ship motion, it is necessary to consider the

ship sensor data which contains the characteristics of ship motion [4]. First, ship motion is highly

non-linear. This is caused by ship propulsion, together with environmental disturbances [5], [6],

such as wind, wave, and current. Second, the variety of types of sensors are equipped with ships

will generate data with varying sampling frequency. Third, the data of ship motion is highly

dimensional which originate from various sources of sensors. Mining the valuable information

from massive ship sensor data to create useful ship motion models is important but challenging.

Sensitivity analysis (SA) is one of the potential solutions to figure out the intrinsic relationship

of ship sensor data for data-driven modeling of ship motion [7]. SA is widely used for a wide

range of industrial applications, including assessing the uncertainty, calibrating the model, and

making robust decisions. SA reveals the relationship between changes in a data-driven model’s

output and variations in its input parameters [8]. SA has two main categories: local sensitivity

analysis (LSA) and global sensitivity analysis (GSA). LSA explores the influence of an individual
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input parameter on the model output once at a time, while the other inputs remain fixed. LSA

methods are not very applicable to the practical problems of models of ship motion because

they are usually non-linear [7]. GSA measures the sensitivity from the entire range of each

input space, which not only can help to identify the key input variables, but also identify the

model processes [9], [10]. To the best of our knowledge, studies of the application of GSA to

data-driven modeling have been limited for the following challenges: 1) it is not easy to conduct

GSA on sensor data directly because of the importance of input using numerical simulations; 2)

GSA methods usually are computationally expensive; 3) in practical engineering applications, it

is hard to determine when GSA will achieve a convergent result.

Our on-going project aims to develop intelligent systems to support decision making in various

maritime operations. A new integrated platform for planning and execution of real time support

to autonomous or semi-autonomous ship operations based on data analysis tools, and data-driven

modeling technique is designed, which will serve the maritime industry’s interest in improving

operational effectiveness and safety. In this paper, we focus on variance-based GSA of data-

based modeling of ship motion. Considering the GSA cannot be applicable to the sensor data

directly, an ANN is employed to construct the surrogate model. To accelerate the computation

of variance-based GSA methods, sparse polynomial chaos expansion (SPCE) [11] is adopted.

The main contributions of this paper are: first, it proposes a new sensitivity analysis method

based on ANN and SPCE, making the variance-based GSA applicable to systematically analyze

ship motion under the influence of environment; second, it introduces a probe variable to the

variance-based GSA method, making it possible to examine the sensitivity and convergence of

the proposed algorithm itself in the real engineering applications; third, by means of a GSA with

SPCE techniques, it investigates influences of the environmental factors (wave, wind).

The remainder of this paper is organized as follows. Section II is a brief review of previous

work, primarily the introduction of SA and its application to ship motion. Section III describes

the framework that explains how to combine the Sobol method and SPCE and apply it to ship

sensor data sets. The proposed method is examined on both analytical benchmark and sensor

data set of ship motion in Section IV. Section V provides the conclusion and discussion.
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II. RELATED WORK

The SA is defined as the investigation of “how uncertainty in the output of a model (numerical

or otherwise) can be apportioned to different sources of uncertainty in the model input factors”

[12]. The SA approaches have been increasingly employed to address all kinds of problems in

ship motion applications. Li et al. applied input and output derivatives to simplify the three-

layer structure of the NARX neural network for ship motion prediction [13], [14]. Zhang et al.

utilized the sum of square derivatives (SSD) to select the network inputs for the NARMAX

model, which was also used for ship motion prediction [15]. Hwang proposed an indirect

SA method to study the hydrodynamic derivatives of a ship [16]. Rhee and Kim proposed

a direct method of conducting SA using the differentiation of the mathematical ship model.

Their methods can give more efficient estimation results [17]. Yeo and Rhee [18] employed

SA to study the maneuverability of submersibles, examining the hydrodynamic coefficients on

the basis of several different types of sea trials. Using a similar approach to Yeo, Wang et

al. [19] performed an SA of hydrodynamic coefficients in a four-DOF mathematical model

based on simulated data. Xu [20] used numerical simulation as a basis for a simple sensitivity

study analyzing the sensitivity of an autonomous underwater vehicle. Santhakumar et al. [21]

performed an SA of hydrodynamic parameters on the basis of an underwater robot. Shenoi et al.

conducted SA of all hydrodynamic derivatives in a four-DOF of container ship [22]. Matsuura

et al. performed the sensitivity analysis on a mooring system to optimize the hydrodynamic

coefficients [23]. In order to reduce the influence of model complexity on simultaneous drift, Luo

and Zou [24] analyzed the sensitivity of a single hydrodynamic derivative on its maneuverability

prediction and hydrodynamic modeling. Kim et al. conducted sensitivity analysis of an Abkowitz-

type mathematical model and determined the influence of the hydrodynamic derivatives on

KVLCC2 maneuverability [25]. Panagiotis proposed an SA to investigate the various performance

parameters that affect the propulsion and maneuvering abilities of a ship [26]. The analysis

results can act as a supplementary study to assess the influence of performance parameters on

the performance of the test vessel. However, the literature offers few SA studies relating to

ship motion modeling under environment effects. State-of-the-art SA methods in ship motion

application currently follow the theory of LSA. Although traditional LSA methods can be used

for ship motion analysis, such as the simplification of ship motion prediction model, importance
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Fig. 1. Framework of ANN-SPCE-Sobol.

rank of the parameters, and risk reduction, LSA is not suitable for non-linear systems such as

those that include environment disturbance [27]. Hence, we propose a GSA-based approach for

ship motion analysis under environmental effects.

III. PROPOSED APPROACH

An offshore ship may have hundreds of sensors that cumulatively collect enormous amounts

of data. Using the variance-based Sobol method to assess the data is computationally expensive.

We propose the application of SPCE to the Sobol approach to ship sensor data to accelerate the

computation speed.

A. Framework of ANN-SPCE-Sobol

The use of sensitivity analysis combining SPCE and Sobol for data-based model is proposed.

The ship sensor data system features flexible and versatile data that can be easily imported into
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the system to obtain the compact structure. Fig. 1 illustrates the proposed framework and the

original structure. The framework consists of four components:

• Purification: Considering that raw sensor data may contain noisy, discontinuous, and super-

fluous information, it is essential to purify it to minimize the effect on further modeling and

analysis. The first step of the data cleaning process is the noise reduction, which uses the

median filtering technique. The details of purification are described in Section III-B.

• Data-based ANN model: Data-based ANN is an important part of the scheme, for two

reasons. Firstly, this approach builds a bridge between the modeler and the sensor data that

will make it easier to improve the model and understand the behavior of the ship. Secondly,

the data-based ANN model will generate a number of input parameters using Latin hyper-cube

sampling (LHS) [28] technique to calculate the corresponding output. Here, the group of a set

of input parameters and the corresponding output is called a sample [29]. The data-based ANN

model contains all the relevant input parameters after cleaning, and is trained by these data to

achieve certain accuracy in advance. The model would be reconstructed using those selected

input variables through SPCE-Sobol method. In this paper, a three layers feed-forward neural

network is built for ANN-SPCE-Sobol and ANN-Sobol. The BP algorithm is used as the

learning algorithm. The Sigmoid function and linear function are employed as the activation

function of a hidden layer and output layer, respectively. During the training phase, 80% of

sensor data is employed for training and the remaining 20% for testing and validation.

• Probe variable: The use of a probe variable has two purposes: The first is to help reveal

the convergence of sensitivity index of input parameters. The second is to perform parameter

screening and access the results of the sensitivity index. Ideally, the sensitivity index of the

probe variable should be zero, because the probe variable doesnt occur in the representations

of model and it would not affect the model in any other fashion. The probe variable will be

added to the samples, which is shown in Fig. 1. Section III-D introduces the computation of

the sensitivity index of the probe variable .

• SPCE-Sobol: This paper combines the SPCE algorithm with the Sobol method to perform

GSA on the input selection for a data-based ANN model. Taking advantage of SPCE to

achieve fast convergence, the sensitivity index can be calculated directly. SPCE is trained

using the sample generated by the ANN model, conducting Sobol sensitivity analysis using
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Fig. 2. A maneuver scenario in OSC.

the well-trained SPCE.

B. Data Pre-processing

The data comes from the Offshore Simulator Centre AS (OSC) [30]. Developed by Norwegian

University of Science and Technology and its research partners from industry, OSC is an

advanced training platform for offshore operation personnel. It allows users to produce solutions

based on a very powerful physical engine existing in changeable wind, wave, and current

conditions. Fig. 2 shows a true ship model in OSC.

The data collected from the ship in OSC contains variables associated with varying environ-

mental effects in terms of wind and wave. The simulation also includes ship motion reference

units that account for the six degrees of freedom (sway, roll, yaw, heave, pitch, and surge). Due

to the physical definition of raw, it has some jumping phenomena. For example, the definition

of roll angle, yaw angle, and pitch angle is within [0◦, 360◦]. When the angle changes near the

border, jumping is inevitable. To get rid of this type of discontinuity, we employ an algorithm

we defined in our a previous paper [14]. There are also some control variables, like rudders
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and thrusters. Analyzing these is problematic. For example, changing the rudder would affect

the dynamics of the ship. Using the rudder angle directly would result in an incorrect influence

estimation of the control signal.

In fact, both lift and drag forces reflect the rudder effect [31]. The thruster force can be

conveniently separated into two parts: rudder lift Li and drag forces Di. i = 1, 2 represents

different rudders.

Li = Fi(1 + kiLnωi
)(kiLδ1 + kiLδ2|δi|)δi (1)

Di = Fi(1 + kiDnωi
)(kiDδ1|δi|+ kiDδ2|δ2i |) (2)

where ωi stands for the shaft speeds of thrusters. δi represents the angle of rudder. The parameters

of lift and drag can refer to Fossen [31].

In addition, as the ANN is employed to construct the meta-model of the raw data, it is necessary

to normalize all parameters to speed up the training convergence and improve accuracy of the

ANN model. All the parameters would be normalized based on Eq. (3).

x̂ =
x− E(x)√
V ar(x) + ε

(3)

where E(x) represents the mean of x. V ar(x) stands for the variance of x. ε is a positive

infinitesimal to make the calculation possible when x is a constant. ε is set to 10−6 in this

paper. Apart from the above-mentioned, this paper also considers synchronizing those data with

different sampling frequency.

C. Sobol method based on SPCE

Assuming the model form is f(X) = f(x1, ..., xM), where X = (x1, ..., xM) represents the

model input which contains M independent parameters. Based on the theory of Sobol [32], the

model output can be decomposed by different effects [33], which is shown as follows:

f(X) =f0 +
M∑
i=1

fi(xi) +
∑

1≤i≤j≤M

fij(xi, xj) + ...

+ f1,2,...,M(x1, x2, ..., xM).

(4)
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Some literatures [34], [35] have argued that only the lower order terms are important. So, this

paper considers only the two higher orders. Eq. (4) can be re-written as follows:

f(X) =f0 +
M∑
i=1

fi(xi) +
∑

1≤i≤j≤M

fij(xi, xj). (5)

Assume the f(X) is square integrable. Squaring the Eq.(5) and integrating over the input

space, the following equation can be obtained:

∫
f 2(X)dX − f 2

0 =
M∑
i=1

∫
f 2
i (xi) +

∑
1≤i≤j≤M

∫
f 2
ij(xi, xj). (6)

The left part in Eq.(6) is called the total variance:

V =

∫
f 2(X)dX − f 2

0 (7)

The right part in Eq.(6) is called the partial variance:

Vi =
M∑
i=1

∫
f 2
i (xi)

Vij =
∑

1≤i≤j≤M

∫
f 2
ij(xi, xj)

(8)

Generally, the global sensitivity index would be described by the ratio of partial variance and

total variance [33]. The first-order (main effect) sensitivity index for the i-th variable xi can be

defined by:

Si =
Vi
V

(9)

The total-order sensitivity index is calculated as:

ST i = 1− V∼i
V

(10)

The Sobol method employs Monte Carlo methods to calculate the sensitivity index which

brings very expensive computational complexity [36], [37]. To reduce the computational com-

plexity of Sobol’ method, the idea of polynomial chaotic expansion (PCE) is adopted.
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The technique of PCE is to decompose the model output using the Hilbertian polynomial basis

(such as the Hermite polynomial) as follows:

g(X) =
∞∑
i=0

biΨi(X) (11)

where bi represents the i-th polynomial coefficient. Ψi(X) stands for the multivariate Hermite

basis. In practical applications, it is suggested to be truncated to a certain number of terms. The

strategy of truncation is shown as follows:

p =
(M + d)!

M !d!
− 1 (12)

in which d stands for the degree of polynomial meta-model, p represents the total number of

PCE terms. Imagine the number of random input M increases linearly, the conventional PCE

will meet the problem which is the well-known curse of dimensionality in some literature [38].

To overcome this problem, Blatman proposes a sparse-adaptive scheme [11]. The range of d is

set by users, and selecting the proper d is problem-dependent. The adaptive algorithm would

select the best d from the pre-set candidates based on the accuracy runs of SPCE.

After constructing the truncation strategy, the weights bi should be determined by minimizing

the following equation:

argmin
b

(
N ′∑
i=1

[f(xi)− bTK(xi)]
2 + η

N ′∑
i=1

bi) (13)

where N ′ is the design space of SPCE, b is the coefficients vector, K is the design matrix [37],

and η > 0 is a penalty coefficient. To get the optimal solution, least angle regression (LARS)

[39] can be adopted.

The sensitivity index of SPCE-Sobol can be obtained as follows:

Si1,...,iq =

∑
k∈Ri1,...iq

b2kΨ
2
k(Xi1, ...,Xiq)∑d

i=0 b
2
iE[Ψ2

i (X)]
(14)

Since the summands in equation (14) could be derived from the coefficients obtained from

in equation (13), the analytical solutions of Sobol index could be estimated with insignificant

computational time.
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D. Determining non-important parameters by employing a probe variable

The probe variable, which Stoppiglia et al. [40] proposed, is widely used in the literature. It

has been employed to select input parameters using Gran-Schmidt procedure. Eric Fock [41]

combined the probe variable and variance-based EFAST method to select the input parameters

for the feed-forward neural networks. Using probe variable as the tool for parameter screening

can reliably classify the important variable. Based on [41], this paper combined the idea of probe

variable and variance-based Sobol method to select input variables for a data-based ship motion

prediction model.

In our framework, the probe variable is added to the ANN samples. As mentioned in section

III-A, the combination of input and output is called a sample. To have no influence on the output

of the model, the probe variable would be added to the ANN samples generated by the data-based

model. The probe variable would be added into the input part, creating a combination of new

input and output called new samples. The sensitivity index of probe variable would calculate

numerically using the new samples. In order to make the probe variable different from the other

input parameters, the probe variable would be sampled uniformly, while the other inputs are

sampled in Gaussian distribution.

Ideally, the influence of the probe variable to the model output is zero. Under current technical

conditions, the calculation of sensitivity analysis often employs numerical approximations which

often bring calculation error. The purposes of using probe variable is to estimate those errors.

Referring to [41], if the sensitivity index of the input factor is below the sensitivity index of

the probe variable, this input parameter should be considered non-important; otherwise, it is

influential. In our proposed method, there is no need to change the model output, and the

sensitivity index of probe variable can be calculated based on the samples directly.

Sobol [42] proposed a method that can estimate the sensitivity index directly from the model

output f(X) only. In this paper, we refer his work and derive the calculation process of the

sensitivity index of probe variable. The calculation may require two independent sample matrices

A and B, whose dimensions are N × M , in which N stands for the number of samples and M

represents the number of input variables.

The first-order sensitivity index can be described as below [42]:
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Si =
Vi
V

=
1
N

∑N
j=1 f(B)j(f(A

(i)
B )j − f(A)j)

V (y)
(15)

And the total sensitivity index can be expressed as:

ST i = 1− V∼i
V

=
1
2N

∑N
j=1(f(A)j − f(A

(i)
B )j)

2

V (y)
(16)

The A(i)
B and B(i)

A in the Equation (15) and (16) can be obtained to exchange the i-th column

in B/A, which are introduced by Saltelli [43].

The definition of probe parameter can be shown as follows:

f(x1, x2, ...., xM ,xprobe) = f(x1, x2, ..., ...., xM) (17)

From Equation (15), the key problem of the calculation of first-order sensitivity index is

to get the three re-sample matrix A, B and A
(i)
B . Suppose A is f(x1, x2, ..., xi, ..., xM), B

is f(x
′
1, x

′
2..., x

′
i, ..., x

′
M). So, the A

(i)
B can be obtained to exchange the i-th column, A(i)

B =

f(x1, x2, ..., x
′
i, ..., xM). If the i-th input parameter corresponds to the probe variable, f(A

(i)
B )−

f(A) can be described as follows:

f(A
(i)
B )− f(A)

=f(x1, x2, ..., xi−1, x
′

i, xi+1, ..., xM)−

f(x1, x2, ...xi−1, xi, xi+1, ..., xM)

=f(x1, x2, ..., xi−1, xi+1, ..., xM)−

f(x1, x2, ...xi−1, xi+1, ..., xM)

=0

(18)

So, the first order sensitivity index of the probe input variable is zero. As with the total

sensitivity index of the probe input variable, f(A)−f(A
(i)
B ) can be calculated based on equation

(18) which has a value of zero. The high order interaction sensitivity index of probe variable is

equal to ST i − Si = 0− 0 = 0.

In this paper, the original Sobol method is extended to the SPCE-Sobol; although the formation

of the sensitivity has changed, the nature of Sobol is still the same. That is to say, the sensitivity
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index of probe parameter is still zero in the new method. The convergence of the probe variable

will be verified in the analytical benchmark function in Section IV-A2.

IV. EXPERIMENT

The first subsection is dedicated to the validation of the proposed approach. The widely used

benchmark Sobol function in variance based GSA is employed to test the performance of the

proposed approach compared with other methods. And then the proposed method is applied to

the ship sensor data set. The experiments are conducted in MATLAB R2017a with a computer

equipped with 4.20 GHz i7-7700K CPU and 32 GB RAM. To construct the SPCE, the UQLab

toolbox [44] is employed.

A. High dimension benchmark — Sobol function

The performance of the proposed approach is first tested with a high dimension problem to

investigate its analytical stability and robustness. The benchmark test here is the Sobol function

with M inputs whose expression is:

f(x) =
M∏
i=1

|4xi − 2|+ ai
1 + ai

x ∈ [0, 1]M (19)

Here, three scenarios are tested to illustrate the performance of the proposed method. The

value of M is set to 10, 15, and 25 respectively. a1 - a6 are set to 1, 2, 5, 10, 20 and 50, and

the rest are set to a constant value of 500. First, the original samples are set big enough to

generate a high accuracy ANN model, and 10 ANN models are created, and the best model is

chosen from the 10 models based on the performance test using MSE. The performance of the

ANN-Sobol and ANN-SPCE-Sobol would be compared based on the number of ANN-samples.

Second, the convergence analysis would be analyzed on the basis of number of ANN-Samples.

1) Comparison between ANN-Sobol and ANN-SPCE-Sobol: As Table I, Table II and Table III

show, the ANN-SPCE-Sobol is competent to improve the computational efficiency but not sacri-

ficing precision, compared with the ANN-Sobol. From the experiment results, the probe variable

has a sensitivity index of almost zero as expected, and the ANN-SPCE-Sobol achieves a better

performance in terms of both the estimate results and number of samples. The proposed approach

dramatically reduces the computational complexity regarding the number of ANN samples.
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TABLE I. COMPARISON OF FIRST-ORDER BETWEEN ANN-SOBOL AND ANN-SPCE-SOBOL (M=10).

Input True ANN-SPCE-Sobol ANN-Sobol

1 0.604 0.595 0.597

2 0.268 0.265 0.261

3 0.067 0.063 0.064

4 0.020 0.015 0.013

5 0.010 0.011 0.009

6 0.000 0.011 0.010

probe 0.000 0.009 0.011

ANN samples — 200 5000

TABLE II. COMPARISON OF FIRST-ORDER BETWEEN ANN-SOBOL AND ANN-SPCE-SOBOL (M=15).

Input True ANN-SPCE-Sobol ANN-Sobol

1 0.604 0.595 0.597

2 0.268 0.274 0.267

3 0.067 0.066 0.064

4 0.020 0.017 0.015

5 0.010 0.012 0.013

6 0.000 0.008 0.009

probe 0.000 0.009 0.009

ANN samples — 512 8192

Taking Table III for instance, the ANN-Samples of ANN-Sobol is almost 20 (20000/1024) times

than that of ANN-SPCE-Sobol. Considering the complexity of a model, the proposed approach

does not raise the computational complexity of conducting the variance-based GSA. Therefore,

the more complex the model is, the more computation time would be reduced by using SPCE.

In addition, in the three test scenarios, the performance of ANN-SPCE-Sobol varies with the

growing of input size, the result of ANN-SPCE-Sobol is more accurate, whereas the computation

time increases moderately.

2) Convergence analysis of the proposed method: To examine the sensitivity of the algorithm

itself and to observe the convergence of sensitivity index of input, the convergence analysis is



IEEE JOURNAL OF OCEANIC ENGINEERING 15

TABLE III. COMPARISON OF FIRST-ORDER BETWEEN ANN-SOBOL AND ANN-SPCE-SOBOL (M=25).

Input True ANN-SPCE-Sobol ANN-Sobol

1 0.604 0.597 0.596

2 0.268 0.268 0.268

3 0.067 0.067 0.064

4 0.020 0.019 0.018

5 0.010 0.012 0.013

6 0.000 0.007 0.008

probe 0.000 0.009 0.008

ANN samples — 1024 20000

also conducted. Fig. 3 presents the convergence of the biggest first-order sensitivity index Si

of four inputs and the probe variable, and presents the evolution of the parameter convergence

with growing sample size for the five parameters. It is noticed that the final sensitivity indices

are reached very quickly, whereas more fluctuations are observed with a smaller number of

samples. In this paper, the sensitivity index of our proposed approach is calculated on the basis

of numerical approximations (MC simulations). Thus, the key issue is the convergence analysis

to ensure a reliable estimation of sensitivity index and robust parameter ranking. To study the

convergence, the first-order sensitivity index are conducted with a increasing samples. Fig. 3

also shows that the Si for most of the input variables converge to 500 ANN samples. For some

parameters, more than 300 ANN samples are enough to reach a steady value.

Section III-D has proved that the total, first-order sensitivity index of probe variables are

all zero. From the experimental result, ANN-SPCE-Sobol assigns a non-zero but very small

first-order sensitivity index to the probe parameter. The reason the sensitivity index is small

may be insufficient sampling, aliasing, or the interference effect. The result also shows that the

sensitivity index of the probe variable is bigger than the sensitivity index of x4 for the small

samples, and increasing the number of samples almost equalizes both values. The x4 can be

identified as the non-important parameter with the help of probe variable even for insufficient

samples. Therefore, the parameters for which the first-order sensitivity index is less than or equal

to the probe variable should be considered insignificant.
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Fig. 3. The convergence analysis of the proposed method.

The assignment of an artificial value to the first-order would not require much additional

calculation. It is hard to determine when the results would achieve a relatively convergent result

in practical engineering applications. Employing the probe parameter as the parameter of interest

makes it easier to quantify those significant parameters clearly.

B. Case ship

The case ship is chosen from the OSC simulator, which is equipped with two tunnel thrusters

and one ducted propeller in the bow and two tunnel thrusters and two main propellers with rudders

at the stern, as shown in Fig. 4. In this vessel, ship state data, thruster data, and environment

data are monitored and stored, as shown in Table IV. The ship state data is the status data of

ship, and the environmental data includes the wind and the waves. In this paper, S-shape motion

and circle motion are simulated in OSC. Fig. 5a shows the trajectory of S-type motion. Fig. 5b
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Fig. 4. Simplified simulation ship model.

shows the trajectory of ship circle motion. In our experiment, the S-type and circle motion is

simulated mainly by controlling the rudder of the two main thrusters. For the S-type motion,

the control routine is as follows: when the heading angle reaches to X degree, the rudder angle

is set to Y degrees; when the heading angle reaches to -X degrees, the rudder angle is set to

-Y degrees. For the circle motion, a constant rudder angle is applied at all times. In the OSC

simulation platform, it is convenient to employ the script to auto control the ship in all kinds

of settings, such as waves, winds and currents. The procedure of our simulation using script is

as follows: 1) setting the wind and wave; 2) starting the control routine; and 3) collecting the

sensor data.

In our analysis, all parameters are assumed independent, and the distribution for each parameter

is measured from the sensor data. The definition of the space of input variable then only to

define the variation range of each input variable [45]. As reported in Table IV, the range of

some parameters depends on their physical meaning, and the range of others is limited by the

minimum and maximum observations of the parameter over the entire dataset. To implement

the SPCE-Sobol in both types of ship motion, the SPCE is configured with the design space,

N ′ = 1000, and the degree, d = 1 : 6. In the applications of offshore operations, especially in

the close-range maritime operations, heading is a key parameter to ship motion. Thus, the next

two experiments mainly focus on the analysis of environmental factors to ship heading.
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(a) Trajectory of S type.

(b) Trajectory of circle type.

Fig. 5. Two types of ship motion

C. S-type motion



IEEE JOURNAL OF OCEANIC ENGINEERING 19

TABLE IV. RECORDED SHIP DATA SPECIFICATION

Module Parameter Abbreviation Range

Ship state Data

surge velocity surge vel Data

sway velocity sway vel Data

heave velocity heve vel Data

roll velocity roll vel Data

pitch velocity pith vel Data

yaw velocity yaw vel Data

roll roll [0◦-360◦]

pitch pitch [0◦-360◦]

yaw yaw [0◦-360◦]

Environment

wind direction wind dir Data

wind velocity wind vel Data

wave height wave hgt Data

wave direction wave dir Data

Thrust Data

thrust6 force thrust6 F Data

rudder8 rudder8 Data

thrust7 force thrust7 F Data

rudder9 rudder9 Data

1) S-type motion without environment effects: First, the S-type motion data set without envi-

ronment effects is employed to investigate the performance of the proposed method. In order

to illustrate the robustness of the proposed method and to explore the hidden relationship in

the ship historical sensor data, three scenarios are compared, as listed in the first three rows of

Table V. In the three scenarios, ship heading was chosen as the output variable, and the rest of

the variables are the input variables.

In this section, the results of ANN-SPCE-Sobol first order sensitivity index for three scenarios

is presented and compared, and the six most influential inputs are shown in Fig. 6. From the

figure, the sensitivity index of the probe variable is almost 0.01. For conciseness, those input

parameters whose sensitivity index are less than or equal to the probe variable are not shown in

the figure. The sensitivity results are estimated using original sensor data samples of 6000 and

ANN samples of 512, respectively. In Fig. 6, it is noted that similar sensitivity index is obtained
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TABLE V. SCENARIOS OF S-TYPE MOTION WITH/WITHOUT ENVIRONMENT EFFECTS

Scenarios Main thruster output Description

1 10% no environmental disturbances.

2 30% no environmental disturbances.

3 60% no environmental disturbances.

4 30%
2.5m wave and 0∼12 m/s wind

come from ship stern.

5 30%
2.5m wave coming from side

(east to west).

6 30%
2.5m wave and 0∼12 m/s wind

come from side (east to west).
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Fig. 6. First Order Sensitivity index of heading in Scenarios 1, 2, 3.

and rudder 9 is clearly the most important parameter, followed by rudder 8 for scenarios 1-3.

In the three scenarios, the ship is commanded in a forward motion state, and the two main

rudder are the key factors for heading. In this simulation, no environment factors are added, so



IEEE JOURNAL OF OCEANIC ENGINEERING 21

12%

6%

20%

6%

8%

10%

16%

15%

1%
6%

wind_vel

roll

pitch

pitch_vel
thruster6_F

thruster7_F

rudder8

rudder9

probe

others

Fig. 7. Total order sensitivity index of wind and wave in scenario 4.

the impact of other thrusters is not obvious. It is also noted from Fig. 6 that the sum of the

first order sensitivity index of all six most influential inputs is less than 1, which means the

interaction of input variables is also obvious, as expected.

2) S-type motion with environment effects: As the ship motion is strongly related to the wind

and wave, this section focuses on the influence of environment factors to the ship heading. In

this test, three scenarios are taken into consideration, shown as the last three rows of Table V.

In the fourth scenario, the ship heads toward north, 30% command on the main thrusters, 2.5 m

swell + 2.5 m wave (ITTC spectrum), 0∼12 m/s wind come from stern, so the wind and wave

would increase the vessel velocity. In the fifth and sixth scenario, the wave and wind come from

side (east to west). In scenario 5, only wave is considered, but wave and wind are taken into
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Fig. 8. Total order sensitivity index of wave in scenario 5.

consideration in scenario 6. The speed of wind is from 0∼12 m/s, and a sum of a sinusoidal

wave with peak-to-peak value of 2.5 m and a wave spectrum with significant waveheight of 2.5

m. In this section, total sensitivity index is calculated.

In section IV-C1, first-order sensitivity index is considered. In this section, total-order sen-

sitivity index is used for identifying the influential factors, which is lower than the sensitivity

index of probe parameter and are shown in the group of others. Fig. 7 shows the results of

scenario 4 which includes eight important input variables with their total order sensitivity index.

This indicates that the pitch of the ship should be considered as the most important factor (20%)

when wind and wave come from ship stern.

Similarly, in scenario 5, as shown in Fig. 8, it can be seen that eight parameters are important
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Fig. 9. Total order sensitivity index of wave and wind in scenario 6.

to the heading. From the figure we can know that when wave comes from east to west, the

most important input variable is the roll. In the case of only waves, the height or wave direction

may be the most important parameters to the heading. However, in the OSC simulator, the wave

height and wave direction is set as a constant, and the proposed approach discards these two

parameters. Fortunately, it should be noted that the roll reflects the wave when the wave comes

from east; that is to say, wave is the most important variable in this scenario.

Fig. 9 represents the influence of wave and wind with direction east to west on the ship

heading in scenario 6. The figure shows that wind velocity is the most influential input. The

parameters “roll”, “rudder 8”, “rudder 9” have the almost same impact to the output. The result

shows that the wave and wind would have significant impact on ship roll with the direction of
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east to west.

D. Ship circle motion

The proposed approach is also applied to the ship circle motion. In this section, the ship

heading of circle motion with/without environment factors are also focused upon. In the test

scenarios, the setting of wave and wind is the same with the scenario 6 described in Table V.

Fig. 10 shows the total-order sensitivity index of the ship heading in circle motion without

environmental factors. This figure uncovers the most significant inputs. Specifically, the two

rudders and two thrusters correspond to the four largest sensitivity indices, respectively, which

should be taken care of to implement a high efficient data based neural network.

Fig. 11 illustrates the total-order sensitivity index of the ship circle motion with environmental

factors. It can be found that the two rudders, roll and pitch, have a relatively larger sensitivity

index among the inputs. From this figure, the global sensitivity of ship circle motion under

environmental factors depends on many input parameters, which enables one to obtain more

knowledge of the complex motion. In Fig. 11 and Fig. 10 one can notice that the roll and pitch

under environmental factors are more sensitive than those without environmental factors. For

instance, roll in Fig. 10 almost has a 7% effect on the model output; however, in Fig. 11 the

effect of roll is up to 11%. It also should be noticed from Fig. 11 that the values of the total-order

sensitivity index of each input variable are very close.

The results show that the most important parameters in the model of ship motion without

environment factors are rudders (control signal). If ship heads under environment effects, the

most important parameters could be environment factors, whether under wave or under wind

and wave.

V. DISCUSSION AND CONCLUSION

The need for ship intelligence has recently been emphasized, as those intelligent models are

powerful tools to understand complex system behavior and to point out key-processes involved in

the control of traits, such as ship heading/rolling. The data-driven model of ship motion is very

often hampered by the fact that obtaining appropriate parameters requires too much effort. In

this study, an SPCE based sensitivity analysis method was carried out to select those important

model input factors. The benchmark test demonstrates that the efficiency and accuracy of the
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Fig. 10. Total order sensitivity index of circle motion without environmental factors.

proposed approach compared to the conventional MC based Sobol method, and the proposed

probe variable can be used to identify the important parameters.

This paper builds a bridge between variance-based GSA and ship maneuvering applications.

A novel approach has been represented to implement the GSA by applying the SPCE in order to

reduce computational complexity. In the application of the proposed method, some input factors

are grouped into influential, and the rest are considered as not influential. To help screen those

important parameters, a probe variable has been proposed. In this fashion, we can infer the

number of input variables that will represent the variability of model. In addition, the GSA can

provide the key information to assess the loss in variability when building the data-based ship

motion prediction model.
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Contrary to traditional GSA, this proposed approach can effectively calculate the sensitivity

index of a high number of independent input parameters of ship maneuvering applications.

The experimental results indicate the advantages of this proposed approach in analyzing ship

maneuvering models with a large number of input factors, especially under environmental effects.

The analysis of accuracy and computational burden shows that this method can greatly improve

computational efficiency compared to the ANN-Sobol method. The implementation of the SPCE

within the Sobol makes the Sobol available for large, complex data-based models such as a ship

motion prediction model. It provides GSA with a broad range of practical applications in the

field of ship intelligence.

The proposed approach depends heavily on ship motion data, and conclusion may be different
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for another type of ship motion simulations. It is necessarily to transform raw data to avoid

discarding important variables. Future work will be focused on (1) analyzing ship position in

close-range maneuvering, and (2) investigating other integrable neural network or regression

functions to reduce computational complexity and improve the reliability of the variance-based

GSA for ship motion modeling.

ACKNOWLEDGMENT

This research is partially supported by the project “SFI MOVE” funded by Norway Research

Council, Norway (Project No: 237929). The authors would like to thank to the Offshore Simulator

Centre AS for technical support. The author Xu Cheng would like to thank the sponsorship of

the Chinese Scholarship Council for funding his research at Norwegian University of Science

and Technology.

REFERENCES

[1] J. Lee, M. Ghaffari, and S. Elmeligy, “Self-maintenance and engineering immune systems: Towards smarter machines and

manufacturing systems,” Annual Reviews in Control, vol. 35, no. 1, pp. 111–122, 2011.

[2] C. Ducruet, Advances in Shipping Data Analysis and Modeling: Tracking and Mapping Maritime Flows in the Age of Big

Data. Routledge, 2017.

[3] D. S. Cristea, L. M. Moga, M. Neculita, O. Prentkovskis, K. Md Nor, and A. Mardani, “Operational shipping intelligence

through distributed cloud computing,” Journal of Business Economics and Management, vol. 18, no. 4, pp. 695–725, 2017.

[4] I. Zaman, K. Pazouki, R. Norman, S. Younessi, and S. Coleman, “Challenges and opportunities of big data analytics for

upcoming regulations and future transformation of the shipping industry,” Procedia engineering, vol. 194, pp. 537–544,

2017.

[5] S. Lee, J. M. You, H. H. Lee, T. Lim, S. T. Park, J. Seo, S. H. Rhee, and K.-P. Rhee, “Experimental study on the six

degree-of-freedom motions of a damaged ship floating in regular waves,” IEEE Journal of Oceanic Engineering, vol. 41,

no. 1, pp. 40–49, 2016.

[6] J. Hou, J. Sun, and H. F. Hofmann, “Mitigating power fluctuations in electric ship propulsion with hybrid energy storage

system: design and analysis,” IEEE Journal of Oceanic Engineering, vol. 43, no. 1, pp. 93–107, 2018.

[7] F. Fernández-Navarro, M. Carbonero-Ruz, D. B. Alonso, and M. Torres-Jiménez, “Global sensitivity estimates for neural
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