On topological invariants for algebraic cobordism

27th Nordic Congress of Mathematicians, Celebrating the 100th anniversary of Institut Mittag-Leffler

Gereon Quick
NTNU

joint work with Michael J. Hopkins
Point of departure: Poincaré, Lefschetz, Hodge...
Point of departure: Poincaré, Lefschetz, Hodge...
Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.
Point of departure: Poincaré, Lefschetz, Hodge...
Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.

For a differential form α write $\alpha \in A^{p,q}(X)$ if

$$\alpha = \sum_j f_j \, dz_{j_1} \wedge \ldots \wedge dz_{j_p} \wedge d\bar{z}_{j_1} \wedge \ldots \wedge d\bar{z}_{j_q}.$$
Point of departure: Poincaré, Lefschetz, Hodge...

Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.

For a differential form α write $\alpha \in A^{p,q}(X)$ if

$$\alpha = \sum_j f_j \, dz_{j_1} \wedge \ldots \wedge dz_{j_p} \wedge d\bar{z}_{j_1} \wedge \ldots \wedge d\bar{z}_{j_q}.$$

exactly p dz_j's for all j
Point of departure: Poincaré, Lefschetz, Hodge...
Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.

For a differential form α write $\alpha \in A^{p,q}(X)$ if

$$\alpha = \sum_j f_j \, dz_{j_1} \wedge \ldots \wedge dz_{j_p} \wedge d\bar{z}_{j_1} \wedge \ldots \wedge d\bar{z}_{j_q}.$$
Point of departure: Poincaré, Lefschetz, Hodge...

Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.

For a differential form α write $\alpha \in A^{p,q}(X)$ if

$$\alpha = \sum_j f_j \, dz_{j1} \wedge \ldots \wedge dz_{jp} \wedge d\bar{z}_{j1} \wedge \ldots \wedge d\bar{z}_{jq}.$$

exactly p dz_j's for all j

exactly q $d\bar{z}_j$'s for all j

Let $\iota: \Gamma \subset X$ be a topological cycle on X of dimension k.

Point of departure: Poincaré, Lefschetz, Hodge...

Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.

For a differential form α write $\alpha \in A^{p,q}(X)$ if

$$\alpha = \sum_{j} f_j \, dz_{j1} \wedge \ldots \wedge dz_{jp} \wedge d\bar{z}_{j1} \wedge \ldots \wedge d\bar{z}_{jq}.$$

exactly p dz_j's for all j exactly q $d\bar{z}_j$'s for all j

Let $\iota: \Gamma \subset X$ be a topological cycle on X of dimension k. We can integrate α over Γ: $\int_{\Gamma} \iota^* \alpha$.

Point of departure: Poincaré, Lefschetz, Hodge...

Let $X \subset \mathbb{P}^N$ be a smooth projective complex variety.

For a differential form α write $\alpha \in \mathbb{A}^{p,q}(X)$ if

$$\alpha = \sum_j f_j \, dz_{j_1} \wedge \ldots \wedge dz_{j_p} \wedge d\bar{z}_{j_1} \wedge \ldots \wedge d\bar{z}_{j_q}.$$

exactly p dz_j's for all j exactly q $d\bar{z}_j$'s for all j

Let $\iota: \Gamma \subset X$ be a topological cycle on X of dimension k. We can integrate α over Γ: $\int_{\Gamma} \iota^* \alpha$.

If $\Gamma = Z$ happens to be an algebraic subvariety of X, say of complex dimension n, then

$\int_Z \iota^* \alpha = 0$ unless α lies in $\mathbb{A}^{n,n}(X)$.
Hodge’s question:
Hodge's question:
This imposes a necessary condition on a topological cycle $i: \Gamma \subset X$ to be "algebraic" (homologous to an algebraic subvariety Z of dimension n):
Hodge’s question:
This imposes a necessary condition on a topological cycle \(i: \Gamma \subset X \) to be “algebraic” (homologous to an algebraic subvariety \(Z \) of dimension \(n \)):

\[
\Gamma \sim Z \Rightarrow \int_{\Gamma} i^* \alpha = 0 \text{ if } \alpha \notin A^{n,n}(X).
\]
Hodge’s question:
This imposes a necessary condition on a topological cycle \(i: \Gamma \subset X \) to be “algebraic” (homologous to an algebraic subvariety \(Z \) of dimension \(n \)):

\[
\Gamma \sim Z \Rightarrow \int_{\Gamma} i^* \alpha = 0 \text{ if } \alpha \notin \text{A}^{n,n}(X).
\]

Hodge wondered: Is this condition also sufficient?
Hodge's question:
This imposes a necessary condition on a topological cycle \(i: \Gamma \subset X \) to be “algebraic” (homologous to an algebraic subvariety \(Z \) of dimension \(n \)):

\[
\Gamma \sim Z \Rightarrow \int_{\Gamma} i^* \alpha = 0 \text{ if } \alpha \not\in A^{n,n}(X).
\]

Hodge wondered: Is this condition also sufficient?

\[
\text{cl}_H: Z^p(X) \rightarrow H^{2p}(X;Z)
\]
Hodge’s question:
This imposes a necessary condition on a topological cycle \(i: \Gamma \subset X \) to be “algebraic” (homologous to an algebraic subvariety \(Z \) of dimension \(n \)):

\[
\Gamma \sim Z \Rightarrow \int_{\Gamma} i^* \alpha = 0 \text{ if } \alpha \notin A^{n,n}(X).
\]

Hodge wondered: Is this condition also sufficient?

\[
\text{cl}_H: Z^p(X) \rightarrow H^{p,p}(X) \cap H^{2p}(X;\mathbb{Z})
\]
Hodge’s question:
This imposes a necessary condition on a topological cycle \(i: \Gamma \subset X \) to be “algebraic” (homologous to an algebraic subvariety \(Z \) of dimension \(n \)):

\[
\Gamma \sim Z \implies \int_{\Gamma} i^* \alpha = 0 \text{ if } \alpha \notin A^{n,n}(X).
\]

Hodge wondered: Is this condition also sufficient?

The Hodge Conjecture: The map

\[\text{cl}_H: Z^p(X) \to H^{p,p}(X) \cap H^{2p}(X;\mathbb{Z}) \text{ is surjective.} \]
Hodge's question:
This imposes a **necessary** condition on a topological cycle \(i: \Gamma \subset X \) to be “algebraic” (homologous to an algebraic subvariety \(Z \) of dimension \(n \)):

\[
\Gamma \sim Z \Rightarrow \int_{\Gamma} i^* \alpha = 0 \text{ if } \alpha \notin A^{n,n}(X).
\]

Hodge wondered: Is this condition also **sufficient**?

The Hodge Conjecture: The map

\[
\text{cl}_H: Z^p(X) \otimes \mathbb{Q} \to H^{p,p}(X) \cap H^{2p}(X;\mathbb{Z}) \text{ is surjective.}
\]

switch to \(\mathbb{Q} \)-coefficients
A short digression: the Jacobian of a curve
Let C be a smooth proj. complex curve of genus g.
A short digression: the Jacobian of a curve
Let C be a smooth proj. complex curve of genus g.
Let $\omega_1, \ldots, \omega_g$ be a basis of (holom.) 1-forms on C.
A short digression: the Jacobian of a curve

Let C be a smooth proj. complex curve of genus g.

Let $\omega_1, ..., \omega_g$ be a basis of (holom.) 1-forms on C.

Then every pair of points $p, q \in C$ defines a g-tuple of complex numbers

$$\left(\int_q^p \omega_1, ..., \int_q^p \omega_g \right)$$
A short digression: the Jacobian of a curve

Let C be a smooth proj. complex curve of genus g. Let $\omega_1, \ldots, \omega_g$ be a basis of (holom.) 1-forms on C. Then every pair of points $p, q \in C$ defines a g-tuple of complex numbers

\[
\left(\int_q^p \omega_1, \ldots, \int_q^p \omega_g \right)
\]

\[
\mu: \text{Div}^0(C) \rightarrow \mathbb{C}^g
\]
A short digression: the Jacobian of a curve

Let C be a smooth proj. complex curve of genus g.

Let $\omega_1, \ldots, \omega_g$ be a basis of (holom.) 1-forms on C.

Then every pair of points $p, q \in C$ defines a g-tuple of complex numbers

$$\left(\int_q^p \omega_1, \ldots, \int_q^p \omega_g \right)$$

$$\mu: \text{Div}^0(C) \to \mathbb{C}^g$$

group of formal sums $\Sigma_i(p_i - q_i)$
A short digression: the Jacobian of a curve

Let C be a smooth proj. complex curve of genus g.

Let $\omega_1, \ldots, \omega_g$ be a basis of (holom.) 1-forms on C.

Then every pair of points $p, q \in C$ defines a g-tuple of complex numbers

$$\left(\int_p^q \omega_1, \ldots, \int_p^q \omega_g \right)$$

$$\mu: \text{Div}^0(C) \to \mathbb{C}^g / \Lambda$$

group of formal sums $\Sigma_i (p_i - q_i)$

lattice of integrals of ω_j's over loops
A short digression: the Jacobian of a curve

Let C be a smooth proj. complex curve of genus g. Let $\omega_1, \ldots, \omega_g$ be a basis of (holom.) 1-forms on C. Then every pair of points $p,q \in C$ defines a g-tuple of complex numbers

$$\left(\int_q^p \omega_1, \ldots, \int_q^p \omega_g \right)$$

$$\mu: \text{Div}^0(C) \to \mathbb{C}^g/\Lambda =: J(C)$$

- Group of formal sums $\Sigma_i(p_i-q_i)$
- Lattice of integrals of ω_j's over loops
- Jacobian variety of C
A short digression: the Jacobian of a curve

Let C be a smooth proj. complex curve of genus g. Let $\omega_1, \ldots, \omega_g$ be a basis of (holom.) 1-forms on C.

Then every pair of points $p, q \in C$ defines a g-tuple of complex numbers

\[
\left(\int_q^p \omega_1, \ldots, \int_q^p \omega_g \right)
\]

Jacobi Inversion Theorem: The (Abel–Jacobi) map

\[\mu: \text{Div}^0(C) \to \mathbb{C}^g / \Lambda =: J(C)\]

is surjective.

Jacobian variety of C

lattice of integrals of ω_j's over loops

group of formal sums $\Sigma_i(p_i - q_i)$
Lefschetz’s proof for (1,1)-classes:
For simplicity, let $X \subset \mathbb{P}^N$ be a surface.
Lefschetz’s proof for \((1,1)\)-classes:

For simplicity, let \(X \subset \mathbb{P}^N\) be a surface.

Let \(\{C_t\}_t\) be a family of curves on \(X\) (parametrized over the projective line \(\mathbb{P}^1\)).
Lefschetz's proof for \((1,1)\)-classes:

For simplicity, let \(X \subset \mathbb{P}^N\) be a surface.

Let \(\{C_t\}_t\) be a family of curves on \(X\) (parametrized over the projective line \(\mathbb{P}^1\)).

Associated to \(\{C_t\}_t\) is the family of Jacobians

\[
J := \bigcup_t J(C_t)
\]
Lefschetz’s proof for (1,1)-classes:

For simplicity, let $X \subset \mathbb{P}^N$ be a surface.

Let $\{C_t\}_t$ be a family of curves on X (parametrized over the projective line \mathbb{P}^1).

Associated to $\{C_t\}_t$ is the family of Jacobians

$$J := \bigcup_t J(C_t)$$

and a fibre space $\pi: J \to \mathbb{P}^1$ (of complex Lie groups).
Lefschetz’s proof for (1,1)-classes:

For simplicity, let $X \subset \mathbb{P}^N$ be a surface.

Let $\{C_t\}_t$ be a family of curves on X (parametrized over the projective line \mathbb{P}^1).

Associated to $\{C_t\}_t$ is the family of Jacobians

$$J := \bigcup_t J(C_t)$$

and a fibre space $\pi: J \to \mathbb{P}^1$ (of complex Lie groups).

A “normal function” ν is a holomorphic section of π.
Lefschetz’s proof continued:

Normal functions arise naturally:
Normal functions arise naturally:

Let D be an algebraic curve on X. It intersects C_t in points $p_1(t),..., p_d(t)$.

Lefschetz’s proof continued:
Lefschetz’s proof continued:

Normal functions arise naturally:
Let D be an algebraic curve on X. It intersects C_t in points $p_1(t), \ldots, p_d(t)$.
Choose a point p_0 on all C_t. Then $\sum_i p_i(t) - dp_0$

is a divisor of degree 0 and defines a point

$$\nu_D(t) \in J(C_t).$$
Lefschetz's proof continued:

Normal functions arise naturally:

Let D be an algebraic curve on X. It intersects C_t in points $p_1(t), \ldots, p_d(t)$.

Choose a point p_0 on all C_t. Then $\Sigma_i p_i(t) - dp_0$ is a divisor of degree 0 and defines a point

$$\nu_D(t) \in J(C_t).$$

Hence D defines a normal function

$$\nu_D: t \mapsto \nu_D(t) \in J.$$
Poincaré's Existence Theorem:
Poincaré's Existence Theorem:
Every normal function ν arises as the normal function ν_D associated to an algebraic curve D.
Poincaré’s Existence Theorem:
Every normal function \(\nu \) arises as the normal function \(\nu_D \) associated to an algebraic curve \(D \).

Then Lefschetz proved:
Poincaré's Existence Theorem:
Every normal function \(\nu \) arises as the normal function \(\nu_D \) associated to an algebraic curve \(D \).

Then Lefschetz proved:

- Every normal function \(\nu \) defines a class \(\eta(\nu) \in H^2(X;\mathbb{Z}) \) of Hodge type \((1,1) \) such that \(\eta(\nu_D) = \text{cl}_H(D) \).
Poincaré’s Existence Theorem:
Every normal function ν arises as the normal function ν_D associated to an algebraic curve D.

Then Lefschetz proved:

- Every normal function ν defines a class $\eta(\nu) \in H^2(X;\mathbb{Z})$ of Hodge type $(1,1)$ such that $\eta(\nu_D) = \text{cl}_H(D)$.

- Every class in $H^2(X;\mathbb{Z})$ of Hodge type $(1,1)$ arises as $\eta(\nu)$ for some normal function ν.
Griffiths: Higher dimensions

\(X \) a smooth projective complex variety with \(\text{dim} X = n \).
Griffiths: Higher dimensions

\(X\) a smooth projective complex variety with \(\dim X = n\).

\(Z \subset X\) a subvariety of codimension \(p\) which is the boundary of a differentiable chain \(\Gamma\).
Griffiths: Higher dimensions

\(X\) a smooth projective complex variety with \(\dim X = n\).

\(Z \subset X\) a subvariety of codimension \(p\) which is the boundary of a differentiable chain \(\Gamma\).

Then \(\left(\omega \mapsto \int_{\Gamma} \omega \right) \in \mathcal{F}^{n-p+1} H^{2n-2p+1}(X;\mathbb{C})^\vee\).
Griffiths: Higher dimensions

X, a smooth projective complex variety with $\dim X = n$.

$Z \subset X$ a subvariety of codimension p which is the boundary of a differentiable chain Γ.

Then $\left(\omega \longmapsto \int_{\Gamma} \omega \right) \in F^{n-p+1}H^{2n-2p+1}(X;\mathbb{C})^\vee$.

But the value depends on the choice of Γ.

The intermediate Jacobian of Griffiths and the Abel-Jacobi map:
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

We obtain a well-defined map

\[Z \mapsto \int_{\Gamma} \quad \text{for some } \Gamma \text{ with } Z = \partial \Gamma \]

\[\mu: Z^p(X)_h \to F^{n-p+1}H^{2n-2p+1}(X;C)^{\vee}/H_{2n-2p+1}(X;Z) \]
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

We obtain a well-defined map

\[Z \longmapsto \int \Gamma \text{ for some } \Gamma \text{ with } Z=\partial \Gamma \]

\[\mu: Z^p(X)_h \rightarrow F^{n-p+1}H^{2n-2p+1}(X;\mathbb{C})^\vee /H_{2n-2p+1}(X;\mathbb{Z}) \]

\[\approx H^{2p-1}(X;\mathbb{Z}) \otimes \mathbb{R}/\mathbb{Z} \]
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

We obtain a well-defined map

\[\mu : Z^p(X)_h \rightarrow F^{n-p+1}H^{2n-2p+1}(X;\mathbb{C})^\vee /H_{2n-2p+1}(X;\mathbb{Z}) \]

\[\cong H^{2p-1}(X;\mathbb{Z}) \otimes \mathbb{R}/\mathbb{Z} \]

\[= J^{2p-1}(X) \]
The intermediate Jacobian of Griffiths and the Abel-Jacobi map:

We obtain a well-defined map

\[\mu: Z^p(X)_h \rightarrow \int_{\Gamma} F^{n-p+1}H^{2n-2p+1}(X;C)^{\vee}/H_{2n-2p+1}(X;\mathbb{Z}) \]

\[\approx H^{2p-1}(X;\mathbb{Z}) \otimes \mathbb{R}/\mathbb{Z} \]

\[= J^{2p-1}(X) \]

\(J^{2p-1}(X) \) is a complex torus and is called Griffiths’ intermediate Jacobian.
The Jacobian and Griffiths’ theorem:
The Jacobian and Griffiths’ theorem:

$J^{2p-1}(X)$ is, in general, not an abelian variety.
The Jacobian and Griffiths’ theorem:

\(J^{2p-1}(X) \) is, in general, not an abelian variety.

But it varies homomorphically in families.
The Jacobian and Griffiths' theorem:

\(J^{2p-1}(X) \) is, in general, not an abelian variety.

But it varies homomorphically in families.

Have an induced a map:

\[
\text{Griff}^p(X) := \frac{Z^p(X)_h}{Z^p(X)_{\text{alg}}} \rightarrow \frac{J^{2p-1}(X)}{J^{2p-1}(X)_{\text{alg}}}
\]
The Jacobian and Griffiths’ theorem:

\[J^{2p-1}(X) \] is, in general, not an abelian variety.

But it varies homomorphically in families.

Have an induced a map:

\[\text{Griff}^p(X) := Z^p(X)_h/Z^p(X)_\text{alg} \rightarrow J^{2p-1}(X)/J^{2p-1}(X)_\text{alg} \]

Griffith’s theorem: Let \(X \subset P^4 \) be a general quintic hypersurface. There are lines \(L \) and \(L' \) on \(X \) such that \(\mu(L-L') \) is a non torsion element in \(J^3(X) \).
An interesting diagram:
Let X be a smooth projective complex variety.
An interesting diagram:
Let X be a smooth projective complex variety.

$\mathbb{Z}^p(X)$
An interesting diagram:
Let X be a smooth projective complex variety.

$\mathbb{Z}(X) \subset X$
An interesting diagram:

Let X be a smooth projective complex variety.

$\mathbb{Z}^p(X) \subset X$
An interesting diagram:

Let X be a smooth projective complex variety.

$Z^p(X)$ \[\subset\] X

\cl_H

$Hdg^{2p}(X)$
An interesting diagram:

Let \(X \) be a smooth projective complex variety.

\[
\begin{align*}
Z^p(X) & \quad Z \subset X \\
\text{cl}_H & \quad [Z_{sm}] \\
& \quad \text{Hdg}^{2p}(X)
\end{align*}
\]
An interesting diagram:

Let X be a smooth projective complex variety.

$Z^p(X)_h = \text{Kernel of } cl_H \subset Z^p(X) \quad Z \subset X$

$Hdg^{2p}(X)$

$[Z_{sm}]$
An interesting diagram:

Let X be a smooth projective complex variety.

\[Z^p(X)_h = \text{Kernel of } \text{cl}_H \subset Z^p(X) \quad Z \subset X \]

\[\text{Abel–Jacobi map } \mu \]

\[\text{cl}_H \quad [Z_{\text{sm}}] \]

\[\text{Hdg}^{2p}(X) \]
An interesting diagram:

Let X be a smooth projective complex variety.

\[Z^p(X)_h = \text{Kernel of } cl_H \subset Z^p(X) \quad \mathbb{Z} \subset X \]

Abel–Jacobi map μ

\[J^{2p-1}(X) \quad \text{cl}_H \quad [Z_{sm}] \quad Hdg^{2p}(X) \]
An interesting diagram:

Let X be a smooth projective complex variety.

$\mathbb{Z}^p(X)_h = \text{Kernel of } \text{cl}_H \subset \mathbb{Z}^p(X)$ \quad $Z \subset X$

Abel–Jacobi map μ

$\mathcal{J}^{2p-1}(X) \to H_{D}^{2p}(X; \mathbb{Z}(p)) \to \text{Hdg}^{2p}(X)$
An interesting diagram:

Let X be a smooth projective complex variety.

$$Z^p(X)_h = \text{Kernel of } \text{cl}_H \subset Z^p(X) \quad Z \subset X$$

Abel–Jacobi map μ

$$J^{2p-1}(X) \to H_D^{2p}(X; \mathbb{Z}(p)) \to \text{Hdg}^{2p}(X)$$

Deligne cohomology combines topological with Hodge theoretic information
An interesting diagram:

Let X be a smooth projective complex variety.

$Z^p(X)_h = \text{Kernel of } cl_H \subset Z^p(X) \quad Z \subset X$

Abel–Jacobi map μ

$J^{2p-1}(X) \to H^{2p}_D(X;\mathbb{Z}(p)) \to \text{Hdg}^{2p}(X) \to 0$

Deligne cohomology combines topological with Hodge theoretic information
An interesting diagram:

Let X be a smooth projective complex variety.

$Z^p(X)_h = \ker \text{cl}_H \subset Z^p(X)$ \quad $Z \subset X$

Abel–Jacobi map μ

$0 \rightarrow J^{2p-1}(X) \rightarrow H_D^{2p}(X;\mathbb{Z}(p)) \rightarrow \text{Hdg}^{2p}(X) \rightarrow 0$

Deligne cohomology combines topological with Hodge theoretic information.
An interesting diagram:

Let X be a smooth projective complex variety.

$\mathbb{Z}^p(X)_h = \text{Kernel of } \text{cl}_H \subset \mathbb{Z}^p(X)$, $\mathbb{Z} \subset X$

Abel–Jacobi map μ

Deligne cohomology combines topological with Hodge theoretic information
Another interesting map for smooth complex varieties:
Another interesting map for smooth complex varieties:

$$\Phi : \Omega^*(X) \rightarrow \mathcal{MU}^{2*}(X)$$
Another interesting map for smooth complex varieties:

\[\Phi: \Omega^*(X) \to MU^{2*}(X) \]

algebraic cobordism of Levine and Morel
Another interesting map for smooth complex varieties:

\[\Phi : \Omega^*(X) \to MU^{2*}(X) \]

algebraic cobordism of Levine and Morel

complex cobordism of the top. space \(X(C) \)
Another interesting map for smooth complex varieties:

\[\Phi: \Omega^*(X) \rightarrow \text{MU}^{2*}(X) \]

algebraic cobordism of Levine and Morel

complex cobordism of the top. space \(X(C) \)

\(\Omega^p(X) \) is generated by projective maps \(f: Y \rightarrow X \) of codimension \(p \) with \(Y \) smooth variety modulo Levine's and Pandharipande's "double point relation":

\[\Omega^p(X) \]
Another interesting map for smooth complex varieties:

$$\Phi: \Omega^*(X) \rightarrow \text{MU}^{2*}(X)$$

algebraic cobordism of Levine and Morel

complex cobordism of the top. space $X(C)$

$\Omega^p(X)$ is generated by projective maps $f: Y \rightarrow X$ of codimension p with Y smooth variety modulo Levine’s and Pandharipande’s “double point relation”:

$\pi^{-1}(0) \sim \pi^{-1}(\infty)$ for projective morphisms $\pi: Y' \rightarrow X \times \mathbb{P}^1$ such that $\pi^{-1}(0)$ is smooth and $\pi^{-1}(\infty) = A \cup_D B$ where A and B are smooth and meet transversally in D.
What can we say about the map Φ?

$\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$
What can we say about the map Φ?

$[Y \to X]$

$\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$
What can we say about the map Φ?

\[\Omega^*(X) \xrightarrow{\Phi} \text{MU}^{2*}(X) \]
What can we say about the map Φ?

- The image:

\[
\begin{align*}
[Y \to X] & \quad \iff \quad [Y(C) \to X(C)] \\
\Phi & \\
\Omega^*(X) & \quad \xrightarrow{\Phi} \quad MU^{2*}(X)
\end{align*}
\]
What can we say about the map Φ?

- The map:

 $[Y \to X] \xlongleftarrow{\Phi} [Y(C) \to X(C)]$

- The image:

 $\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$

$Z^*(X)/_{\text{rat.eq}} = CH^*(X)$
What can we say about the map Φ?

- The image:
 $$\Omega^*(X) \xrightarrow{\Phi} \text{MU}^{2*}(X)$$

 $$\mathbb{Z}^*(X)_{\text{rat.eq}} = \text{CH}^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X;\mathbb{Z})$$
What can we say about the map Φ?

- The image:

$\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$

$\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$

$Z^*(X)/_{rat.eq} = CH^*(X) \xrightarrow{cl_H} Hdg^{2*}(X) \subseteq H^{2*}(X;Z)$
What can we say about the map Φ?

- The image: $\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$

$Z^*(X)/\text{rat.eq} = CH^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X;\mathbb{Z})$
What can we say about the map Φ?

- The image:

$\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X)$

$Z^*(X)/_{\text{rat.eq}} = CH^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq \text{H}^{2*}(X;\mathbb{Z})$

There is a “Hodge-theoretic” restriction for $\text{Im} \Phi$.
What can we say about the map Φ?

- The image: $\Omega^*(X) \xrightarrow{\Phi} \text{MU}^{2*}(X)$

$$
\text{Im}\Phi \quad \text{Hdg}^{2*}(X) \subseteq \text{H}^{2*}(X;\mathbb{Z})
$$

- The kernel:

$$
\Omega^*(X) / \text{rat.eq} = \text{CH}^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq \text{H}^{2*}(X;\mathbb{Z})
$$
What can we say about the map Φ?

- The image: $\Omega^\bullet(X) \xrightarrow{\Phi} \text{MU}^{2\bullet}(X)$

- The kernel:

 Griffiths’ theorem suggests that Φ is not injective.

There is a “Hodge-theoretic” restriction for $\text{Im}\Phi$.
What can we say about the map Φ?

• The image:

$$\begin{align*}
\Omega^*(X) & \xrightarrow{\Phi} \text{MU}^{2*}(X) \\
\Omega^*(X) & \xrightarrow{\Phi} \text{CH}^*(X) \\
\Omega^*(X) & \xrightarrow{\Phi} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X;\mathbb{Z})
\end{align*}$$

$Z^*(X)/\text{rat.eq} = \text{CH}^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X;\mathbb{Z})$

There is a “Hodge-theoretic” restriction for $\text{Im}\Phi$.

• The kernel:

Griffiths’ theorem suggests that Φ is not injective.

Question: Is there is an “Abel–Jacobi-invariant” which is able to detect elements in $\text{Ker}\Phi$?
The image:

$$\Omega^*(X) \xrightarrow{\Phi} \text{MU}^2(X)$$
The image:

\[\Omega^*(X) \xrightarrow{\Phi} Hdg_{MU^{2*}}(X) \cap MU^{2*}(X) \]
The image: not surjective, but ...

$$\Omega^*(X) \xrightarrow{\Phi} \text{Hdg}_{MU^2*}(X) \cap MU^2*(X)$$
The image: not surjective, but ...

\[\Omega^*(X) \xrightarrow{\Phi} Hdg_{MU^2*}(X) \cap MU^2*(X) \]

\[\Omega^*(X) \otimes_{L*} Z \xrightarrow{} MU^2*(X) \otimes_{L*} Z \]
The image: not surjective, but ...
The image: not surjective, but ...

\[\Omega^* (X) \xrightarrow{\Phi} \text{Hdg}_{MU^2*}(X) \]

\[\Omega^* (X) \otimes_{L^*} \mathbb{Z} \xrightarrow{\Phi} \text{MU}^{2*}(X) \otimes_{L^*} \mathbb{Z} \]

\[\text{CH}^* (X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subset \text{H}^{2*}(X; \mathbb{Z}) \]
The image: not surjective, but ...

\[\Omega^*(X) \xrightarrow{\Phi} \text{Hdg}_{MU^2}(X) \]

\[\Omega^*(X) \otimes_{L^* Z} \rightarrow \text{MU}^2(X) \]

\[\text{CH}^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^2(X) \subseteq H^2(X;Z) \]
The image: not surjective, but ...
The image: not surjective, but ...

\[\Omega^*(X) \xrightarrow{\Phi} \text{Hdg}_{\text{MU}^2}(X) \cap \text{MU}^{2*}(X) \]

\[\Omega^*(X) \otimes_{L^*} \mathbb{Z} \xrightarrow{\text{Totaro}} \text{MU}^{2*}(X) \otimes_{L^*} \mathbb{Z} \]

\[\text{CH}^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X; \mathbb{Z}) \]
The image: not surjective, but ...

\[
\begin{align*}
\Omega^*(X) & \xrightarrow{\Phi} \text{MU}^{2*}(X) \\
\Omega^*(X) \otimes_{L^*} \mathbb{Z} & \xrightarrow{} \text{MU}^{2*}(X) \otimes_{L^*} \mathbb{Z} \\
\text{CH}^*(X) & \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X;\mathbb{Z}) \\
\end{align*}
\]
The image: not surjective, but ...

\[\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X) \]

\[\Omega^*(X) \otimes_{\mathbb{L}} \mathbb{Z} \xrightarrow{\Phi} MU^{2*}(X) \otimes_{\mathbb{L}} \mathbb{Z} \]

Levine-Morel \(\cong \) Totaro

\[CH^*(X) \xrightarrow{\text{cl}_H} \text{Hdg}^{2*}(X) \subseteq H^{2*}(X;\mathbb{Z}) \]

\[Hdg_{MU}^{2*}(X) \cap \]
The image: not surjective, but...

\[\Omega^*(X) \xrightarrow{\Phi} MU^{2*}(X) \]

\[\Omega^*(X) \otimes_{L^*} Z \xrightarrow{\Phi} MU^{2*}(X) \otimes_{L^*} Z \]

Levine-Morel \(\approx \) Totaro \(\neq \) in general

Atiyah-Hirzebruch: \(cl_H \) is not surjective.
Atiyah-Hirzebruch: cl_H is not surjective.

This argument does not work for Φ.
Kollar's examples: (see also Soulé-Voisin et. al.)
Kollar’s examples: (see also Soulé-Voisin et. al.) Let $X \subset \mathbb{P}^4$ a very general hypersurface of degree $d=p^3$ for a prime $p \geq 5$.
Kollar's examples: (see also Soulé-Voisin et. al.)

Let \(X \subset \mathbb{P}^4 \) a very general hypersurface of degree \(d=p^3 \) for a prime \(p \geq 5 \).

\[
H^2(X; \mathbb{Z})=\mathbb{Z} \cdot h, \quad H^4(X; \mathbb{Z})=\mathbb{Z} \cdot \alpha, \quad \int_X \alpha \cdot h=1
\]
Kollar’s examples: (see also Soulé-Voisin et. al.)

Let $X \subset \mathbb{P}^4$ a very general hypersurface of degree $d = p^3$ for a prime $p \geq 5$.

$H^2(X; \mathbb{Z}) = \mathbb{Z} \cdot h$, $H^4(X; \mathbb{Z}) = \mathbb{Z} \cdot \alpha$, $\int_X \alpha \cdot h = 1$

both torsion-free and all classes are Hodge classes
Kollar’s examples: (see also Soulé-Voisin et. al.)

Let \(X \subset \mathbb{P}^4 \) a very general hypersurface of degree \(d = p^3 \) for a prime \(p \geq 5 \).

\[
\begin{align*}
H^2(X;\mathbb{Z}) &= \mathbb{Z} \cdot h,
H^4(X;\mathbb{Z}) &= \mathbb{Z} \cdot \alpha,
\int_X \alpha \cdot h &= 1
\end{align*}
\]

both torsion-free and all classes are Hodge classes

Kollár: \(p \) divides the degree of any curve on \(X \).
Kollar’s examples: (see also Soulé–Voisin et. al.) Let \(X \subset \mathbb{P}^4 \) a very general hypersurface of degree \(d = p^3 \) for a prime \(p \geq 5 \).

\[
\begin{align*}
H^2(X; \mathbb{Z}) &= \mathbb{Z} \cdot h, \\
H^4(X; \mathbb{Z}) &= \mathbb{Z} \cdot \alpha, \\
\int_X \alpha \cdot h &= 1
\end{align*}
\]

both torsion-free and all classes are Hodge classes

Kollar: \(p \) divides the degree of any curve on \(X \).

This implies: \(\alpha \) is not algebraic (since we needed a curve of degree 1).
Koller’s examples: (see also Soulé–Voisin et. al.)
Let $X \subset \mathbb{P}^4$ a very general hypersurface of degree $d = p^3$ for a prime $p \geq 5$.

$H^2(X;\mathbb{Z}) = \mathbb{Z} \cdot h$, $H^4(X;\mathbb{Z}) = \mathbb{Z} \cdot \alpha$, $\int_X \alpha \cdot h = 1$

both torsion-free and all classes are Hodge classes

Kollár: p divides the degree of any curve on X.

This implies: α is not algebraic (since we needed a curve of degree 1).

But $d\alpha$ is algebraic (for $\int_X d\alpha \cdot h = d = \int_X h^2 \cdot h \Rightarrow d\alpha = h^2$).
Consequences for $\Phi: \Omega^*(X) \rightarrow MU^{2*}(X)$:
Consequences for $\Phi: \Omega^*(X) \rightarrow MU^{2*}(X)$:

Let $X \subset \mathbb{P}^4$ be a very general hypersurface as above.
Consequences for $\Phi: \Omega^*(X) \to MU^{2*}(X)$:

Let $X \subset \mathbb{P}^4$ be a very general hypersurface as above.

Then $MU^4(X) \to H^4(X;\mathbb{Z})$ is surjective, and thus Kollar’s argument implies that Φ is not surjective (on Hodge classes).
Consequences for $\Phi: \Omega^*(X) \to \text{MU}^{2*}(X)$:

Let $X \subset \mathbb{P}^4$ be a very general hypersurface as above.

Then $\text{MU}^4(X) \to \text{H}^4(X;\mathbb{Z})$ is surjective, and thus Kollar’s argument implies that Φ is not surjective (on Hodge classes).

These examples are “not topological”: there is a dense subset of hypersurfaces $Y \subset \mathbb{P}^4$ such that the generator in $\text{H}^4(Y;\mathbb{Z})$ is algebraic.
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$\Omega^p(X)$
A new diagram: (joint work with Mike Hopkins)

Let \(X \) be any smooth projective complex variety.

\[
\Omega^p(X) \quad [Y \to X]
\]
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

\[\Omega^p(X) \xrightarrow{\Phi} \text{Hdg}_{MU}^{2p}(X) \]
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$$\Omega^p(X) \rightarrow [Y \rightarrow X]$$

Φ

$$[Y(C) \rightarrow X(C)]$$

$\text{Hdg}_{MU}^{2p}(X)$
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$\Omega^p(X) \to^{[Y \to X]} [Y(C) \to X(C)]$

Φ

$\newcommand\Hdg{\text{Hdg}}$

$\Hdg^{2p}_{MU}(X)$
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$\Omega^p(X) \to [Y \to X]$

Φ

$[Y(C) \to X(C)]$

$\text{MU}_D^{2p}(p)(X) \to \text{Hdg}_{\text{MU}}^{2p}(X)$

combines topol. cobordism with Hodge theoretic information
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$\Omega^p(X) \rightarrow \Phi \rightarrow [Y(C) \rightarrow X(C)]$

$\mathcal{M}_{U_D}^{2p}(p)(X) \rightarrow \text{Hdg}_{\mathcal{M}_{U}}^{2p}(X) \rightarrow 0$

combines topol. cobordism with Hodge theoretic information.
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

\[\Omega^p(X) \xrightarrow{[Y \to X]} \]

\[\Phi\downarrow \]

\[[Y(C) \to X(C)] \]

\[0 \to J_{\text{MU}}^{2p-1}(X) \to \text{MU}_D^{2p}(p)(X) \to \text{Hdg}_{\text{MU}}^{2p}(X) \to 0 \]

combines topol. cobordism with Hodge theoretic information
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

\[\Omega^p(X) \xrightarrow{[Y \rightarrow X]} [Y(C) \rightarrow X(C)] \]

\[0 \rightarrow J_{MU}^{2p-1}(X) \rightarrow MU_D^{2p}(p)(X) \rightarrow \text{Hdg}_{MU}^{2p}(X) \rightarrow 0 \]

combines topological cobordism with Hodge theoretic information

complex torus $\approx MU^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z}$
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$$0 \rightarrow J_{MU}^{2p-1}(X) \rightarrow MU_D^{2p}(p)(X) \rightarrow \text{Hdg}_{MU}^{2p}(X) \rightarrow 0$$

combines topol. cobordism with Hodge theoretic information

complex torus $\cong MU^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z}$
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$\Omega^p(X)_{\text{top}} := \text{Kernel of } \Phi \subset \Omega^p(X) \quad [Y \to X]$

$0 \to J_{\text{MU}}^{2p-1}(X) \to \text{MU}_D^{2p}(p)(X) \to \text{Hdg}_{\text{MU}}^{2p}(X) \to 0$

combines topol. cobordism with Hodge theoretic information

complex torus $\approx \text{MU}^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z}$
A new diagram: (joint work with Mike Hopkins)

Let X be any smooth projective complex variety.

$$\Omega^p(X)_{\text{top}} := \text{Kernel of } \Phi \subset \Omega^p(X)$$

"Abel-Jacobi map" μ_{MU}

$$0 \to J_{MU}^{2p-1}(X) \to MU_D^{2p}(p)(X) \to \text{Hdg}_{MU}^{2p}(X) \to 0$$

combines topological cobordism with Hodge theoretic information

complex torus $\approx MU^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z}$
The Abel-Jacobi map:
The Abel-Jacobi map: Given n, p
The Abel–Jacobi map: Given n, p

$\text{Sing} \cdot \text{MU}_n(X)$

$K(F_p A^*(X; V^*), n) \rightarrow Z^n(X \times \Delta^\bullet; V^*)$
The Abel-Jacobi map: Given n, p

$$\text{Simpl. map. space}$$

$$\text{Sing} \cdot \text{MU}_n(X)$$

$$K(F^p A^*(X; V^*), n) \rightarrow \mathbb{Z}^n(X \times \Delta^*; V^*)$$
The Abel-Jacobi map: Given n, p

$K(F^pA^*(X;V^*), n) \to Z^n(X \times \Delta^*; V^*)$

simpl.map. space

Sing•MU_n(X)
The Abel–Jacobi map: Given \(n, p \)

\[V^* := \text{MU}^* \otimes C \]

simpl. map.

space

\[\text{Sing} \cdot \text{MU}_n(X) \]

\[K(F^p A^*(X; V^*), n) \rightarrow \mathbb{Z}^n(X \times \Delta^\bullet; V^*) \]

cocycles
The Abel-Jacobi map: Given n, p

$$V^* := \text{MU}^* \otimes \mathbb{C}$$

simpl.map.

$$\text{Sing} \cdot \text{MU}_n(X)$$

$$\text{K}(F^p A^*(X; V^*), n) \rightarrow \mathbb{Z}^n(X \times \Delta^*; V^*)$$

EM-space

cocycles
The Abel-Jacobi map: Given n, p

$$V^* := \text{MU}^* \otimes C$$

simpl. map.

space

$$\text{MU}_n(p)(X) \longrightarrow \text{Sing} \bullet \text{MU}_n(X)$$

htpy. cart.

$$K(F^pA^*(X;V^*),n) \longrightarrow \mathbb{Z}^n(X \times \Delta^k; V^*)$$

EM-space
cocycles
The Abel–Jacobi map: Given n, p

$V^* := MU^* \otimes C$

simpl. map. space

HTPY. cart.

$\pi_0 MU_n(p)(X) \rightarrow Sing \cdot MU_n(X)$

$K(F^p A^*(X; V^*), n) \rightarrow \mathbb{Z}^n(X \times \Delta^*; V^*)$

EM-space cocycles
The Abel–Jacobi map: Given \(n, p \)

Elements in \(\text{MU}_D^n(p)(X) \) consist of \((f, h, \omega)\): space

\[
\pi_0 \text{MU}_n(p)(X) \to \text{Sing} \cdot \text{MU}_n(X)
\]

htpy. cart.

\[
\text{K}(\text{F}_p A^*(X; V^*), n) \to \mathbb{Z}^n(X \times \Delta^n; V^*)
\]

\(V^* := \text{MU}^* \otimes \mathbb{C} \)

simpl. map.
The Abel–Jacobi map: Given \(n, p \)

Elements in \(\text{MU}_D^n(p)(X) \) consist of \((f, h, \omega)\):

- \(f : X \to \text{MU}_n \)

\[V^* := \text{MU}^* \otimes C \]

\[\text{simpl. map.} \]

\[\text{htpy. cart.} \]

\[\text{space} \]

\[\text{cocycles} \]
The Abel–Jacobi map: Given \(n, p \)

Elements in \(MU_D^n(p)(X) \) consist of \((f, h, \omega) \):

- \(f : X \to MU_n \)
- \(\omega \in F^pA^n(X;V^*) \)

\(V^* := MU^* \otimes C \)

simpl. map.

\[\pi_0MU_n(p)(X) \to Sing \cdot MU_n(X) \]

htpy. cart.

\[K(F^pA^*(X;V*),n) \to Z^n(Xx\Delta^*;V*) \]

EM-space

cocycles
The Abel–Jacobi map: Given \(n, p \)

Elements in \(\text{MU}_D^n(p)(X) \) consist of \((f, h, \omega)\):

- \(f : X \to \text{MU}_n \)
- \(\omega \in F^pA^n(X;V^*) \)
- \(h \in C^{n-1}(X;V^*) \)

such that “\(\partial h = f - \omega \)"
The Abel-Jacobi map: Given \(n, p \)

Elements in \(\text{MU}_D^n(p)(X) \) consist of \((f, h, \omega) \): space

- \(f : X \to \text{MU}_n \)
- \(\omega \in F^pA^n(X;V^*) \)
- \(h \in C^{n-1}(X;V^*) \)

such that \(\partial h = f - \omega \)

If \(n = 2p \), \([f] = 0 \) and \([\omega] = 0 \), then \((f, h, \omega) \) defines an element in \(\text{MU}^{2p-1}(X) \otimes R \), uniquely modulo \(\text{MU}^{2p-1}(X) \).
The Abel-Jacobi map: Given n, p

Elements in $\text{MU}_D^n(p)(X)$ consist of (f, h, ω): space

- $f : X \to \text{MU}_n$
- $\omega \in F^pA^n(X;V^*)$
- $h \in C^{n-1}(X;V^*)$

such that $\partial h = f - \omega$

If $n=2p$, $[f]=0$ and $[\omega]=0$, then (f, h, ω) defines an element in $\text{MU}^{2p-1}(X) \otimes \mathbb{R}$, uniquely modulo $\text{MU}^{2p-1}(X)$.

This gives the Abel-Jacobi map

$$\Omega^p(X)_{\text{top}} \to \text{MU}^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z}$$
The Abel–Jacobi map: Given n, p

Elements in $\text{MU}_D^n(p)(X)$ consist of (f, h, ω):

- $f : X \to \text{MU}_n$
- $\omega \in \text{F}^p\text{A}^n(X; V^*)$
- $h \in \text{C}^{n-1}(X; V^*)$

such that \(\partial h = f - \omega \)

If $n=2p$, $[f]=0$ and $[\omega]=0$, then (f, h, ω) defines an element in $\text{MU}^{2p-1}(X) \otimes \mathbb{R}$, uniquely modulo $\text{MU}^{2p-1}(X)$.

This gives the Abel–Jacobi map

\[\Omega^p(X)_{\text{top}} \to \text{MU}^{2p-1}(X) \otimes \mathbb{R}/\mathbb{Z} \]
Examples:

The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes:

\[\Omega^p(X) \]

\[\text{CH}^p(X) \quad J_{MU}^{2p-1}(X) \quad \text{MU}^{2p}(X) \]
Examples:

The new Abel–Jacobi map is able to detect interesting algebraic cobordism classes:

\[\exists \alpha \in \Omega^p(X) \]

\[\begin{array}{ccc}
\text{CH}^p(X) & \xrightarrow{\mu_{MU}} & \text{MU}^{2p}(X) \\
& \downarrow \Phi & \\
\text{J}_{MU}^{2p-1}(X) & &
\end{array} \]
Examples:

The new Abel–Jacobi map is able to detect interesting algebraic cobordism classes:

\[\exists \alpha \in \Omega^p(X) \]

\[\begin{array}{c}
0 \\
\text{CH}^p(X) \\
\text{J}^{2p-1}_{\text{MU}}(X) \\
\text{MU}^{2p}(X)
\end{array} \]

\[\begin{array}{c}
\Phi \\
\mu_{\text{MU}} \\
\end{array} \]
Examples:

The new Abel-Jacobi map is able to detect interesting algebraic cobordism classes:

$$\exists \alpha \in \Omega^p(X)$$

\[\begin{array}{ccc}
0 & \xrightarrow{\mu_{\text{MU}}} & 0 \\
\text{CH}^p(X) & \xrightarrow{\Phi} & \text{MU}^{2p}(X)
\end{array} \]
Examples:

The new Abel–Jacobi map is able to detect interesting algebraic cobordism classes:

\[\exists \alpha \in \Omega^p(X) \]

\[
\begin{array}{ccc}
0 & \overset{\phi}{\longrightarrow} & \mathcal{J}_{\text{MU}}^{2p-1}(X) \\
\mathcal{C}H^p(X) & \overset{\mu_{\text{MU}}}{\longrightarrow} & \text{MU}^{2p}(X)
\end{array}
\]
Thank you!