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Preface

These are my incomplete lecture notes from the class MATH231br Advanced
Algebraic Topology that I taught in spring 2014 at Harvard University. The goal
of the class was to give an introduction to the powerful theory of characteristic
classes on real and complex vector bundles, to introduce complex K-theory, and
to provide a first outlook on some of the fascinating interactions of these theories
with homotopy theory. The course consisted of three classes per week, in total 36
classes which explains the number of sections. The notes are often quite informal
as they were written to be used as actual notes during classes. For example, the
content of one section may recalled in another even though the reader may not
feel the necessity for such a recollection.

Moreover, with the exception of some minor corrections, the notes have not
been changed or updated after the classes in 2014. Unfortunately, this also means
that the notes are incomplete and some topics that were discussed in class are
missing in this file, since we do not have a written documentation of those classes.

However, as additional material, I added a collection of slides on the Adams
conjecture in an appendix. The slides are compiled from an invited lecture series
in Heidelberg on étale homotopy theory in March 2014. As an application of
the étale homotopy type of Artin–Mazur and Friedlander, I briefly discussed the
proofs of Friedlander, Quillen, and Sullivan of the Adams conjecture. Again, the
slides have not been updated or corrected for typos since 2014.

Despite all these shortcomings I hope that these notes are useful nevertheless.

I plan to improve and update these notes in the future and would be happy
to receive comments and suggestions for improvements at any time. Please send
them to gereon.quick@ntnu.no.

Gereon Quick
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1. Vector bundles

We start with the basic theory of vector bundles. For the moment there is
nothing special about the complex case, we could also consider real vector bundles.
Later, when we define K-theory, it will, however, matter if we work with complex
or real bundles. Our references for the next lectures are the book of Milnor and
Stasheff and Hatcher’s online notes.

We introduce the first main character of the story.

Definition 1.1. Let B be a topological space.

1) A family of real vector spaces ξ over B consists of the following data:

• a topological space E = E(ξ) called the total space

• a continuous π : E → B called the projection map, and

• for each b ∈ B the structure of a vector space over the real numbers R in
the set Eb := π−1(b).

2) The family ξ is called a real vector bundle over B if these data are subject
to the following condition:

• Local triviality: For each point b ∈ B there should exist a neighborhood
U ⊂ B, an integer n ≥ 0, and a homeomorphism

h : U × Rn → π−1(U)

such that, for each b ∈ U , the correspondence x 7→ h(b,x) defines an
isomorphism between the vector space Rn and the vector space π−1(b).

3) A family of complex vector spaces ζ over B consists of the data:

• a topological space E = E(ζ) called the total space

• a continuous π : E → B called the projection map, and

• for each b ∈ B the structure of a vector space over the complex numbers
C in the set π−1(b).

4) The family ζ is called a complex vector bundle over B if these data are sub-
ject to the following condition:
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• Local triviality: For each point b ∈ B there should exist a neighborhood
U ⊂ B, an integer n ≥ 0, and a homeomorphism

h : U × Cn → π−1(U)

such that, for each b ∈ U , the correspondence z 7→ h(b,z) defines an
isomorphism between the vector space Cn and the vector space π−1(b).

For vector bundles, we will use some further terminology:

• A pair (U,h) as in Definition 1.1 will be called a local trivialization about
b.

• If it is possible to choose U equal to the entire space B of a vector bundle,
then the vector bundle will be called a trivial bundle.

• We often refer to a vector bundle π : E → B by just mentioning the total
space E.

• The vector space π−1(b) is called the fiber over b. It will also be denoted
by Eb.

• The fiber Eb = π−1(b) is never vacuous, but it may consist of a single
point. The dimension n of Eb is allowed to vary, but it is always a locally
constant function. Though in most cases of interest the dimension is con-
stant. In this case one speaks of an n-dimensional bundle and call n the
rank of the bundle.

• A 1-dimensional bundle is also called a line bundle.

Now that we have the basic notions at hand, we will focus for a while on real
vector bundles and we will often refer to a real vector bundle just as a vector
bundle. Later, when we introduce K-theory we will look at complex bundles
again.

So let us have a look at some examples of (real) vector bundles.

Example 1.2. There is an obvious example of a vector bundle over any topo-
logical space B: The product or trivial bundle E = B×Rn with π the projection
onto the first factor.

Example 1.3. Let I = [0,1] be the unit interval, and let E be the quotient space
of I ×R under the identification (0,t) ∼ (1,− t). Then the projection I ×R → I
induces a map

π : E → S1
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which is a line bundle. Since E is homeomorphic to a Möbius band, i.e., a cylinder
cut open, twisted once and glued back together, with its boundary circle deleted,
we call this bundle the Möbius bundle.

Example 1.4. Let Sn be the unit sphere in Rn+1. The tangent bundle τ to Sn

is the vector bundle π : E → Sn where

E = {(x,v) ∈ Sn × Rn| x⊥v}.
We think of v as a tangent vector to Sn by translating it so that its tail is at the
head of x on Sn. The map π : E → Sn sends (x,v) to x.

The vector space structure on π−1(x) is defined by

t1(x,v1) + t2(x,v2) = (x, t1v1 + t2v2).

In order to show that this is a vector bundle we have to construct local trivi-
alizations. So let x ∈ Sn be any point and let Ux ⊂ Sn be the open hemisphere
which contains x and is bounded by the hyperplane through the origin orthogonal
to x.

Define
hx : π

−1(Ux) → Ux × π−1(x) ∼= Ux × Rn

by
hx(y,v) = (y, px(v))

where px is the orthogonal projection onto the hyperplane π−1(x). PICTURE!

Then hx is a local trivialization, since px restricts to an isomorphism of π−1(y)
onto p−1(x) for each y ∈ Ux.

Example 1.5. The normal bundle ν to Sn in Rn+1 is the line bundle π : E → Sn

with E consisting of pairs

(x,v) ∈ Sn × Rn+1 such that v is perpendicular to the tangent plane to Sn at x,

or in other words,
v = tx for some t ∈ R.

DRAW A PICTURE FOR S2!

The map π : E → Sn is just given by π(x,v) = x and the vector space structure
on π−1(x) is again defined by

t1(x,v1) + t2(x,v2) = (x, t1v1 + t2v2).

As in the previous example, local trivializations hx : π
−1(Ux) → Ux×R can be

obtained by orthogonal projection of the fibers π−1(y) onto π−1(x) for y ∈ Ux
and Ux as in the previous example.
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2. Vector bundles and sections

We have seen the definition and first examples of vector bundles. Today we
will first continue our list of examples. Let us get started.

Example 2.1. Recall that the real projective n-space RPn is the space of lines
in Rn+1 through the origin. Since each such line intersects the unit sphere Sn in
a pair of antipodal points, we can also regard RPn as the quotient space of Sn

in which antipodal pairs of points are identified, i.e., RPn = Sn/x ∼ (−x). The
topology of RPn is then the topology as a quotient of Sn. Let {±x} denote the
equivalence class of x in Sn/ ∼

The canonical line bundle γ1n over RP n is the line bundle π : E → RPn with
total space

E(γ1n) = {({±x}, v) ∈ RPn × Rn+1|v = tx for some t ∈ R} ⊂ RPn × Rn+1.

In other words, E is consisting of all pairs (ℓ, v) such that the vector v lies on the
line ℓ.

The map π : E → RPn is just the projection sending ({±x}, v) to {±x}.

Now we need to find local trivializations for γ1n. Let U ⊂ Sn be any open set
which is small enough so as to contain no pair of antipodal points, and let U1

denote the image of U in RPn. Then a homeomorphism

h : U1 × R → π−1(U1)

is defined by the requirement that

h({±x}, t) = ({±x}, tx)

for each (x,t) ∈ U × R. The pair (U1,h) is a local trivialization of γ1n.

After seeing some examples of vector bundles we would like to be able to say
when two bundles are isomorphic.

Definition 2.2. 1) Let ξ and η be two vector bundles over some base space
B. Then we say that ξ is isomorphic to η, written ξ ∼= η, if there exists a
homeomorphism

f : E(ξ) → E(η)

between the total spaces which maps each vector space Eb(ξ) isomorphically onto
the corresponding vector space Eb(η).

2) We say that a bundle is trivial if it is isomorphic to the product bundle
B × Rn for some n ≥ 0.
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Example 2.3. 1) The tangent bundle τ1 to S
1 is isomorphic to the trivial bundle

S1 × R. The isomorphism is given by the map

τ1 → S1 × R, (eiθ, ieiθ) 7→ (eiθ, t) for eiθ ∈ S1 and t ∈ R.

Recall that the total space of τ 1 is given by the space

E(τ1) = {(x,v) ∈ S1 × R1| x⊥v} = {(eiθ, ieiθ)| t ∈ R, θ ∈ [0,2π]}.
Note: The triviality of τ1 is special to the case n = 1. Though the situation is
simpler for the normal bundle.

2) The normal bundle ν of Sn in Rn+1 is isomorphic to the product line bundle
Sn × R. The isomorphism is given by the map

(x,tx) 7→ (x,t).

Hence ν is trivial.

But, of course, not all bundles are trivial.

Proposition 2.4. The canonical line bundle γ1n over RPn is not trivial for n ≥ 1.

We prove this claim by studying the sections of γ1n.

Definition 2.5. A section of a vector bundle π : E → B is a continuous map

s : B → E

which takes each b ∈ B into the corresponding fiber π−1(b). In other words, s is
a continuous map such that π ◦ s = idB.

A section is called nowhere zero if s(b) is a non-zero vector of π−1(b) for each
b.

Example 2.6. • Every vector bundle has a zero section whose value is the
zero vector in each fiber.

• A trivial bundle possesses a nowhere zero section.

From the last point we see that in order to proof Proposition 2.4 it suffices to
show that γ1n does not have nowhere zero section:

Let

s : RPn → E(γ1n)

be any section, and consider the composition

Sn → RPn s−→ E(γ1n)
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which carries each x ∈ Sn to some pair

({±x}, t(x)x) ∈ E(γ1n).

Since this map is the composite of continuous maps it is itself continuous and
hence the map x 7→ t(x) is a continuous map Sn → R, i.e. it is a continuous real
valued function. Moreover, it satisfies

t(−x) = −t(x).

Since Sn is connected it follows from the intermediate value theorem that
t(x0) = 0 for some x0. Hence

s({±x0}) = ({±x0}, 0)
and s cannot be nowhere zero. Thus γ1n is not trivial. 2

Example 2.7. Let us have a closer look at the space E(γ1n) for the special case
n = 1. In this case, each point e = ({±x},v) of E(γ1n) can be written as

e = ({±(cos θ, sin θ)}, t(cos θ, sin θ)) with 0 ≤ θ ≤ π, t ∈ R.

This representation is unique except that for the point

({±(cos 0, sin 0)}, t(cos 0, sin 0)) = ({±(cos π, sinπ)},−t(cos π, sinπ)) for each t ∈ R.
In other words, E(γ1n) can be obtained from the strip [0, π]×R in the (θ, t)-plane
by identifying the left hand boundary {0} × R with the right hand boundary
{π} × R under the correspondence

(0,t) 7→ (π,−t).

Thus E(γ1n) is an open Möbius band over RP1. Since RP1 is just S1 we see
that in this case γ11 is just the Möbius bundle over S1 we defined in the previous
lecture. And we see once again that γ11 is non-trivial.

Another strategy to distinguish non isomorphic bundles is to look at the com-
plement of the zero section. For any vector bundle isomorphism must the zero
section to the zero section. Hence it induces a homeomorphism on the comple-
ments of the zero sections.

Example 2.8. This gives us another way to see that the Möbius bundle is nontr-
vival. The complement of the zero section of the Möbius bundle is connected but
the complement of the zero section of the product bundle S1×R is not connected.
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3. Families of sections

We have seen in the proof that the canonical line bundle over the projective
space is nontrivial that it can be very helpful to study the sections of a bundle.
Today we want to push this idea a little further.

Definition 3.1. Let {s1, . . . , sn} be a collection of sections of a vector bundle
π : E → B. The sections s1, . . . , sn are called nowhere linearly dependent if, for
each b ∈ B the vectors s1(b), . . . , sn(b) are linearly independent.

The existence of nowhere dependent sections is rather special.

Theorem 3.2. An n-dimensional vector bundle ξ is trivial if and only if ξ admits
n sections s1, . . . , sn which are nowhere linearly dependent.

The proof will depend on the following basic result.

Lemma 3.3. Let ξ and η be vector bundles over B and let f : E(ξ) → E(η) be a
continuous function which maps each vector space Eb(ξ) isomorphically onto the
corresponding vector space Eb(η). Then f is necessarily a homeomorphism and ξ
is isomorphic to η.

Proof. The hypothesis on what f does with the fibers implies that f is bijective.
Hence it remains to show that f−1 is continuous. This is a local question so let
b0 ∈ B be any point and choose local trivializations (U,g) for ξ and (V,h) for η
with b0 ∈ U ∩ V . Then we want to show that the composition

(U ∩ V )× Rn h−1◦f◦g−−−−−→ (U ∩ V )× Rn

is a homeomorphism. Setting

h−1(f(g(b,x))) = (b,y)

it is evident that y = (y1, . . . , yn) can be expressed in the form

yi =
∑
j

fij(b)xj

where (fij(b)) denotes an invertible n× n-matrix of real numbers. Furthermore,
since h−1, f and g are continuous maps, the entries fij(b) depend continuously
on b.

Let (Fji(b)) denote the inverse matrix. Then we have

g−1 ◦ f−1 ◦ h(b,y) = (b,x)
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where

xj =
∑
i

Fji(b)yi.

Since the inverse of a mtrix A is given by 1/ det(A) times the adjoint matrix,
the numbers Fji(b) depend continuously on the entries fij(b). Hence they depend
continuously on b. Thus g−1 ◦ f−1 ◦ h is continuous. This completes the proof of
the lemma □

Proof of Theorem 3.2. Let s1, . . . , sn be sections of ξ which are nowhere linearly
dependent. Define

f : B × Rn → E

by

f(b,x) = x1s1(b) + . . .+ xnsn(b).

Evidently, f is continuous and maps each fiber of the trivial bundle ϵnB isomor-
phically onto the corresponding fiber of ξ. The previous lemma implies that f is
an isomomorphism of bundles and ξ is trivial.

Conversely, suppose that ξ is trivial, with trivialization (B,h). Defining

si(b) = h(b, (0, . . . , 0, 1, 0, . . . , 0)) ∈ Eb(ξ)

(with the 1 in the i-th place), it is evident that s1, . . . , sn are nowhere linearly
dependent sections. This completes the proof of Theorem 3.2. 2

Example 3.4. The tangent bundle of the circle S1 ⊂ R2 admits one nowhere
zero section

s(x1, x2) = ((x1, x2), (−x2, x1)).
We can rewrite this in terms of complex numbers. If we set z = x1+ ix2 then the
section s is given by

z 7→ iz.

Example 3.5. The tangent bundle to the 3-sphere S3 ⊂ R4 admits three nowhere
linearly dependent sections si(x) = (x,s̄i(x)) where

s̄1(x) = (−x2, x1,−x4, x3)
s̄2(x) = (−x3, x4, x1,−x2)
s̄3(x) = (−x4,−x3, x2, x1).

It is easy to check that the three vectors s̄1(x), s̄2(x), and s̄3(x) are orthogonal
to each other and to x = (x1, x2, x3, x4). Hence s1, s2, and s3 are nowhere linearly
dependent sections of the tangent bundle of S3 in R4.
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The above formulas come in fact from the quaternion multiplication in R4. For
let H be the quaternions, i.e., the division algebra whose elements are expres-
sions of the form z = x1 + ix2 + jx3 + kx4 with x1, . . . , x4 ∈ R subject to the
multiplication rules

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, and ik = −j.
If we identify H with R4 via the coordinates (x1, x2, x3, x4) then we can describe
the three sections s1, s2, and s3 of the tangent bundle of S

3 in H by the formulas

s̄1(z) = iz

s̄2(z) = jz

s̄3(z) = kz.

Remark 3.6. If the tangent bundle of a manifold is trivial then one says that
the manifold is parallelizable. Hence the last two examples show that S1 and S3

are parallelizable.
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4. Constructing new bundles out of old

We already have a bunch of examples of bundles at hand. But we’d like to
be able to construct new bundles out of known ones. We will see some basic
constructions for new bundles today.

4.1. Restricting a bundle to a subset of the base space. Let ξ be a vector
bundle with projection π : E → B and let U be a subset of B. Setting E|U =
π−1(U), and letting

π|U : E|U = π−1(U) → U

be the restriction of π to E|U , one obtains a new vector bundle which will be
denoted by ξ|U , and called the restriction of ξ to U .

Each fiber Eb(ξ|U) is just equal to the corresponding fiber Eb(ξ), and is given
the same vector space structure.

4.2. Induced or pullback bundles. Let ξ be a vector bundle over B and let
B1 be an arbitrary topological space. Given a continuous map f : B1 → B one
can construct the induced bundle or pullback bundle f ∗ξ over B1 as follows. The
total space E1 of f ∗ξ is the subset E1 ⊂ B1 × E consisting of all pairs (b,e) such
that f(b) = π(e), or in a formula

E1 = {(b,e) ∈ B1 × E| f(b) = π(e)}.

The projection map π1 : E1 → B1 is defined by π1(b,e) = b. Thus one has a
commutative diagram

E1
f̂ //

π1
��

E

π

��
B1

f // B

where f̂(b,e) = e. The vector space structure in π−1(b) is defined by

t1(b,e1) + t2(b,e2) = (b, t1e1 + t2e2).

Thus f̂ carries the vector space Eb(f
∗(ξ) isomorphically onto the vector space

Ef(b)(ξ).

It remains to specify the local trivializations of f ∗ξ. If (U, h) is a local trivial-
ization for ξ, we set U1 = f−1(U) and define

h1 : U1 × Rn → π−1
1 (U1) by h1(b,x) = (b, h(f(b), x)).
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Then (U1, h1) is a local trivialization of f ∗ξ.

Example 4.1. If ξ is trivial, then f ∗ξ is trivial. For if E = B×Rn then the total
space E1 of f ∗(ξ) consists of the triples (b1, b, x) in B1 × B × Rn with b = f(b1).
Hence b does not induce any restriction and E1 is just the product B1 × Rn.

Remark 4.2. If f : B1 → B is an inclusion map, then there is an isomorphism

E|B1
∼= f ∗(E)

given by sending e ∈ E to the point (π(e),e).

We still have not yet said what a map between bundles over different base
spaces should be. The above construction inspires the following definition.

Definition 4.3. Let ξ and η be two vector bundles. A bundle map from η to ξ
is a continuous map

g : E(η) → E(ξ)

which carries each vector space Eb(η) isomorphically onto one of the vector spaces
Eb′(ξ) for some b′ ∈ B(ξ).

Remark 4.4. Setting ḡ(b) = b′, we obtain a map

ḡ : B(η) → B(ξ).

This map is continuous. For ḡ is completely determined by g, since the projection
map πη of η is surjective:

E(η)
g //

πη

��

E(ξ)

πξ

��
B(η)

ḡ // B(ξ).

Now since the question is local, we can choose a local trivialization (U,h) of ξ.
Then it suffices to prove the assertion for a map of trivial bundles and a diagram

V × Rn g //

πη
��

U × Rn

πξ
��

V
ḡ // U.

But now it is clear that ḡ is continuous since g is continuous and ḡ(b) is just the
first coordinate of g(b,x).

Lemma 4.5. If g : E(η) → E(ξ) is a bundle map, and if ḡ : B(η) → B(ξ) is the
corresponding map of base spaces, then η is isomorphic to the induced bundle ḡ∗ξ.
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Proof. Define
h : E(η) → E(ḡ∗ξ) by h(e) = (π(e), g(e))

where π denotes the projection map of η. Since h is continuous and maps each
fiber Eb(η) isomorphically onto the corresponding fiber Eb(ḡ

∗ξ), it follows from
the lemma of the previous lecture that h is an isomorphism. □

The previous lemma shows the following uniqueness statement.

Proposition 4.6. Given a map f : B1 → B and a vector bundle ξ over B, then
f ∗ξ is up to isomorphism the unique vector bundle ξ′ over B1 which is equipped
with a map to ξ which takes the fiber of ξ′ over b isomorphically onto the fiber of
ξ over f(b) for each b ∈ B1.

Moreover, the pullback construction is natural in the following sense: If we
have another continuous map g : B2 → B1, then there is a natural isomorphism

g∗f ∗(ξ) ∼= (f ◦ g)∗(ξ)
given by sending each point of the form

(b, e) to the point (b, g(b), e), where b ∈ B2, e ∈ E.

Conclusion 4.7. For a space B let Vectn(B) denote the set of isomorphism
classes of n-dimensional vector bundles over B. Then a continuous map

f : B1 → B

induces a map

f ∗ : Vectn(B) → Vectn(B1) sending ξ to f ∗ξ.

4.3. Cartesian products. Given two vector bundles ξ1, ξ2 with projection maps
πi : Ei → Bi, i = 1, 2, the Cartesian product ξ1 × ξ2 is defined to be the bundle
with projection map

π1 × π2 : E1 × E2 → B1 ×B2

where each fiber
(π1 × π2)

−1(b1, b2) = Eb1(ξ1)× Eb2(ξ2)

is given the obvious vector space structure.

4.4. Whitney sums. Now let ξ1, ξ2 be two vector bundles over the same space
B. Let

d : B → B ×B

denote the diagonal embedding. The bundle d∗(ξ1 × ξ2) over B is called the
Whitney sum of ξ1 and ξ2, and will be denoted ξ1 ⊕ ξ2. Each fiber Eb(ξ1 ⊕ ξ2) is
canonically isomorphic to the direct sum of the fibers Eb(ξ1)⊕ Eb(ξ2).
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Definition 4.8. Consider two vector bundles ξ and η over the same base space
B with E(ξ) ⊂ E(η). Then ξ is a sub-bundle of η, written ξ ⊂ η, if each fiber
Eb(ξ) is a sub-vector space of the corresponding fiber Eb(η).

Lemma 4.9. Let ξ1 and ξ2 be sub-bundles of η such that each vector space Eb(η) is
equal to the direct sum of the sub-spaces Eb(ξ1) and Eb(ξ2). Then η is isomorphic
to the Whitney sum ξ1 ⊕ ξ2.

Proof. Define a map

f : E(ξ1 ⊕ ξ2) → E(ξ) by f(b, e1, e2) = e1 + e2.

The lemma of the previous lecture shows that f is an isomorphism of bundles
since it maps the fibers isomorphically onto each other. □

4.5. Euclidian vector bundles. Let V be a finite dimensional real vector space.
Recall that a real valued function q : V → R is called quadratic if q satisfies
q(av) = a2q(v) for every v ∈ V and a ∈ R and the map b : V ×V → R defined by

b(v,w) :=
1

2
(q(v + w)− q(v)− q(w))

is a symmetric bilinear pairing. We also write v · w for b(v,w). We have in
particular: v · v = q(v). The quadratic function q is called positive definite if
q(v) > 0 for every v ̸= 0.

Definition 4.10. A Euclidean vector space is a real vector space V together with
a positive definite quadratic function

q : V → R.
The real number v ·w is called inner product of the vectors v and w. The number
q(v) = v · v is also denoted by |v|2.

Definition 4.11. A Euclidean vector bundle is a real vector bundle ξ together
with a continuous map

q : E(ξ) → R
such that the restriction of q to each fiber of ξ is positive definite and quadratic.
The map q is called a Euclidian metric on ξ.

In the case of the tangent bundle τM of a smooth manifold, a Euclidian metric
q : DM → R is called a Riemannian metric, and M together with q is called a
Riemannian manifold.

Example 4.12. a) The trivial bundle ϵnB on a space B can be given the Euclidean
metric

q(b,x) = x21 + . . .+ x2n.
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b) Since the tangent bundle of Rn is trivial it follows that the smooth manifold
Rn possesses a standard Riemannian metric. Moreover, any smooth manifold
M ⊂ Rn, the composition

DM ⊂ DRn q−→ R
makes M into a Riemannian manifold.

Lemma 4.13. Let ξ be a trivial bundle of dimension n over a space B and let q
be any Euclidean metric on ξ. Then there exist n sections s1, . . . , sn of ξ which
are normal and orthogonal in the sense that

si(b) · sj(b) = δij

for each b ∈ B where δij is the Kronecker symbol.

Proof. The lemma of the previous lecture shows that ξ admits n nowhere depen-
dent sections. Pointwise application of the Gram-Schmidt orthonormalization
process yields orthonormal sections. □

4.6. Orthogonal complements. Given a sub-bundle ξ ⊂ η, is there a com-
plementary sub-bundle so that η splits as a Whitney sum? If η is a Euclidean
bundle, we can always find such a complement. We can construct it as follows.

Let Eb(ξ
⊥) denote the subspace of Eb(η) consisting of all vectors v such that

v · w = 0 for all Eb(ξ). Let E(ξ
⊥) denote the union of all Eb(ξ

⊥).

Theorem 4.14. The space E(ξ⊥) is the total space of a sub-bundle ξ⊥ ⊂ η, and η
is isomorphic to the Whitney sum ξ⊕ ξ⊥. The bundle ξ⊥ is called the orthogonal
complement of ξ in η.

Proof. It is clear that each fiber Eb(η) is the direct sum of the subspaces Eb(ξ)
and Eb(ξ

⊥). Thus it remains to show the local triviality of ξ⊥. The lemma of the
previous lecture then implies that the map (v,w) 7→ v + w is an isomorphism of
vector bundles.
Given any point b0 ∈ B, let U be a neighborhood of b0 which is sufficiently small
that both ξ|U and η|U are trivial. Since ξ|U is trivial, we can choose orthonormal
sections s1, . . . , sm of ξ|U . We may enlarge this set of sections to a set of n
independent local sections of η|U by first choosing s′m+1, . . . , s

′
n first in the fiber

Eb0(η). By the continuity of the determinant function, there is a neighborhood
V ⊂ U of b0 such that s1(b), . . . , sm(b), s

′
m+1(b), . . . , s

′
n(b) are linearly independent

for all b ∈ V and such that the si(b) vary continuously with b in V . Applying
the Gram-Schmidt orthonormalization process to s1, . . . , sm, s

′
m+1, . . . , s

′
n in each

fiber to obtain new sections s1, . . . , sn. The formulae for this process show that
the si vary continuously with b ∈ V . We can now define a trivialization

h : V × Rn−m → E(ξ⊥)
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by the formula
h(b,x) = x1sm+1(b) + . . .+ xn−msn(b).

□

4.7. Stably trivial bundles. The direct sum of two trivial bundles is of course
again trivial. But the direct sum of two nontrivial bundles can also be trivial. If
one bundle is trivial, this phenomenon has been given a name.

Definition 4.15. A vector bundle ξ over B is called stably trivial if the direct
sum ξ ⊕ ϵn is a trivial bundle for some n.

Example 4.16. The direct sum of the tangent bundle τ and the normal bundle
ν to Sn−1 in Rn is the trivial bundle Sn−1 × Rn. For the elements of the direct
sum τ ⊕ ν are triples (x,v,tx) ∈ Sn−1 × Rn × Rn with x⊥v, and the map

(x, v, tx) 7→ (x, v + tx)

gives an isomorphism of τ ⊕ ν with Sn−1 × Rn. Since the normal bundle ν is
trivial, this shows that τ is stably trivial.

But there are also examples where both bundle are nontrivial whereas their
Whitney sum is trivial.

Example 4.17. Let γ1n be the canonical line bundle on RPn. Then the map
(ℓ, v, w) 7→ (ℓ, v + w) for v ∈ ℓ and w⊥ℓ defines an isomorphism γ1n ⊕ (γ1n)

⊥ ∼=
RPn × Rn+1.

Example 4.18. Specializing the previous example to the case n = 1, we see that

γ11 ⊕ (γ11)
⊥ ∼= RP1 × R2 ∼= S1 × R2.

The map that rotates a vector by 90 degrees defines an isomorphism between
(γ11)

⊥ and γ11 . Since γ11 is isomorphic to the Möbius bundle over S1, this shows
that the direct sum of the Möbius bundle with itself is the trivial bundle.
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5. Euclidean bundles, orthogonal complements and orientation

Recall that we defined the Whitney sum of two bundles:

Let ξ1, ξ2 be two vector bundles over the same space B. Let

d : B → B ×B

denote the diagonal embedding. The bundle d∗(ξ1 × ξ2) over B is called the
Whitney sum of ξ1 and ξ2, and will be denoted ξ1 ⊕ ξ2. Each fiber Eb(ξ1 ⊕ ξ2) is
canonically isomorphic to the direct sum of the fibers Eb(ξ1)⊕ Eb(ξ2).

Definition 5.1. Consider two vector bundles ξ and η over the same base space
B with E(ξ) ⊂ E(η). Then ξ is a sub-bundle of η, written ξ ⊂ η, if each fiber
Eb(ξ) is a sub-vector space of the corresponding fiber Eb(η).

Lemma 5.2. Let ξ1 and ξ2 be sub-bundles of η such that each vector space Eb(η) is
equal to the direct sum of the sub-spaces Eb(ξ1) and Eb(ξ2). Then η is isomorphic
to the Whitney sum ξ1 ⊕ ξ2.

Proof. Define a map

f : E(ξ1 ⊕ ξ2) → E(ξ) by f(b, e1, e2) = e1 + e2.

The lemma of the previous lecture shows that f is an isomorphism of bundles
since it maps the fibers isomorphically onto each other. □

5.1. Euclidean vector bundles. Let V be a finite dimensional real vector space.
Recall that a real valued function q : V → R is called quadratic if q satisfies
q(av) = a2q(v) for every v ∈ V and a ∈ R and the map b : V ×V → R defined by

b(v,w) :=
1

2
(q(v + w)− q(v)− q(w))

is a symmetric bilinear pairing. We also write v · w for b(v,w). We have in
particular: v · v = q(v). The quadratic function q is called positive definite if
q(v) > 0 for every v ̸= 0.

Definition 5.3. A Euclidean vector space is a real vector space V together with
a positive definite quadratic function

q : V → R.
The real number v ·w is called inner product of the vectors v and w. The number
q(v) = v · v is also denoted by |v|2.

Definition 5.4. A Euclidean vector bundle is a real vector bundle ξ together
with a continuous map

q : E(ξ) → R
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such that the restriction of q to each fiber of ξ is positive definite and quadratic.
The map q is called a Euclidian metric on ξ.

In the case of the tangent bundle τM of a smooth manifold, a Euclidian metric
q : DM → R is called a Riemannian metric, and M together with q is called a
Riemannian manifold.

Example 5.5. a) The trivial bundle ϵnB on a space B can be given the Euclidean
metric

q(b,x) = x21 + . . .+ x2n.

b) Since the tangent bundle of Rn is trivial it follows that the smooth manifold
Rn possesses a standard Riemannian metric. Moreover, any smooth manifold
M ⊂ Rn, the composition

DM ⊂ DRn q−→ R
makes M into a Riemannian manifold.

Lemma 5.6. Let ξ be a trivial bundle of dimension n over a space B and let q
be any Euclidean metric on ξ. Then there exist n sections s1, . . . , sn of ξ which
are normal and orthogonal in the sense that

si(b) · sj(b) = δij

for each b ∈ B where δij is the Kronecker symbol.

Proof. The lemma of the previous lecture shows that ξ admits n nowhere depen-
dent sections. Pointwise application of the Gram-Schmidt orthonormalization
process yields orthonormal sections. □

5.2. Orthogonal complements. Given a sub-bundle ξ ⊂ η, is there a com-
plementary sub-bundle so that η splits as a Whitney sum? If η is a Euclidean
bundle, we can always find such a complement. We can construct it as follows.

Let Eb(ξ
⊥) denote the subspace of Eb(η) consisting of all vectors v such that

v · w = 0 for all Eb(ξ). Let E(ξ
⊥) denote the union of all Eb(ξ

⊥).

Theorem 5.7. The space E(ξ⊥) is the total space of a sub-bundle ξ⊥ ⊂ η, and η
is isomorphic to the Whitney sum ξ⊕ ξ⊥. The bundle ξ⊥ is called the orthogonal
complement of ξ in η.

Proof. It is clear that each fiber Eb(η) is the direct sum of the subspaces Eb(ξ)
and Eb(ξ

⊥). Thus it remains to show the local triviality of ξ⊥. The lemma of the
previous lecture then implies that the map (v,w) 7→ v + w is an isomorphism of
vector bundles.
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Given any point b0 ∈ B, let U be a neighborhood of b0 which is sufficiently
small that both ξ|U and η|U are trivial. Since ξ|U is trivial, we can choose
orthonormal sections s1, . . . , sm of ξ|U . We may enlarge this set of sections to a
set of n independent local sections of η|U by first choosing s′m+1, . . . , s

′
n in the fiber

Eb0(η). By the continuity of the determinant function, there is a neighborhood
V ⊂ U of b0 such that s1(b), . . . , sm(b), s

′
m+1(b), . . . , s

′
n(b) are linearly independent

for all b ∈ V and such that the si(b) vary continuously with b in V . Applying
the Gram-Schmidt orthonormalization process to s1, . . . , sm, s

′
m+1, . . . , s

′
n in each

fiber to obtain new sections s1, . . . , sn. The formulae for this process show that
the si vary continuously with b ∈ V . We can now define a trivialization

h : V × Rn−m → E(ξ⊥)

by the formula
h(b,x) = x1sm+1(b) + . . .+ xn−msn(b).

□

5.3. Stably trivial bundles. The direct sum of two trivial bundles is of course
again trivial. But the direct sum of two nontrivial bundles can also be trivial. If
one bundle is trivial, this phenomenon has been given a name.

Definition 5.8. A vector bundle ξ over B is called stably trivial if the direct sum
ξ ⊕ ϵn is a trivial bundle for some n.

Example 5.9. The direct sum of the tangent bundle τ and the normal bundle
ν to Sn−1 in Rn is the trivial bundle Sn−1 × Rn. For the elements of the direct
sum τ ⊕ ν are triples (x,v,tx) ∈ Sn−1 × Rn × Rn with x⊥v, and the map

(x, v, tx) 7→ (x, v + tx)

gives an isomorphism of τ ⊕ ν with Sn−1 × Rn. Since the normal bundle ν is
trivial, this shows that τ is stably trivial.

But there are also examples where both bundle are nontrivial whereas their
Whitney sum is trivial.

Example 5.10. Let γ1n be the canonical line bundle on RPn. Then the map
(ℓ, v, w) 7→ (ℓ, v + w) for v ∈ ℓ and w⊥ℓ defines an isomorphism γ1n ⊕ (γ1n)

⊥ ∼=
RPn × Rn+1.

Example 5.11. Specializing the previous example to the case n = 1, we see that

γ11 ⊕ (γ11)
⊥ ∼= RP1 × R2 ∼= S1 × R2.

The map that rotates a vector by 90 degrees defines an isomorphism between
(γ11)

⊥ and γ11 . Since γ11 is isomorphic to the Möbius bundle over S1, this shows
that the direct sum of the Möbius bundle with itself is the trivial bundle.
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5.4. Oriented bundles. We start with a first working definition of orientation
of a vector bundle. Later we will discuss orientations in a more general context
and relate it elements in the cohomology groups of the total space.

Recall that an orientation of a real vector space V of dimension n > 0 is an
equivalence class of bases, where two ordered bases v1, . . . , vn and v′1, . . . , v

′
n are

said to be equivalent if and only if the matrix (aij) defined by the equation

v′i =
∑

aijvj

has positive determinant. Evidently every such vector space V has precisely two
distinct orientations.

Example 5.12. The vector space Rn has a canonical orientation corresponding
to its canonical ordered basis.

Definition 5.13. Let ξ be a real vector bundle given by the map π : E → B.
An orientation of ξ is a function assigning an orientation to each fiber in such a
way that near each point of B there is a local trivialization h : U ×Rn → π−1(U)
carrying the canonical orientation of Rn in the fibers of U×Rn to the orientations
of the fibers in π−1(U).

An oriented vector bundle ξ is a real vector bundle together with a choice of
orientation.

Note: Not all bundles can be oriented.

Example 5.14. a) Every trivial bundle is orientable. Hence the existence of an
orientation is a necessary condition for triviality.

b) The Möbius bundle is not orientable.

We will see in the next lecture that the Stiefel-Whitney class measures exactly
if a bundle is orientable or not.
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6. Stiefel–Whitney classes and embedding problems

This was a guest lecture by Mike Hopkins. Unfortunately, there are no notes
available.

7. Stiefel–Whitney classes of projective spaces

Our next goal is to apply Stiefel–Whitney classes to prove the following impor-
tant result by Stiefel.

7.1. Division algebras and projective spaces.

Theorem 7.1. Suppose that there is a structure of a division algebra on Rn.
Then the projective space Pn−1 is parallelizable. In particular, n must be a power
of 2.

Remark 7.2. In fact, we know that there is the much stronger result that a
division algebra structure exists on Rn if and only if n = 1, 2, 4, 8. But to prove
this final result we need stronger techniques. So for a moment let’s be modest
and see how the methods we know so far lead to a proof of this algebraic result.

7.2. Stiefel–Whitney classes of projective spaces.

Example 7.3. Stiefel–Whitney classes are not fine enough to decide if the tan-
gent bundle of a sphere is trivial or not. For the tangent bundle of a sphere is
stably trivial, hence w(Sn) = w(τSn) = 1.

Lemma 7.4. The total Stiefel–Whitney class of the canonical bundle γ1n over Pn
is given by

w(γ1n) = 1 + a

where a denotes the nonzero element of H1(Pn;Z/2).

Proof. The standard inclusion j : P1 → Pn is clearly covered by a bundle map
from γ11 to γ1n. Therefore

j∗w1(γ
1
n) = w1(γ

1
1) ̸= 0.

Hence w1(γ
1
n) cannot be zero, hence it must be equal to a. Since γ1n is a line

bundle, the first axiom for Stiefel–Whitney classes tells us that the higher classes
must be zero. □
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Example 7.5. The canonical line bundle γ1n over Pn is contained as a sub-bundle
in the trivial bundle ϵn+1. Let γ⊥ denote the orthogonal complement of γ1n in ϵ

n+1.
The total space E(γ⊥) consists of all pairs

({±x}, v) ∈ Pn × Rn+1

with v orthogonal to x. Claim:

w(γ⊥) = 1 + a+ a2 + . . .+ an.

For: Since γ1n ⊕ γ⊥ is trivial we have

w(γ⊥) = w̄(γ1n) = (1 + a)−1 = 1 + a+ a2 + . . .+ an.

In particular, we see that it is possible that all of the n Stiefel–Whitney classes
of an Rn-bundle can be non-zero.

Lemma 7.6. The tangent bundle τ of Pn is isomorphic to Hom(γ1n,γ
⊥).

Proof. Let L be a line through the origin in Rn+1, intersecting Sn in the points
±x, and let L⊥ ⊂ Rn+1 be the complementary n-plane. Let f : Sn → Pn denote
the canonical map f(x) = {±x}. Note that the two tangent vectors (x,v) and
(−x,− v) in DSn both have the same image under the map

Df : DSn → DPn

which is induced by f . Thus the tangent manifold DPn can be identified with
the set of pairs {(x,v), (−x,− v)} satisfying

x · x = 1, v · v = 0.

But each such pair determines, and is determined by, a linear mapping

ℓ : L→ L⊥,

where
ℓ(x) = v.

Thus the tangent space of Pn at {±x} is canonically isomorphic to the vector space
Hom(L,L⊥). It follows that the tangent vector bundle τ = τPn is isomorphic to
the bundle Hom(γ1n,γ

⊥). □

Let us compute the total Stiefel–Whitney class w(Pn). We cannot use the
previous formula for τ , since we do not a formula that relates the Stiefel–Whitney
classes of Hom(γ1n,γ

⊥), γ1n, and γ
⊥. Instead we do the following.

Theorem 7.7. the Whitney sum τ ⊕ ϵ1 is isomorphic the (n + 1)-fold Whitney
sum γ1n ⊕ γ1n ⊕ . . .⊕ γ1n. Hence the total Stiefel–Whitney class of Pn is given by

w(Pn) = (1 + a)n+1 = 1 +

(
n+ 1
1

)
a+

(
n+ 1
2

)
a2 + . . .+

(
n+ 1
n

)
an.
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Proof. The bundle Hom(γ1n, γ
1
n) is trivial since it is a line bundle with a canonical

nowhere zero section. Therefore

τ ⊕ ϵ1 ∼= Hom(γ1n, γ
⊥)⊕ Hom(γ1n, γ

1
n).

But the latter is isomorphic to

Hom(γ1n, γ
⊥ ⊕ γ1n)

∼= Hom(γ1n, ϵ
n+1),

and therefore it is isomorphic to the (n+ 1)-fold sum

Hom(γ1n, ϵ
1 ⊕ . . .⊕ ϵ1) ∼= Hom(γ1n, ϵ

1)⊕ . . .⊕ Hom(γ1n, ϵ
1).

But the bundle Hom(γ1n, ϵ
1) is isomorphic to γ1n, since γ

1
n has a Euclidean metric.

This proves that

τ ⊕ ϵ1 ∼= γ1n ⊕ . . .⊕ γ1n.

The Whitney product formula implies that w(τ) = w(τ ⊕ ϵ1) is equal to

w(γ1n) . . . w(γ
1
n) = (1 + a)n+1.

The binomial formula now completes the proof. □

Corollary 7.8. The class w(Pn) is equal to 1 if and only if n+1 is a power of 2.
Thus the only projective spaces which can be parallelizable are P1,P3,P7,P15, . . ..

Proof. The identity (a+ b)2 = a2 + b2 modulo 2 implies that

(1 + a)2
r

= 1 + a2
r

.

Therefore if n+ 1 = 2r then

w(Pn) = (1 + a)n+1 = 1 + an+1 = 1.

Conversely if n+ 1 = 2rm with m odd, m> 1, then

w(Pn) = (1 + a)n+1 = (1 + a2
r
)m

= 1 +ma2
r
+ m(m−1

2
a2·2

r
+ . . . ̸= 1,

since 2r < n+ 1. □

7.3. Proof of Stiefel’s theorem. Assume there is a bilinear product operation

p : Rn × Rn → Rn

without zero divisors.

Let b1, . . . , bn be the standard basis for the vector space Rn. The correspon-
dence

y 7→ p(y,b1)
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defines an isomorphism of Rn onto itself, since p has no zero divisors. Hence the
formula

vi(p(y,b1)) = p(y,bi)

defines a linear transformation

vi : Rn → Rn.

Note that we have v1(x) = x, since v1(p(y,b1)) = p(y,b1) by definition. More-
over, for x ̸= 0, the vectors v1(x), . . . , vn(x) are linearly independent. For if there
was a nontrivial relation, for some y ∈ Rn with x = p(y,b1),

0 =
∑
i

λivi(x) =
∑
i

λip(y,bi) = p(y,
∑
i

λibi)

this implied

0 =
∑
i

λibi

which implies λi = 0 for all i.

Now let L be a line through the origin. Each vi defines a linear transformation

v̄i : L→ L⊥

as follows. For x ∈ L, let v̄i(x) denote the image of vi(x) under the orthogonal
projection

Rn → L⊥.

Since v1(x) = x, we have v̄1 = 0. But the v̄2, . . . , v̄n are everywhere linearly
independent, since the v2, . . . , vn are everywhere linearly independent. Hence the
v2, . . . , vn give rise to n− 1 linearly independent sections of the bundle

Hom(γ1n, γ
⊥).

Since this bundle is isomorphic the tangent bundle τPn−1 of Pn−1, we see that
τPn−1 is trivial. This completes the proof of Theorem 7.1.



NOTES ON VECTOR BUNDLES AND THE ADAMS CONJECTURE 27

8. Existence and uniqueness of Stiefel–Whitney classes I

Before we show that Stiefel–Whitney classes with the described properties ac-
tually exist we are going to see another interesting application of Stiefel–Whitney
classes.

8.1. Immersions of projective spaces into Euclidean space. Stiefel-Whitney
classes also help us decide whether a manifold can be immersed into a Euclidean
space. For if an n-dimensional manifold M can be immersed into Rn+k then

1 = w(τRn+k) = w(ν ⊕ τM)

where ν denotes the normal bundle of the embedding M ⊂ Rn+k. Hence by the
Whitney product formula

wi(ν) = w̄i(M)

where w̄i(M) denotes the ith component of the multiplicative inverse of the total
Stiefel–Whitney class w(M). Since ν is a k-dimensional bundle, this shows

w̄i(M) = 0 for i > k.

Example 8.1. A typical example is the real projective space P9. By our calcu-
lations in the previous lecture we know

w(P9) = (1 + a)10 = 1 +
9∑
i=1

(
10
i

)
ai = 1 + a2 + a8

since all other terms have an even coefficient. As a multiplicative inverse we get

w̄(P9) = 1 + a2 + a4 + a6,

for
(1 + a2 + a8)(1 + a2 + a4 + a6)

= 1 + a2 + a4 + a6 + a2 + a4 + a6 + a8 + a8 + a10 + a12 + a14

= 1 + 2a2 + 2a4 + 2a6 + 2a8

= 1.

Since w̄6(P9) ̸= 0, k must be at least 6 if P9 can be immersed into R9+k.

If n = 2r is a power of 2, then

w(Pn) = (1 + a)2
r+1 = (1 + an)(1 + a) = 1 + a+ an

and

w̄(Pn) = 1 + a+ a2 + . . .+ an−1
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since
(1 + a+ a2

r
)(1 + a+ . . .+ an−1)

= 1 + a+ . . .+ an−1 + a+ a2 + . . .+ an + an

= 1 + 2(a+ a2 + . . .+ an)
= 1.

Together with the previous argument we get the following classical result.

Theorem 8.2. If P2r can be immersed in R2r+k, then k must be at least 2r − 1.

Example 8.3. Since the theorem tells us that P8 cannot be immersed in R14, it
follows that P9 cannot be immersed in R14 either. This gives another proof that
the minimal dimension of a Euclidean space in which P9 can be immersed is 15.

8.2. Existence of Stiefel-Whitney classes. We still need to show that there
cohomology classes that satisfy the axioms of Stiefel-Whitney classes.

Theorem 8.4. There is a unique sequence of functions w1, w2, . . . assigning to
each real vector bundle E → B over a a space B a class wi(E) ∈ H i(B;Z/2),
depending only on the isomorphism type of E, such that
a) wi(f

∗E) = f ∗(wi(E)) for a pullback along a map f : B′ → B which is covered
by a bundle map.
b) w(E1 ⊕ E2) = w(E1)w(E2) where w = 1 + w1 + w2 + . . . ∈ H∗(B;Z/2).
c) wi(E) = 0 if i > dimE.
d) For the canonical line bundle γ11 on P1, w1(γ

1
1) is non-zero.

There are different methods to prove this theorem. We will prove it using the
following fundamental result of Leray and Hirsch on the cohomology of a fiber
bundle. Roughly speaking, a fiber bundle is the same thing as a vector bundle
except that we replace Rn by any topological space F .

Let p : E → B be a fiber bundle with fiber F . Then we can make H∗(E;Z/2)
into a module over the ringH∗(B;Z/2) by setting αβ = p∗(α)β for α ∈ H∗(B;Z/2)
and β ∈ H∗(E;Z/2). The Leray–Hirsch theorem then tells us that H∗(E;Z/2) is
a free H∗(B;Z/2)-module provided that for each fiber F the inclusion ι : F ↪→ E
induces a surjection on H∗(F ;Z/2) and Hn(F ;Z/2) is a finite dimensional Z/2-
vector space for each n. A basis for H∗(E;Z/2) as a H∗(B;Z/2)-module can be
chosen as any set of elements in H∗(E;Z/2) that map to a basis in H∗(F ;Z/2)
under ι∗.

The precise statement of the Leray–Hirsch theorem is:
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Theorem 8.5. Let F
ι−→ E

p−→ B be a fiber bundle such that, for some commuta-
tive ring R,
a) Hn(F ;R) is a finitely generated free R-module for each n,
b) and there exist classes cj ∈ Hkj(E;R) whose restrictions ι∗(cj) form a basis
for H∗(F ;R) in each fiber F .
Then the map φ : H∗(B;R)⊗RH

∗(F ;R) → H∗(E;R),
∑

ij bi⊗ι∗(xj) 7→
∑

ij p
∗(bi)xj,

is an isomorphism.

Now let us prove Theorem 9.1. For simplicity, we will assume that the base
base is paracompact.

Let ξ be a vector bundle of dimension n given by the map π : E → B. It comes
along with a projective bundle P(ξ) given by the induced map P(π) : P(E) → B.
It is a fiber bundle whose fiber at b in B are the spaces of all lines through the
origin in the fiber Eb(ξ). The map P(π) is the natural projection sending each
line in π−1(b) to b. We topologize P(E) as a quotient of the complement of the
zero section of E modulo scalar multiplication in each fiber. Over a neighborhood
U in B where E is a product U ×Rn, this quotient is U × Pn−1. Hence P(ξ) is a
fiber bundle over B with fiber Pn−1.

Now we would like to apply the Leray–Hirsch theorem to the fiber bundle
P(ξ). Therefore we need classes xi ∈ H i(P(E);Z/2) restricting to generators of
H i(Pn−1;Z/2) in each fiber Pn−1 for i = 0, . . . , n− 1.

We will use the following lemma.

Lemma 8.6. There is a map g : E → R∞ =
⋃
nRn that is a linear injection

on each fiber. Any two such maps are homotopic through maps that are linear
injections on fibers.

Proof. Since B is paracompact there is a countable open cover Uj of B such
that E is trivial over each Uj and there is a partition of unity {φj} with φj
supported on Uj. Let gj : π

−1(Uj) → Rn be the composition of a trivialization
π−1(Uj) → Uj × Rn with the projection onto Rn. The map

(φjπ)gj : π
−1(Uj) → Rn, v 7→ φj(π(v))gj(v)

extends to a map E → Rn that is zero outside π−1(Uj). Near each point of B
only finitely many φj’s are nonzero, and at least one φj is nonzero. Hence these
extended maps (φjπ)gj are the coordinates of a map g : E → (Rn)∞ = R∞ that
is a linear injection on each fiber.
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Now let g0 and g1 be two such maps that are linear injections on fibers. Then
let Lt be the homotopy

Lt : R∞ → R∞, Lt(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(x1,0,x2, 0, . . .).

For each t, this is a linear map whose kernel is easily computed to be 0. Hence Lt
is injective. Composing Lt with g0 moves the image of g0 into the odd-numbered
coordinates. Similarly, we can move the image of g1 into the even-numbered
coordinates. By abuse of notation we denote the resulting shifted maps still by
g0 and g1 respectively. Then we set

gt = (1− t)g0 + tg1.

This is a linear map which is injective on fibers for each t since g0 and g1 are
linear and injective on fibers. □

Given the linear injection g of the lemma, we can projectivize it by delet-
ing zero vectors and then take the quotient by scalar multiplication. This gives
us a map P(g) : P(E) → P∞. Let y be a generator of H1(P∞;Z/2) and let
x = P(g)∗(y) ∈ H1(P(E);Z/2). Then the powers xi := xi ∈ H i(P(E);Z/2) for
i = 0, . . . , n− 1 are the desired classes since a linear injection Rn ↪→ R∞ induces
an embedding Pn−1 ↪→ P∞ for which y pulls back to a generator of H1(Pn−1;Z/2)
(because the classes are nonzero).

Note that the classes xi do not depend on the choice of g. For any two linear
injections Rn ↪→ R∞ are homotopic through linear injections, so the induced em-
beddings Pn−1 ↪→ P∞ of different fibers of P(E) are all homotopic. The second
assertion of the lemma then implies the claim.

Hence, by the Leray–Hirsch theorem, H∗(P(E);Z/2) is a free H∗(B;Z/2)-
module with basis 1, x, . . . , xn−1. Consequently, xn can be expressed uniquely
as a linear combination of these basis elements with coefficients in H∗(B;Z/2).
Thus there is a unique relation of the form

xn + w1(E)x
n−1 + . . .+ wn(E) = 0

for certain classes wi(E) ∈ H i(B;Z/2). Together with the convention wi(E) = 0
for i > n and w0(E) = 1 this is our definition of the Stiefel–Whitney classes of
E. It remains to show that these classes satisfy the desired properties.



NOTES ON VECTOR BUNDLES AND THE ADAMS CONJECTURE 31

9. Existence and uniqueness of Stiefel–Whitney classes II

We continue the proof of the following theorem that shows that there exist
unique Stiefel–Whitney classes.

Theorem 9.1. There is a unique sequence of functions w1, w2, . . . assigning to
each real vector bundle E → B over a a space B a class wi(E) ∈ H i(B;Z/2),
depending only on the isomorphism type of E, such that
a) wi(f

∗E) = f ∗(wi(E)) for a pullback along a map f : B′ → B which is covered
by a bundle map.
b) w(E1 ⊕ E2) = w(E1)w(E2) where w = 1 + w1 + w2 + . . . ∈ H∗(B;Z/2).
c) wi(E) = 0 if i > dimE.
d) For the canonical line bundle γ11 on P1, w1(γ

1
1) is non-zero.

9.1. Existence of Stiefel–Whitney classes. In the previous lecture we defined
the Stiefel–Whitney classes wi(E) for any vector bundle π : E → B. Recall that
for simplicity we assume that the base space B is paracompact. The idea was
the following.

Our bundle induces a map g : E → R∞ which is linear and injective on each
fiber. We can projectivize it by deleting zero vectors and then take the quotient
by scalar multiplication. This gives us a map P(g) : P(E) → P∞. Let y be a gen-
erator of H1(P∞;Z/2) and let x = P(g)∗(y) ∈ H1(P(E);Z/2). Then the powers
xi := xi ∈ H i(P(E);Z/2) for i = 0, . . . , n− 1 are the desired classes since a linear
injection Rn ↪→ R∞ induces an embedding Pn−1 ↪→ P∞ for which y pulls back to
a generator of H1(Pn−1;Z/2) (because the classes are nonzero).

Note that the classes xi do not depend on the choice of g. For any two linear
injections Rn ↪→ R∞ are homotopic through linear injections, so the induced em-
beddings Pn−1 ↪→ P∞ of different fibers of P(E) are all homotopic. The second
assertion of the lemma then implies the claim.

Hence, by the Leray-Hirsch theorem, H∗(P(E);Z/2) is a free H∗(B;Z/2)-
module with basis 1, x, . . . , xn−1. Consequently, xn can be expressed uniquely
as a linear combination of these basis elements with coefficients in H∗(B;Z/2).
Thus there is a unique relation of the form

xn + w1(E)x
n−1 + . . .+ wn(E) = 0

for certain classes wi(E) ∈ H i(B;Z/2). Together with the convention wi(E) = 0
for i > n and w0(E) = 1 this is our definition of the Stiefel-Whitney classes of E.
It remains to show that these classes satisfy the desired properties.
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a) Consider a pullback bundle f ∗E = E ′:

E ′ f ′ //

π′

��

E

π
��

B′ f // B

If g : E → R∞ is a map that is a linear injection on fibers then so is gf ′. It follows
that P(f ′)∗ takes the canonical class x = x(E) in H1(P(E);Z/2) to the canonical
class x(E ′) in H1(P(E ′);Z/2). Then
P(f ′)∗(

∑
i P(π)∗(wi(E)) · x(E)n−i) =

∑
i[P(f ′)∗ ◦ P(π)∗(wi(E))] · [P(f ′)∗(x(E)n−i)]

=
∑

i P(π′)∗ ◦ f ∗(wi(E) · x(E ′))n−i

in H∗(E ′;Z/2). This shows that the relation

x(E)n + w1(E)x(E)
n−1 + . . .+ wn(E) = 0 defining wi(E)

pulls back to the relation

x(E ′)n + f ∗w1(E)x(E
′)n−1 + . . .+ f ∗wn(E) = 0 defining wi(E

′).

By the uniqueness of this relation in the free H∗(B;Z/2)-module H∗(E;Z/2), we
get wi(E

′) = f ∗(wi(E)).

b) The inclusions of E1 and E2 into E1 ⊕ E2 give inclusions of P(E1) and
P(E2) into P(E1⊕E2) with P(E1)∩P(E2) = ∅. Let U1 = P(E1⊕E2)−P(E1) and
U2 = P(E1⊕E2)−P(E2). These are open sets in P(E1⊕E2) which cover P(E1⊕E2)
and that deformation retract onto P(E1) and P(E2) respectively. This means that
the inclusions P(E1) ↪→ U2 and P(E2) ↪→ U1 are homotopy equivalences.

A map g : E1⊕E2 → R∞ which is a linear injection on fibers restricts to such a
map on E1 and E2. By the way we constructed the canonical classes, this implies
that the canonical class x ∈ H1(P(E1 ⊕ E2;Z/2) for E1 ⊕ E2 restricts to the
canonical classes for E1 and E2.

If E1 and E2 have dimensions m and n, we consider the classes

ω1 =
∑
j

wj(E1)x
m−j and ω2 =

∑
j

wj(E2)x
n−j in H∗(P(E1 ⊕ E2);Z/2).

Their cup product is

ω1 · ω2 =
∑
j

[
∑
r+s=j

wr(E1)wr(E2)]x
m+n−j.

By the definition of the classes wj(E1), the class ω1 restricts to zero inH
m(P(E1);Z/2).

Hence ω1 pulls back to a class in the relative group

Hm(P(E1 ⊕ E2),P(E1);Z/2) ∼= Hm(P(E1 ⊕ E2), U2;Z/2).
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and ω2 pulls back to a class in the relative group

Hn(P(E1 ⊕ E2),P(E2);Z/2) ∼= Hn(P(E1 ⊕ E2), U1;Z/2).

The following commutative diagram then shows that ω1 · ω2 = 0:

Hm(P(E1 ⊕ E2), U2;Z/2)×Hn(P(E1 ⊕ E2), U1;Z/2) //

��

Hm+n(P(E1 ⊕ E2), U1 ∪ U2;Z/2) = 0

��
Hm(P(E1 ⊕ E2);Z/2)×Hn(P(E1 ⊕ E2);Z/2) // Hm+n(P(E1 ⊕ E2);Z/2).

This shows that

ω1 · ω2 =
∑
j

[
∑
r+s=j

wr(E1)wr(E2)]x
m+n−j = 0

is the defining relation for the Stiefel–Whitney classes of E1 ⊕ E2. Thus

wj(E1 ⊕ E2) =
∑
r+s=j

wr(E1)wr(E2).

c) holds by definition.

d) Recall that the canonical line bundle γ1 on P∞ is given by

E(γ1) = {(ℓ,v) ∈ P∞ × R∞|v ∈ ℓ}.
The map P(π) is the identity in this case, i.e. γ1 is equal to its own projective
bundle. The map g : E → R∞ which is a linear injection on fibers can be taken
to be

g(ℓ,v) = v.

So P(g) is also the identity and x(E) is a generator of H1(P∞;Z/2) and restricts
to the generator in H1(P1;Z/2). This proves the existence of Stiefel–Whitney
classes.

9.2. Uniqueness. To show the uniqueness we will use an important property of
vector bundles, the splitting principle:

Proposition 9.2. For each vector bundle π : E → B there is a space F (E) and
a map P : F (E) → B such that the pullback p∗(E) → F (E) splits as a direct sum
of line bundles, and p∗ : H∗(B;Z/2) → H∗(F (E);Z/2) is injective.

Now we can finish the proof of Theorem 9.1 and show the uniqueness of Stiefel–
Whitney classes. Property d) determines w1(γ

1) for the canonical line bundle
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γ1 → P∞. Property c) then determines all the wi(γ
1)’s. We will now use the

following property of the line bundle γ1.

Remark 9.3. The canonical line bundle γ1 on P∞ is the universal line bundle in
the following sense. Given a line bundle ξ, then there is a bundle map f : ξ → γ1

which is unique up to homotopy. For let ξ be given by a map π : E → B. We
have seen in the previous lecture that we can find a map g : E → R∞ that is
linear and injective on fibers. Then we can define f by

f(e) = (g(fiber through e), g(e)) ∈ γ1.

Using the universality of γ1, we see that property a) therefore determines the
classes wi for all line bundles. Property b) extends this to sums of line bundles.
Finally, the splitting principle implies that the w′

is are determined for all bundles.
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10. Splitting principle and the projective bundle formula

There are two leftovers from the proof of the existence and uniqueness of Stiefel–
Whitney classes. One is the splitting principle, the other one is the Leray–Hirsch
theorem.

10.1. The splitting principle.

Proposition 10.1. For each vector bundle π : E → B there is a space F (E) and
a map p : F (E) → B such that the pullback p∗(E) → F (E) splits as a direct sum
of line bundles, and p∗ : H∗(B;Z/2) → H∗(F (E);Z/2) is injective.

Proof. Consider the pullback P(π)∗(E) of E via the map P(π) : P(E) → B. This
pullback contains a natural one-dimensional sub-bundle

L = {(ℓ,v) ∈ P(E)× E|v ∈ ℓ}.

Assuming B is paracompact (although this holds for any B) we can equip E with
an inner product. This inner product pulls back to an inner product on P(π)∗(E).
Hence we get a splitting of the pullback as a sum L ⊕ L⊥. The orthogonal
bundle L⊥ now has dimension less than E. By the Leray–Hirsch theorem we
know H∗(P(E);Z/2) is the free H∗(B;Z/2)-module with basis 1, x, . . . , xn−1. In
particular, the induced map

H∗(B;Z/2) → H∗(P(E);Z/2)

is injective since one of the basis elements is 1.
Now we can repeat this construction for the bundle L⊥ → P(E) instead of E → B.
After finitely many steps we obtain the desired result. □

Remark 10.2. We can describe F (E) as follows. The complement L⊥ consist of
pairs (ℓ,v) ∈ P(E) × E with v⊥ℓ. At the next stage we construct P(L⊥), whose
points are pairs (ℓ,ℓ′) where ℓ and ℓ′ are orthogonal lines in E. Continuing this
way, we see that the final space F (E) is the space of all orthogonal splittings
ℓ1 ⊕ . . . ⊕ ℓn of fibers of E as sums of lines, and the vector bundle over F (E)
consists of all n-tuples of vectors in these lines.

In the previous proof we used the following result.

Proposition 10.3. Let B be a paracompact space and ξ a real vector bundle
given by the map π : E → B. Then ξ can be given the structure of a Euclidean
vector bundle.

Proof. See problem set 1. □
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10.2. The Leray–Hirsch theorem. The precise statement of the Leray-Hirsch
theorem is:

Theorem 10.4. Let F
ι−→ E

p−→ B be a fiber bundle such that for a principal ideal
ring R,
a) Hn(F ;R) is a finitely generated free R-module for each n,
b) and there exist classes cj ∈ Hkj(E;R) for j = 1, . . . , r whose restrictions ι∗(cj)
form a basis for the R-module ⊕nH

n(F ;R) in each fiber F .
Then the map φ : H∗(B;R)⊗RH

∗(F ;R) → H∗(E;R),
∑

ij bi⊗ι∗(cj) 7→
∑

ij p
∗(bi)cj,

is an isomorphism.

Remark 10.5. 1. Note that the theorem makes only an assertion on the structure
of H∗(E;R) as an H∗(B;R)-module. It does not specify the ring structure of
H∗(E;R). In fact, there are examples where the map

φ : H∗(B;R)⊗R H
∗(F ;R) → H∗(E;R)

is not a ring isomorphism.

2. An example of a fiber bundle where the assertion of the theorem does not
hold is the Hopf bundle

S1 → S3 f−→ S2.

(Recall that f can be defined as f : S3 → CP1 = S2, viewing S3 as the unit
sphere in the complex plane C2. Such an f is the attaching map in the complex
projective plane CP2 = S2 ∪f e4 where e4 is a disk of dimension 4.)

We know that H∗(S3;R) is not isomorphic to H∗(S2;R)⊗RH
∗(S1;R). For we

have
H1(S3;R) = 0 but H0(S2;R)⊗R H

1(S1;R) ∼= R.

The assumptions of the theorem require that the map ι∗ : H∗(E;R) → H∗(F ;R)
is surjective in each degree. This is obviously not the case for the Hopf bundle.

Sketch of a proof of Theorem 10.4 for compact base spaces:

Throughout the proof we write H∗(X) for H∗(X;R). We only sketch a proof
for the case that B is compact, though the theorem holds for arbitrary base
spaces.

Let Ube an open subset of B such that there is a homeomorphism

h : EU := π−1(U) → U × F.

Let jU : EU ↪→ E be the natural inclusion and πU be the restriction of π to
U . Then the Künneth Theorem says that the map πU∗ : H

∗(U) → H∗(EU) is
injective and the elements j∗U(c1), . . . , j

∗
U(cr) form a basis of the H∗(U)-module

H∗(EU).
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Now assume that the theorem is true over the open subsets U , V and U ∩ V .
We want to show that it is also true over U ∪ V . Therefore we introduce two
functors Kn(W ) and Ln(W ) on the open subsets W of B as follows. Let tj be an
indeterminant of degree kj. (The tj have no real meaning, they are just useful to
define something else.) We set

Kn(W ) :=
r∑
j=1

Hn−kj(W )tj, and L
n(W ) := Hn(EW ).

For every W we have the homomorphism

θW : Kn(W ) → Ln(W ),
∑
j

xjtj 7→
∑
j

π∗(xj)cj.

Then we convince ourselves that the theorem is true over W if and only if θW is
an isomorphism.

The functor W 7→ Ln(W ) is just the restriction of a functor which satisfies the
Mayer–Vietoris property. The functor W 7→ Kn(W ) is a direct sum of functors
which satisfy the Mayer–Vietoris property. Hence we have the following commu-
tative diagram with exact rows:

Kn−1(U)⊕Kn−1(V )

��

// Kn−1(U ∩ V )

��

// Kn(U ∪ V )

θU∪V

��

// Kn(U)⊕Kn(V )

��

// Kn(U ∩ V )

��
Ln−1(U)⊕ Ln−1(V ) // Ln−1(U ∩ V ) // Ln(U ∪ V ) // Ln(U)⊕ Ln(V ) // Ln(U ∩ V )

By our assumption the theorem is true for U , V and U ∩ V and hence the four
unlabelled vertical maps are isomorphisms. By the 5-Lemma, the map θU∪V is
thus an isomorphism too. Hence the theorem also holds over U ∪ V .

Now it remains to cover B by finitely many open sets B = U1 ∪ . . . ∪ Un such
that our bundle becomes trivial over each Ui. This completes the proof for a
compact base space.

More sophisticated arguments using the Serre spectral sequence associated to

the fibration sequence F
ι−→ E

p−→ B also prove the general case. A more elemen-
tary proof of the general statement can be found in Hatcher’s book (Theorem
4D.1).
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11. The Grassmannian manifold and the universal bundle

11.1. Representability of Vectk(B). In the previous lecture we used the fact
that the canonical line bundle γ1 over the (infinite) real projective space is uni-
versal among all line bundles in the sense that given a line bundle ξ there is a
bundle map ξ → γ1 which is unique up to homotopy. This bundle map comes
equipped with a homotopy class of maps B → P∞ where B denotes the base
space of ξ. In fact, there is a bijection

Vect1(B) ∼= [B,P∞]

between the set of isomorphism classes of real line bundles over B and the set of
homotopy classes of maps B → P∞.

We still need to prove this statement. In fact, we would like to show a general-
ization to k-dimensional bundles. For each k there is a real manifold, called the
Grassmannian manifold and denoted by Grk, with a k-dimensional real vector
bundle γk on Grk such that for any paracompact base space B the set of iso-
morphism classes of k-dimensional bundles over B is in bijection with the set of
homotopy classes of maps B → Grk:

Vectk(B) ∼= [B,Grk].

The bundle γk is called the universal k-dimensional vector bundle.

11.2. The Grassmannian. The Grassmannian manifold Grk(Rn+k) is the space
of k-planes in Rn+k. It can be identified with the quotient of the Stiefel manifold
Vk(Rn+k) of orthonormal sequences

[v1, . . . , vk]

of vectors vi ∈ Rn+k, modulo the equivalence relation

[v1, . . . , vk] ∼ [v1, . . . , vk] · T,

with T any orthogonal k × k-matrix.

Remark 11.1. The topology of the Stiefel manifold is given as follows. We can
consider Vk(Rn+k) as a subspace of the product Rn+k × . . . × Rn+k of k copies
of Rn+k. More precisely, Vk(Rn+k) is the subspace of Sn+k−1 × . . .× Sn+k−1 of k
copies of spheres Sn+k−1 given by all orthogonal k-tuples. It is a closed subspace
since orthogonality of two vectors can be expressed by an algebraic equation. In
particular, Vk(Rn+k) is compact, since the product of spheres is compact.

Now there is a natural surjective map

Vk(Rn+k) → Grk(Rn+k)
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sending an orthonormal sequence to the subspace it spans. We equip Grk(Rn+k)
with the quotient topology with respect to this surjection. In particular, Grk(Rn+k)
is compact as well.

Example 11.2. We already know one example of a Grassmannian. The Grass-
mannian Gr1(Rn+1) is just Pn, and the presentation described above is just the
representation of Pn as the quotient space of Sn by the antipodal action.

Proposition 11.3. The space Grk(Rn+k) is a manifold of dimension k · n.

Proof. Let V ⊂ Rn+k be a k-plane, and let W be the orthogonal complement of
V . Then the subspace U ⊂ Grk(Rn+k) consisting of k-planes V ′ with the property
that V ′ ∩W = {0} is an open neighborhood of V .

Note: To see that U is open it suffices to show that its preimage Ũ in Vk(Rn+k)
is open. The set Ũ consists of all orthonormal frames [v1, . . . , vk] such that the
p(v1), . . . , p(vk) are linearly independent where p is the projection

p : Rn+k → V.

WritingM for the k×k-matrix with column vectors p(v1), . . . , p(vk) we see that Ũ
consists of all frames such that the resulting M has non-zero determinant. Hence
Ũ is an open subset.

Thinking of V ′ ∈ U as the graph of a linear map V → W , gives a bijection

T : U → Hom(V,W )

of U with Hom(V,W ), which is a real vector space of dimension k · n.

The correspondence T is in fact a homeomorphism. For let

p : V ⊕W → V

be the orthogonal projection and let x1, . . . , xn be a fixed orthonormal basis for
V . Then each V ′ in U has a unique basis y1, . . . , yn such that

p(y1) = x1, . . . , p(yn) = xn.

The orthonormal frame [y1, . . . , yn] depends continuously on V ′. Moreover, the
y1, . . . , yn satisfy the identity

(1) yi = xi + T (V ′)xi

by definition of T and the choice of the yi’s. Hence, since yi depends continu-
ously on V ′, it follows that the image T (V ′)xi ∈ W depends continuously on V ′.
Therefore the linear transformation depends continuously on V ′.
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On the other hand the identity (1) shows that the n-frame [y1, . . . , yn] depends
continuously on T (V ′), and hence that V ′ depends continuously on T (V ′). Thus
the function T−1 is also continuous and T is a homeomorphism. □

The inclusions Rn+k ⊂ Rn+1+k ⊂ . . . induce inclusions

Grk(Rn+k) ⊂ Grk(Rn+1+k) ⊂ . . .

The infinite Grassmannian manifold is the union

Grk := Gr(R∞) =
⋃
n

Grk(Rn+k).

This is the set of all k-dimensional vector subspaces of R∞. The topology of Grk
is the direct limit topology, i.e., a subset of Grk is open (or closed) if and only if
its intersection with Grk(Rn+k) is open (or closed) as a subset of Grk(Rn+k) for
each n.

Once again, Gr1 is just the infinite real projective space P∞.

11.3. The canonical bundle. The Grassmannian Grk(Rn+k) is equipped with
a canonical k-dimensional vector bundle γk(Rn+k) defined as follows. Let

E = E(γk(Rn+k))

be the set of all pairs

(k-plane in Rn+k, vector in that k-plane).

The topology on E is the topology as a subset of Grk(Rn+k)×Rn+k. The projec-
tion map

π : E → Grk(Rn+k), is defined by π(V, v) = V,

and the vector space structure is defined by

t1(V, v1) + t2(V, v2) = (V, t1v1 + t2v2).

Over the infinite Grassmannian Grk, there is also a canonical bundle γk whose
total space is

E(γk) ⊂ Grk × R∞

the set of all pairs

(k-plane in R∞, vector in that k-plane)

topologized as a subset of the product Grk×R∞. The projection π : E(γk) → Grk
is given by π(V, v) = V .

Note that the bundles γ1(Rn+1) and γ1 are of course just the bundles γ1n on Pn
and γ1 on Pn respectively.
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Lemma 11.4. The just constructed bundles γk(Rn+k) and γk satisfy the local
triviality condition.

Proof. We start with γk(Rn+k). Let V ⊂ Rn+k be a k-plane, and let U be the open
neighborhood of V constructed in the proof of Proposition 11.3. The coordinate
homeomorphism

h : U × Rk ∼= U × V → π−1(U)

is defined as follows. Set h(V ′, x) := (V ′, y) where y denotes the unique vector in
V ′ which is carried into x by the orthogonal projection

p : Rn+k → V.

The identities

h(V ′, x) = (V ′, x+ T (V ′)x) and h−1(V ′, y) = (V ′, p(y))

show that h and h−1 are continuous.

For γk it suffices to note that an open neighborhood U for a k-plane V in
Grk is just the union of the neighborhoods of V in the Grk(Rn+k). Hence the
coordinate homeomorphisms just constructed fit together to give a coordinate
homeomorphism over U . The continuity follows from the fact that we use the
direct limit topology on Grk. □

Our next goal is to prove the following fundamental result.

Theorem 11.5. For a paracompact space B, the map [B,Grk] → Vectk(B),
[f ] 7→ f ∗(γk), is a bijection.

Remark 11.6. The infinite Grassmannian Grk is called the classifying space and
γk is called the universal bundle for k-dimensional real vector bundles.
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12. Representability of Vectk(B)

Our next goal is to prove the following fundamental result.

Theorem 12.1. For a paracompact space B, the map [B,Grk] → Vectk(B),
[f ] 7→ f ∗(γk), is a bijection.

Remark 12.2. The theorem justifies to call the infinite Grassmannian Grk is
the classifying space and γk is the universal bundle for k-dimensional real vector
bundles.

Example 12.3. Let τ be the tangent bundle to Sn in Rn+1. It is given by the
projection p : E(τ) → Sn where

E(τ) = {(x, v) ∈ Sn × Rn+1|x⊥v}.
Each fiber p−1(x) is an n-plane and hence defines a point in Grn(Rn+1). This
defines a map

Sn → Grn(Rn+1), x 7→ p−1(x).

Via the inclusion Rn+1 ↪→ R∞ we can view this as a map

f : Sn → Grn(R∞) = Grn.

The bundle τ is exactly the pullback f ∗(γn). We check this on total spaces in the
diagram

E(τ) ∼= f ∗(E(γn)) //

p

��

E(γn)

π

��
Sn

f // Grn.

since we have

f ∗(E(γn)) = {(x, (V, v)) ∈ Sn×E(γn)|f(x) = π(V,v)} = {(x, (V, v))|p−1(x) = V, i.e. x⊥v}.

12.1. Proof of Theorem 16.5. We first claim that, for a k-dimensional bundle
p : E = E(ξ) → B, an isomorphism ξ ∼= f ∗(γk) is equivalent to a map g : E → R∞

which is linear and injective on each fiber. To prove this claim suppose we have a
map f : B → Grk and an isomorphism ξ ∼= f ∗(γk). Then we have a commutative
diagram

E

p
""

∼= // f ∗(γk)
f ′ //

��

E(γk)

��

gk // R∞

B
f // Grk

with gk(V,v) = v. The composition along the top row is a map g : E → R∞ which
is linear and injective on each fiber, since both f ′ and gk have this property.
Conversely, given a map g : E → R∞ which is linear and injective on each fiber,
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define f : B → Grk by letting f(b) be the k-plane g(p−1(b)). This yields a com-
mutative diagram as above.

Now we are ready to prove the theorem. We start with the surjectivity of the
map [B,Grk] → Vectk(B). Let ξ be a k-dimensional bundle given by the map
p : E → B. Since B is paracompact there is a countable open cover {Uj} of B
such that ξ is trivial over each Uj and there is a partition of unity {φj} with φj
supported on Uj. Let gj : π

−1(Uj) → Rn be the composition of a trivialization
p−1(Uj) → Uj × Rn with the projection onto Rn. The map

(φj ◦ p) · gj : p−1(Uj) → Rn, v 7→ φj(p(v)) · gj(v)

extends to a map E → Rn that is zero outside p−1(Uj). Near each point of B
only finitely many φj’s are nonzero, and at least one φj is nonzero. Hence these
extended maps (φj ◦ p) · gj are the coordinates of a map g : E → (Rn)∞ = R∞

that is a linear injection on each fiber. By our claim above this induces a map
f : B → Grk and the proof of surjectivity is complete.

For injectivity, let f0, f1 : B → Grk be two maps with isomorphisms ξ ∼= f ∗
0 (γ

k)
and ξ ∼= f ∗

1 (γ
k). By our first claim these two maps induce maps g0, g1 : E → R∞

which are linear and injective on each fiber. We will now show that g0 and g1 are
homotopic through maps gt which are linear and injective on each fiber. Then f0
and f1 are homotopic via

ft(b) = gt(p
−1(b)).

Therefore, let Lt be the homotopy

Lt : R∞ → R∞, Lt(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(x1, 0, x2, 0, . . .).

For each t, this is a linear map. Its kernel is trivial, since if

Lt(x1, . . . , xn) = ((1− t)x1 + tx1, (1− t)x2, (1− t)x3 + tx2, . . .) = 0

then we get x1 = 0, x2 = 0, . . .. Hence Lt is injective. Composing Lt with g0
moves the image of g0 into the odd-numbered coordinates and we have a homotopy
which is linear and injective on fibers

g0 = L0 ◦ g0 ∼ L1 ◦ g0 =: g̃0.

Similarly, let Mt be the homotopy

Mt : R∞ → R∞, Mt(x1, x2, . . .) = (1− t)(x1, x2, . . .) + t(0, x1, 0, x2, 0, . . .).

For each t, this is a linear map. Its kernel is trivial, since if

Mt(x1, . . . , xn) = ((1− t)x1, (1− t)x2 + tx1, (1− t)x3, (1− t)x4 + tx2, . . .) = 0
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then we get x1 = 0, x2 = 0, . . .. Hence Mt is injective. Composing Mt with
g1 moves the image of g1 into the even-numbered coordinates and we have a
homotopy which is linear and injective on fibers

g1 =M0 ◦ g1 ∼M1 ◦ g1 =: g̃1.

Then we let

g̃t = (1− t)g̃0 + tg̃1.

The reason for composing with Lt and Mt is that g̃t is a map which is linear and
injective on fibers for each t, since g0 and g1 are linear and injective on fibers.
Overall we obtain homotopies which are linear and injective on fibers

g0 ∼ g̃0 ∼ g̃1 ∼ g1

as desired. This completes the proof of Theorem 16.5.

12.2. Universality reformulated. The statement of Theorem 16.5 is closely
related to the following two assertions which reformulate the universality of the
canonical bundle γk.

Theorem 12.4. For any k-dimensional bundle ξ over a paracompact base space
B there exists a bundle map f : ξ → γk.

Proof. We have seen in the previous proof that there is a map

g : E(ξ) → R∞

which is linear and injective on the fibers of ξ and which is unique up to a
homotopy which is linear and injective on the fibers. Then we can define the the
bundle map f by

f(e) = (g(fiber in which e lies), g(e)).

□

Two bundle maps F,G : ξ → γk are called bundle-homotopic if there exists a
one-parameter family of maps

Ht : ξ → γk, 0 ≤ t ≤ 1,

with H0 = F , H1 = G such that

H : E(ξ)× [0,1] → E(γk)

is continuous as a function of both variables.

Theorem 12.5. Any two bundle maps from a k-dimensional bundle ξ to γk are
bundle-homotopic.
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Proof. Let ξ be given by the map p : E → B. We know that a bundle map
F : ξ → γk determines a map

g : E(ξ) → R∞

whose restriction to each fiber of ξ is linear and injective. Conversely, g determines
F by the identity

F (e) = (g(fiber in which e lies), g(e)).

Now suppose we have two bundle maps F0, F1 : ξ → γk and let f0, f1 : B → Grk
be the corresponding maps on base spaces. We have seen in Lecture 04 that the
bundle maps F0, F1 come equipped with isomorphisms ξ ∼= f ∗

0 (γ
k) and ξ ∼= f ∗

1 (γ
k).

Then we know from the proof of Theorem 16.5 that there is a homotopy gt between
g0 and g1 which induces a homotopy ft between f0 and f1. But the homotopy gt
also induces a bundle homotopy Ft between F0 and F1 by defining

Ft(e) := (gt(fiber in which e lies), gt(e)).

□

12.3. Universal characteristic classes. We can use the above results to re-
consider the concept of characteristic classes. For a k-dimensional vector bundle
ξ let fξ : B → Grk be a representative of the homotopy class corresponding to ξ
under the bijection of Theorem 16.5.

Now let R be any coefficient ring and let

c ∈ H i(Grk;R)

be any cohomology class. Then we get an induced class

c(ξ) := f ∗
ξ (c) ∈ H i(B;R).

Definition 12.6. The class c(ξ) is called the characteristic cohomology class of
ξ determined by c.

Note that the correspondence ξ 7→ c(ξ) is natural with respect to bundle maps,
i.e., it commutes with pullbacks.

Conversely, given any correspondence

ξ 7→ c(ξ) ∈ H i(B;R)

which is natural with respect to bundle maps, then we must have

c(ξ) = f ∗
ξ c(γ

k).

Thus the above construction is the most general one. In other words:
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Corollary 12.7. The ring consisting of all characteristic cohomology classes for
k-dimensional bundles over paracompact base spaces with coefficient ring R is
canonically isomorphic to the cohomology ring H∗(Grk;R).

Hence it is a very important task to compute the cohomology ring H∗(Grk;R).
For R = Z/2, we will do this in the next lecture.



NOTES ON VECTOR BUNDLES AND THE ADAMS CONJECTURE 47

13. Schubert cells and Schubert varieties

In this lecture we follow notes by Mike Hopkins which are not listed in the
references mentioned at the beginning of the semester.

The interior of the i-cell in Pn is the space of lines contained in Ri+1 but not in
Ri. There is an analogous cell decomposition of the Grassmannian. Each k-plane
V ⊂ Rn+k determines a sequence of numbers

(dimV ∩ R1, dimV ∩ R2, . . .).

Note that the dimension jumps in each step by at most one, since the following
sequence is exact:

0 → V ∩ Ri−1 → V ∩ Ri i-th coordinate−−−−−−−−→ R.

Moreover, he sequence contains exactly k jumps.

For instance, if V is the 3-plane in R5 spanned by the rows of the matrix1 1 0 0 0
2 −1 1 0 0
1 1 0 2 2


then our sequence of numbers would be

(0, 1, 2, 2, 3).

Let us keep track of where the dimensions jump, and record these numbers as
(j1, . . . , jk). In our example the sequence of j’s would be

(2, 3, 5).

Finally, for reasons that will be clear in a moment, we decide to use the sequence
(a1, . . . , ak) instead with

ai = ji − i.

In our example the sequence of a’s is

(1, 1, 2).

Definition 13.1. A Schubert symbol is a sequence a = (a1, . . . , ak), with

0 ≤ a1 ≤ . . . ≤ ak.

The associated jump sequence is the sequence j = (j1, . . . , jk) with ji = ai + i.

Remark 13.2. One should be aware of that other authors also use the name
”Schubert symbol” to refer to the sequence j.
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Now let a = (a1, . . . , ak) with ak ≤ n be a Schubert symbol, and let

Hi := Rji

with ji = ai + i as before. Then the Hi define a filtration of Rn+k

0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk ⊆ Rn+k.

We set
Ωa = {V ∈ Grk(Rn+k)| dimV ∩Hi ≥ i}.

Definition 13.3. The space Ωa is called the Schubert variety associated to the
Schubert symbol a.

Example 13.4. When k = 1 the sequence a is just a number a. In that case the
Schubert variety is Pa.

As a next step we will make the set of Schubert symbols of a fixed length k
into a partially ordered set by defining a′ ≤ a if and only if

a′i ≤ ai for i = 1, . . . , k.

We can use this ordering to make the set of all Schubert symbols into a partially
ordered set by first filling the symbols on the left with 0’s to make them have
the same length, and then using the above partial ordering. Thus, with this
convention

(1, 2, 2) ≥ (1, 2),

since
(1, 2, 3) ≥ (0, 1, 2).

Definition 13.5. The Schubert cell associated to the Schubert symbol a is the
space

Ω0
a = Ωa −

⋃
a′<a

Ωa′ .

Remark 13.6. Another warning: The Schubert cells are not quite ”cells”. They
are merely the interiors of cells.

Remark 13.7. The space Ω0
a consists exatly of the V ∈ Grk(Rn+k) whose asso-

ciated Schubert symbol is a. In particular, each V lies in exactly one Ω0
a where a

is the Schubert symbol corresponding to the dimension sequence of V .

Proposition 13.8. The space Ω0
a is homeomorphic to R|a|, where we denote

|a| = a1 + . . .+ ak.

Proof. We show that each V ∈ Ω0
a has a canonical basis of a special form. Let

{ϵ1, . . . , ϵn+k} be the standard basis of Rn+k. First, choose a non-zero v1 ∈ V ∩H1.
This space is one-dimensional, so v1 is determined up to a scalar mutliple. We
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can normalize v1 by requiring ⟨ϵj1 , v1⟩ = 1. Now choose v2 ∈ V ∩ H2 with the
properties

⟨ϵj2 , v2⟩ = 1
⟨ϵj1 , v2⟩ = 0.

Since V ∩H2 has dimension 2 these two equations characterize v2 uniquely, pro-
vided they can be solved. But we know they can be solved. For the map

V ∩H2 → H2 → H2/Rj2−1R · ϵj2
is non-zero since dimV ∩Rj2−1 = 1. Continuing, we find a unique basis {v1, . . . , vk}
of V with the property that vi ∈ Hi for all i, and

⟨ϵjs , vs⟩ = 1 for all s and
⟨ϵjs , vt⟩ = 0 for s ̸= t.

Now if we let V vary in Ω0
a, we see that the space of all possible vi’s is a vector

space of dimension dimHi−i, since vi lies in Hi and has to satisfy i equations. □

Remark 13.9. Another way to think of the vi is to consider them as the rows
in a matrix. For example, in the case Gr3(R4+3), with a = (2, 3, 4) such a matrix
takes the form ∗ ∗ 1 0 0 0 0

∗ ∗ 0 ∗ 1 0 0
∗ ∗ 0 ∗ 0 ∗ 1


where the ∗’s denote arbitrary numbers as entries. The rows of this matrix are
the vectors v1, v2, and v3. Hence we see that the decomposition of Grk(Rn+k) into
Schubert cells corresponds to taking a matrix, reducing it to row echelon form,
and recording the columns with the pivots.
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14. A cell decomposition for the Grassmannian

Recall from the previous lecture:

• Schubert symbols: sequences a = (a1, . . . , ak), with 0 ≤ a1 ≤ . . . ≤ ak. The
associated jump sequence is the sequence j = (j1, . . . , jk) with ji = ai + i.

• For given a, filtration 0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk ⊆ Rn+k with Hi := Rji .
• The Schubert variety Ωa = {V ∈ Grk(Rn+k)| dimV ∩ Hi ≥ i} associated
to a.

• The Schubert cell Ω0
a = Ωa −

⋃
a′≤aΩa′ associated to a.

• We proved that the space Ω0
a is homeomorphic to R|a|, where we denote

|a| = a1 + . . .+ ak. We did this by showing that each V ∈ Grk(Rn+k) has
a special basis and the space of choices of those bases is a vector space of
dimension |a|.

We will use these notions and the above result to define a CW-decomposition
of the Grassmannian manifold. We still follow the notes by Mike Hopkins.

14.1. A CW-decomposition. To see that the Schubert cells serve as the cells
of a CW-decomposition, we need to define the characteristic maps. For each a
let Da ⊂ Vk(Rn+k) be the set of orthonormal sequences (v1, . . . , vk) satisfying

vi ∈ Hi

⟨ϵi, vi⟩ ≥ 0.

We define a map

sa : D
a → Ωa

by sending (v1, . . . , vk) to the plane it spans.

Lemma 14.1. The map sa restricts to a homeomorphism of the interior of Da

with Ω0
a.

Proof. Let s0a be the restriction of sa to the interior of Da. Let (v1, . . . , vk) be an
orthonormal frame on the boudnary of Da. Then

V := s0a((v1, . . . , vk))

does not belong to Ω0
a, for one of the vectors vi must have ji − 1th component

equal to 0. This implies

dim(V ∩ Rji−1) ≥ i,

since we have dim(V ∩ Rji) ≥ i. Hence V does not lie in Ω0
a, since for a k-plane

in Ω0
a the number ji is exactly the first dimension where V ∩ Rm has dimension

i. The construction of the previous lecture of the special basis for the planes in
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Ω0
a then shows that s0a is a bijection. It remains to show that s0a and its inverse

are continuous. We leave this to the reader. □

The next result shows that the sa serve as characteristic maps for the cells in
the Grassmannian.

Proposition 14.2. The space Da is homeomorphic to the product

Da1
0 ×Da2

0 × . . .×Dak
0 ,

in which each Dai
0 is the disk consisting of the unit vectors v ∈ Hi with the

properties
⟨v, ϵji⟩ ≥ 0
⟨v, ϵjt⟩ = 0 for t < i.

Hence Da is homeomorphic to the disk Da1+···+ak .

Proof. For each unit vector v ∈ H1 with ⟨ϵji , v⟩ ≥ 0, let Tv ∈ SO(n + k) be the
orthogonal transformation which rotates v to ϵj1 in the plane spanned by v and
ϵj1 , and which is the identity on the orthogonal complement of this plane. Note
that Tv restricts to an orthogonal transformation of Hi to itself since both v and
ϵji are in Hi (H1 is a subspace of Hi), and has the property that Tv(ϵji) = ϵji for
i > 1, since both v and ϵj1 are orthogonal to ϵji . We now use this transformation
T to define a homeomorphism

(2) Da → Da1
0 ×Da′

1 ,

in which Da′

1 is the space of orthonormal sequences

(v′2, . . . , v
′
k)

with v′i ∈ Hi ∩ {ϵj1}⊥, and
⟨ϵi, v′i⟩ ≥ 0.

In other words, Da′

1 is the cell in Grk−1(Rn+k−1) associated to the sequence

a′ = (a2, . . . , ak),

in which we are regarding Rn+k−1 as the Euclidean space with basis

{ϵt|t ̸= j1}.
Once we establish the homeomorphism (2), we are done by induction on k.

The homeomorphism (2) is the map whose first component is the projection

(v1, . . . , vk) 7→ v1,

and whose second component is

(Tv1v2, . . . , Tv1vk),
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so that
v′i = Tv1vi.

Since Tv1 is orthogonal, the sequence (v′2, . . . , v
′
k) is orthonormal. To verify the

conditions that the sequence be in Da′

1 , first note that for i > 1, we have

0 = ⟨v1, vi⟩ = ⟨Tv1v1, Tv1vi⟩ = ⟨ϵj1 , Tv1vi⟩,
and also

0 ≤ ⟨ϵj1 , vi⟩ = ⟨Tv1ϵj1 , Tv1vi⟩ = ⟨ϵj1 , Tv1vi⟩,
since ϵi is orthogonal to both ϵj1 and v1. The inverse homeomorphism is

(v1, v
′
2, . . . , v

′
k) 7→ (v1, T

−1
v1
v′2, . . . , T

−1
v1
v′k).

Reversing the above computations which checked the conditions shows that it

carries Da1
0 ×Da′

1 to Da. □

Remark 14.3. a) There are

(
n+ k
k

)
cells in Grk(Rn+k). This is the number of

ways of choosing k distinct numbers ji with ji ≤ n+ k.
b) In particular, the number of r-cells in Grk(Rn+k) is equal to the number of
partitions of r into at most k integers ai each of which is ≤ n.
c) If k and n are ≥ r then the number of r-cells in Grk(Rn+k) is equal to the
number of partitions of r into at most k integers (zeroes in the beginning of the
sequence a are allowed).
d) The number of r-cells in Grk is equal to the number of partitions of r into at
most k integers.

Corollary 14.4. The maps
sa′ : D

a′ → Ωa

with a′ ≤ a are the characteristic maps of the cells in a CW-decomposition of the
Schubert variety Ωa.

In the next lecture we will prove the following result.

Proposition 14.5. The cellular boundary map

dcell : Ccell
∗ (Ωa)⊗ Z/2 → Ccell

∗−1(Ωa)⊗ Z/2
is zero.

Let xa be the homology class corresponding to the cellular cycle given by the
map sa. Then the above result implies the following fundamental fact.

Corollary 14.6. The classes

xa′ ∈ Ha′(Ωa;Z/2)
with a′ ≤ a form a basis for the homology groups, where |a| = a1 + . . .+ ak.
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Before we prove these results, we look at some consequences. The picture below
lists the sequences a occurring in the cell decomposition of Gr2(R3+2). The reverse
of the partial ordering is indicated by an arrow, and the height corresponds to
the dimension of the cell: (Recall: The dimension of Gr2(R3+2) is 6, the Schubert
symbol (3, 3) has associated the maximal jump sequence (4,5) and corresponds
to a cell in dimension 3 + 3 = 6. The cell (0, 0) is in dimension zero.)

(3, 3)

��
(2, 3)

�� ##
(2, 2)

##

(1, 3)

�� ##
(1, 2)

�� ##

(0, 3)

��
(1, 1)

##

(0, 2)

��
(0, 1)

��
(0, 0)

By looking at this diagram we see that the homology satisfies Poincaré duality
in the sense that

dimHi(Gr2(R5)) = dimH6−i(Gr2(R5)).
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For instance, if we want the homology of Ω(1,3) we look at the position labeled
(1, 3), and everything below it

(1, 3)

�� ##
(1, 2)

�� ##

(0, 3)

��
(1, 1)

##

(0, 2)

��
(0, 1)

��
(0, 0)

We can see from the diagram that Ω(1,3) cannot satisfy Poincaré duality,

(3) dimHi(Ωa) = dimH|a|−i(Ωa).

Hence Ω(1,3) cannot be a manifold. Looking at the diagram, the only Schubert
varieties in Gr2(R5) which might be manifold are Ω(2,2) with

(2, 2)

##
(1, 2)

�� ##
(1, 1)

##

(0, 2)

��
(0, 1)

��
(0, 0)
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and Ω(0,i) with i ≤ 3 and

(0, 3)

��
(0, 2)

��
(0, 1)

��
(0, 0)

In fact, one can show that if the homology of Ωa satisfies Poincaré duality in the
sense of (3) then Ωa is homeomorphic to Grℓ(Rm+ℓ) for some pair (ℓ,m) and so is
in fact a manifold. The point is that the Poincaré duality condition implies that
the Schubert symbol a must have exactly one immediate predecessor. (You will
be asked to prove this on the next Problem Set.)
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15. The cohomology of the Grassmannian

Our first goal is to show the following result.

Proposition 15.1. The cellular boundary map

dcell : Ccell
∗ (Ωa)⊗ Z/2 → Ccell

∗−1(Ωa)⊗ Z/2

is zero.

Let xa be the homology class corresponding to the cellular cycle given by the
map sa : D

a → Ωa defined in the previous lecture. Then the above result implies
the following fundamental fact.

Corollary 15.2. The classes

xa′ ∈ Ha′(Ωa;Z/2)

with a′ ≤ a form a basis for the homology groups, where |a| = a1 + . . .+ ak.

15.1. The flag varieties. The aim of this section is to prove Proposition 15.1.
Therefore, we start with an observation. Suppose that X is a CW-complex, M
is a closed manifold of dimension n, and f : M → X(n) is a map form M to the
n-skeleton of X. Let αM ∈ Hn(M ;Z/2) be the fundamental class. The image of
αM under the map

Hn(M) → Hn(X
(n)) → Hn(X

(n), X(n−1)) = Ccell
n (X)

defines a cellular chain cM ∈ Ccell
n (X). In fact this chain is a cycle since it lies in

the image of Hn(X
(n)) and so goes to zero under the first map in the factorization

Hn(X
(n), X(n−1)) → Hn−1(X

n−1) → Hn−1(X
(n−1), X(n−2))

of the cellular boundary map. In this way, maps of manifolds give homology
classes, and, in fact cycles in the complex of cellular chains.

We will need to be able to specify the cycle we constructed more precisely. If
the map

f : M → X ′ := X(n−1) ∪Dn
α ⊂ X(n),

and that for some point x in the interior of Dn
α there is a neighborhood U of x,

contained in the interior of Dn
α, with the property that the restriction of f is a

homeomorphism

f−1(U) → U.
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In that case, the diagram

Hn(M)
≈ //

��

Hn(M,M − f−1(x))

≈
��

Hn(X
′) //Hn(X

′, X ′ − {x})
≈
��

Hn(D
n
α, S

n−1
α ) //Ccell

n (X)

shows that the cellular cycle cM is just the chain represented by the cell Dn
α. In

particular, one learns in this case that the cellular represented by Dn
α is, in fact,

a cycle. We will use these ideas to prove Proposition 15.1.

For each a, let

Fa ⊂ Gr1(H1)× · · · ×Grk(Hk)

be the subspace consisting of sequences (V1, . . . , Vk) with

V1 ⊂ V2 ⊂ · · · ⊂ Vk.

For some purposes it is useful to note that Fa can also be identified with the
space

Fa ⊂ P(H1)× · · · × P(Hk)

consisting of sequences of lines (ℓ1, . . . , ℓk) which are pairwise orthogonal. There
is an obvious homeomorphism between these, under which Vj corresponds to
ℓ1 ⊕ · · · ⊕ ℓj, and ℓj to the orthogonal complement of Vj−1 in Vj.

Proposition 15.3. The space Fa is a manifold.

Proof. The proof is very similar to the proof of Proposition 11.3. Let

(4) V1 //

��

V2

��

// · · · // Vk

��
H1

// H2
// · · · // Hk

be a point in Fa, and write Wi for the orthogonal complement of Vi in Hi. By
identifying Wi with the quotient space Hi/Vi, the Wi fit into a sequence

W1 → W2 → · · · → Wk.

(This sequence is not, in general, a sequence of monomorphisms.)

Let U ⊂ Fa be the open neighborhood of the point (4) consisting of sequences
(V ′

1 ⊂ · · · ⊂ V ′
k) with the property that for all i, V ′

i ∩ Wi = {0}. For such a
sequence, we may think of V ′

i as the graph of a homomorphism Vi → Wi. This
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correspondence gives a homeomorphism of U with the space of sequences of linear
maps Vi → Wi fitting into a diagram

V1 //

��

V2

��

// · · · // Vk

��
W1

// W2
// · · · // Wk

By choosing a basis {v1, . . . , vk} of Vk with vi ∈ Vi one can identify this space
with

W1 ⊕ · · · ⊕Wk.

Hence this is a vector space with of dimension

dimW1 + · · ·+ dimWk = a1 + · · ·+ ak.

□

Now let

fa : Fa → Ωa

be the map sending a sequence (V1, . . . , Vk) to Vk.

Proposition 15.4. The map

f−1
a (Ω0

a) → Ω0
a

is a homeomorphism.

Proof. The inverse map sends V ∈ Ω0
a to the sequence (V1, . . . , Vk) in which

Vi = V ∩Hi. □

Now are finally ready to prove Proposition 15.1. The Schubert cell of Ωa has
one cell of dimension a1+ · · ·+ ak and all other cells of lower dimension. We just
proved that Fa is a manifold. Hence the argument described at the beginning of
this section applied to the map

Fa → Ωa,

shows that the corresponding chain is a cycle. This shows that the boundary
map dcell vanishes on the one cell in dimension |a|. All other elements in the
cell complex are given by maps from cells Da′ for a′ < a to Ωa. It follows from
the ordering of the Schubert cells and the definition of Schubert varieties that
the map sa′ : D

a′ → Ωa factors through the map Ωa′ → Ωa. This shows that
the boundary map dcell actually vanishes on all elements in Ccell

∗ (Ω)⊗ Z/2. This
completes the proof of Proposition 15.1.
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15.2. The cohomology ring H∗(Grk;Z/2). We will finally determine the co-
homology ring of the Grassmannian manifold Grk.

Theorem 15.5. The cohomology ring H∗(Grk;Z/2) is a polynomial algebra over
Z/2 freely generated by the Stiefel-Whitney classes w1(γ

k), . . . , wk(γ
k).

The idea of the proof is to show first that the Stiefel-Whitney classes of the
canonical bundle over Grk freely generate a polynomial algebra over Z/2 contained
in H∗(Grk;Z/2). Our knowledge about the cell structure of Grk then allows us
to show that H∗(Grk;Z/2) is actually equal to this polynomial algebra.

We start with the following lemma.

Lemma 15.6. There are no polynomial relations among the wi(γ
k).

Proof. Suppose that there is a relation of the form p(w1(γ
k), . . . , wk(γ

k)) = 0,
where p is a polynomial in k variables over Z/2. By the naturality of Stiefel-
Whitney classes, for any k-dimensional bundle ξ over a paracompact base space
there exists a bundle map g : ξ → γk. If we denote the induced map on base
spaces by ḡ we get

wi(ξ) = ḡ∗(wi(γ
k)).

It follows that the cohomology classes wi(ξ) must satisfy the corresponding rela-
tion

p(w1(ξ), . . . , wk(ξ)) = ḡ∗p(w1(γ
k), . . . , wk(γ

k)) = 0.

Thus to prove the lemma it suffices to find some k-dimensional bundle ξ such
that there are no polynomial relations among the classes w1(ξ), . . . , wk(ξ).

Let γ1 be the canonical line bundle over P∞ = Gr1. We know that H∗(P∞;Z/2)
is a polynomial algebra over Z/2 with one generator a of dimension one and
w(γ1) = 1 + a. Taking the k-fold product

X := P∞ × · · · × P∞,

it follows that H∗(X;Z/2) is a polynomial algebra on k generators a1, . . . , ak
of dimension one. Here ai can be defined as the image π∗

i (a) induced by the
projection map

πi : X → P∞

to the ith factor. We define ξ to be the k-fold product

ξ = γ1 × · · · × γ1 ∼= (π∗
1γ

1)⊕ · · · ⊕ (π∗
kγ

1).

Then ξ is a k-dimensional bundle over X, and the total Stiefel-Whitney class

w(ξ) = π∗
1(w(γ

1)) · · · · · π∗
k(w(γ

1)) = (1 + a1)(1 + a2) · · · (1 + ak).

Hence wi(ξ) is the ith elementary symmetric function of a1, . . . , ak. It is a
well-known theorem in algebra that the k elementary symmetric functions in
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k variables over a field do not satisfy any polynomial relations. Thus the classes
w1(ξ), . . . , wk(ξ) are algebraically independent over Z/2, and it follows that the
w1(γ

k), . . . , wk(γ
k). □

Now let us turn to the proof of Theorem 16.6. By the previous lemma, we
know that H∗(Grk;Z/2) contains a polynomial algebra over Z/2 freely generated
by w1(γ

k), . . . , wk(γ
k). We will show that H∗(Grk;Z/2) actually coincides with

this sub-algebra.

We know from the discussion of the cell discussion of Grk is equal to the number
of partitions of r into at most k integers. Hence the dimension of Hr(Grk;Z/2)
is at most equal to this number of partitions. On the other hand, we claim that
the number of distinct monomials of the form

w1(γ
k)r1 · · ·wk(γk)rk

in Hr(Grk;Z/2) is also precisely equal to the number of partitions of r into at
most k integers. For to each sequence r1, . . . , rk of non-negative integers with

(5) r1 + 2r2 + · · ·+ krk = r

we can associate the partition of r which is obtained from the k-tuple

(6) rk, rk + rk−1, . . . , rk + rk−1 + · · ·+ r1

by deleting any zeros which may occur. Conversely, to a partition (6) corresponds
a sequence r1, . . . , rk of non-negative integers satisfying (5).

Since Z/2[w1(γ
k), . . . , wk(γ

k)] is a sub-algebra of H∗(Grk;Z/2), comparing the
degrees and dimensions proves the theorem.
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16. Chern classes for complex vector bundles

16.1. Orientation. From now on we will shift our focus to complex vector bun-
dles. Much of the theory for real vector bundles carries over to the complex case.
But there are a couple of important features of complex bundles. The first one is
that the complex structure induces an orientation of the underlying real bundle.

Lemma 16.1. Let ω be a complex vector bundle. Then the underlying real vector
bundle ωR has a canonical preferred orientation.

Proof. Let V be a finite dimensional complex vector space. Choosing a basis
a1, . . . , an for V over C, gives us a real basis for the underlying real vector space
VR:

a1, ia1, a2, ia2, . . . , an, ian.

We claim that this ordered basis determines the required orientation for VR. For
if b1, . . . , bn is any other complex basis of V , then there is a matrix A ∈ GLn(C)
which transforms the first basis into the second. This deformation does not alter
the orientation of the real vector space, since if A ∈ GLn(C) is the coordinate
change matrix, then the underlying real matrix AR ∈ GL2n(R) has determinant

detAR = | detA|2 > 0.

Hence AR preserves the orientation of the underlying real vector space. Another
way to see this is to note that GLn(C) is connected. Hence we can pass from
any given complex basis to any other basis by a continuous deformation, and this
continuous deformation cannot alter the orientation.

Now if ω is a complex vector bundle, then applying this construction to every
fiber of ω yields the required orientation for ωR, since overlapping trivializations
determine a section in GLn(C). □

Remark 16.2. As a consequence, every complex manifold is oriented, since an
orientation of the tangent bundle of a manifold induces an orientation of the
manifold itself.

16.2. Chern classes. Chern classes for complex vector bundles can be charac-
terized by almost the same set of axioms as Stiefel–Whitney classes.

Theorem 16.3. There is a unique sequence of functions c1, c2, . . . assigning to
each complex vector bundle E → B over a a space B a class ci(E) ∈ H2i(B;Z),
depending only on the isomorphism type of E, such that

a) ci(f
∗E) = f ∗(ci(E)) for a pullback along a map f : B′ → B which is

covered by a bundle map.
b) c(E1 ⊕ E2) = c(E1)c(E2) where c = 1 + c1 + c2 + . . . ∈ H∗(B;Z/2).
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c) ci(E) = 0 if i > dimE.
d) For the canonical complex line bundle γ11 on CP∞, c1(γ

1
∞) is a specified

generator of H2(CP∞;Z).

Proof. The proof is almost the same as for the existence and uniqueness of Stiefel–
Whitney classes with Z-coefficients and H∗(CP∞;Z) = Z[α]. The bundle E
induces a map g : E → C∞ which is linear and injective on fibers. Define x ∈
H2(E;Z) to be the element CP(g)∗(α). The Leray–Hirsch theorem applied to
the fiber bundle CP(E) → B then implies that the elements 1, x, . . . , xn−1 form a
basis of H∗(CP(E);Z) as an H∗(B;Z)-module. Since we are using Z coefficients
instead of Z/2 signs do matter now. We modify the defining relation for the
Chern classes to be

xn − c1(E)x
n−1 + · · ·+ (−1)ncn(E) = 0

with alternating signs. The sign change does not affect the proofs of properties
a)-c). For d), the sign convention turns the defining relation of c1(γ

1) into

x− c1(γ
1) = 0

with x = α. Thus c1(γ
1) is the chosen generator of H2(CP∞;Z) (and not minus

the generator). □

Proposition 16.4. Regarding an n-dimensional complex vector bundle E → B
as a 2n-dimensional real vector bundle, then w2i+1(E) = 0 and w2i(E) is the
image of ci(E) under the homomorphism H2i(B;Z) → H2i(B;Z/2).

Proof. There is a natural map p : RP(E) → CP(E) sending a real line to the
complex line containing it. This projection fits into a commutative diagram

RP2n−1

��

// RP(E)
p

��

RP(g)
// RP∞

��
CPn−1 // CP(E)

CP(g)
// CP∞

where the left vertical map is the restriction of p to a fiber of E and the maps
RP(g) and CP(g) are the projectivizations of a map g : E → C∞ which is injective
and C-linear on the fibers of E. All three vertical maps are fiber bundles with fiber
RP1, the real lines in a complex line (using C ∼= R). The Leray-Hirsch theorem
applies to the bundle RP∞ → CP∞, so if α is the generator of H2(CP∞;Z), the
Z/2-reduction ᾱ ∈ H2(CP∞;Z/2) pulls back to a generator of H2(RP∞;Z/2).
This generator is β2, the square of the generator β ∈ H1(RP∞;Z/2). Hence the
Z/2-reduction

x̄C(E) = CP(g)∗(ᾱ) ∈ H2(CP(E);Z/2)
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of the class xC(E) = CP(g)∗(α) pulls back to the square of the class

xR(E) = RP(g)∗(α) ∈ H1(RP(E);Z/2).

Thus the Z/2-reduction of the defining relation for the Chern classes of E, which
is

x̄C(E)
n + c̄1(E)x̄C(E)

n−1 + · · ·+ c̄n(E) = 0,

(signs do not matter here since we are over Z/2) pulls back to the relation

xR(E)
2n + c̄1(E)xR(E)

2(n−1) + · · ·+ c̄n(E) = 0,

which is the defining relation for the Stiefel–Whitney classes of E. Hence we must
have

w2i+1(E) = 0 and w2i(E) = c̄i(E).

□

16.3. The complex Grassmannian and its cohomology. The complex Grass-
mannian Grk(Cn+k) is the space of complex k-planes in Cn+k. We can topologize
this space just as in the real case and we obtain a complex manifold of complex
dimension kn or real dimension 2kn. For k = 1, we get Gr1(Cn+1) = CPn.

Moreover, the inclusions Cn+k ⊂ Cn+1+k ⊂ . . . induce inclusions

Grk(Cn+k) ⊂ Grk(Cn+1+k) ⊂ . . .

The infinite complex Grassmannian manifold is the union

Grk(C) := Gr(C∞) =
⋃
n

Grk(Cn+k).

This is the set of all k-dimensional complex vector subspaces of C∞. The topology
of Grk(C) is the direct limit topology. We have Gr1(C) = CP∞.

The complex Grassmannian Grk(Cn+k) is equipped with a canonical k-dimensional
complex vector bundle γk(Cn+k) defined as in the real case. The total space

E = E(γk(Cn+k))

is the set of all pairs

(complex k-plane in Cn+k, vector in that k-plane).

The topology on E is the topology as a subset of Grk(Cn+k)×Cn+k. The projec-
tion map

π : E → Grk(Cn+k), is defined by π(V, v) = V,

and the vector space structure is defined by

t1(V, v1) + t2(V, v2) = (V, t1v1 + t2v2).
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Over the infinite complex Grassmannian Grk(C), there is also a canonical bun-
dle γkC whose total space is

E(γkC) ⊂ Grk(C)× C∞

the set of all pairs

(complex k-plane in C∞, vector in that k-plane)

topologized as a subset of the product Grk(C)× C∞. The projection

π : E(γkC) → Grk(C)
is given by π(V, v) = V .

The crucial result is again the following theorem.

Theorem 16.5. For a paracompact space B, the map [B,Grk(C)] → VectkC(B),
[f ] 7→ f ∗(γk), is a bijection from the set of homotopy classes of maps B → Grk(C)
and the set of isomorphism classes of k-dimensional complex vector bundles.

The proof is the same as for real bundles. The theorem justifies to call the
infinite complex Grassmannian Grk(C) the classifying space and γkC the universal
bundle for k-dimensional complex vector bundles.

The complex Grassmannian Grk(C) is a CW-complex with one cell of dimension
2n corresponding to each partition of n into at most k integers.

Theorem 16.6. The cohomology ring H∗(Grk(C);Z) is a polynomial algebra over
Z freely generated by the Chern classes c1(γ

k
C), . . . , ck(γ

k
C).

Proof. Just work out the proof for the real Grassmannian in the complex case. □
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17. Complex K-theory

From now on all vector bundles will complex vector bundles. For most of our
arguments we will assume that the spaces are compact Hausdorff even though
some statements may be true for more general spaces. In the following lectures
we will mostly follow Atiyah’s lecture notes on K-theory.

17.1. Some basic definitions. Let X be a space and let Vect(X) be the set
of isomorphism classes of finite dimensional complex vector bundles. The set
Vect(X) has the structure of an abelian semigroup under the composition of tak-
ing direct sums. We know that to any abelian semigroup A there is an associated
abelian group K(A) with the following universal property:

There is a semigroup homomorphism α : A→ K(A) such that if G is any group
and γ : A→ G any semigroup homomorphism, there is a unique homomorphism
of groups κ : K(A) → G such that γ = κα. This determines K(A) up to unique
isomorphism.

There are different ways to construct K(A). One way is to define K(A) to be
the set of pairs (a,b) in A× A modulo the following equivalence relation:

(7) (a,b) ∼ (a′,b′) if there is a c ∈ A such that a+ b′ + c = a′ + b+ c.

In other words,
K(A) = A× A/∆(A),

where ∆: A→ A× A denotes the diagonal.

Denoting the equivalence class of (a,b) by [a,b] we can define the addition on
K(A) by

[a,b] + [a′,b′] = [a+ a′,b+ b′]

The homomorphism αA : A→ K(A) is defined by

a 7→ [a,0],

where 0 denotes the zero element of A (which we assume to exist). The nice
feature of this description of K(A) is that the interchange of factors in A × A
induces an inverse in K(A) which makes K(A) into a group.

The pair (K(A), αA) is a functor of A so that if f : A → B is a semigroup
homomorphism we have a commutative diagram

A

f

��

αA // K(A)

K(f)

��
B

αB // K(B).
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Moreover, if B is a group then αB is an isomorphism. This shows that K(A) has
the required universal property. Furthermore, if A is also a semiring, i.e., A is a
semigroup with a multiplication that is distributive over the addition of A, then
K(A) is a ring with multiplication

[a,b] · [a′,b′] = aa′ + bb′, ab′ + ba′].

Now if X is a space, we write K(X) for the ring K(Vect(X)), where the
multiplication is given by forming tensor products of vector bundles. For E ∈
Vect(X) we will write [E] for its image in K(X), or also just E if there is no
danger of confusion.

Before we proceed we need the following lemma.

Lemma 17.1. Let B be a compact Hausdorff space and π : E → B be a complex
vector bundle. Then there exists a complex vector bundle E ′ such that E ⊕ E ′ is
a trivial bundle.

Proof. From the case of real vector bundles, we know how to construct a map
g : E → C∞ which is linear and injective on each fiber of π when B is paracom-
pact. Since we assume here that B is compact, the construction of g shows that
there is a some finite dimension N such that g factors through E → CN .

This gives us a map f : E → B×CN . The image of f is a sub-bundle of B×CN .
Hence E → B is isomorphic to a sub-bundle of the trivial bundle B × CN . The
canonical Hermitian metric on this trivial bundle then yields a complementary
sub-bundle E ′ such that E ⊕ E ′ is a trivial bundle. □

Our explicit description of K(X) shows that every element of K(X) is of the
form [E]− [F ], where E and F are bundles over X. By the lemma, we can choose
a bundle G such that F ⊕G ∼= ϵn is a trivial bundle for some n. Then we have

[E]− [F ] = [E] + [G]− ([F ] + [G]) = [E ⊕G]− [ϵn].

Thus, every element of K(X) is of the form [H]− [ϵn].

Suppose now that E, F are such that [E] = [F ] in K(X). Our explicit descrip-
tion (7) of K(X) then shows that there is a bundle G such that E ⊕G ∼= F ⊕G.
Let G′ be a bundle such that G⊕G′ ∼= ϵn. Then

E ⊕G⊕G′ ∼= F ⊕G⊕G′, so E ⊕ ϵn ∼= F ⊕ ϵn.

We say that two bundles are stably equivalent, if they become isomorphic after
adding suitable trivial bundles to them. The above argument then shows:



NOTES ON VECTOR BUNDLES AND THE ADAMS CONJECTURE 67

Lemma 17.2. We have [E] = [F ] in K(X) if and only if E and F are stably
equivalent.

Now suppose that f : X → Y is a continuous map. Then

f ∗ : Vect(Y ) → Vect(X)

induces a ring homomorphism

f ∗ : K(Y ) → K(X).

By one of the problems on Problem Set 2, this homomorphism depends only on
the homotopy class of f .

17.2. The periodicity theorem. The fundamental theorem for K-theory is the
periodicity theorem. It says, in particular, that for anyX, there is an isomorphism
between K(X) ⊗ K(S2) and K(X × S2). We will prove actually prove a more
general statement which we will now explain.

Let E be a vector bundle over a space X, and let P(E) be the projective bundle
(of complex lines) over X associated to E. If p : P(E) → X is the projection map,
p−1(x) is a complex projective space for all x ∈ X.

Remark 17.3. Projective spaces and bundles have the following nice property:

If V is a (complex) vector space, and W is a vector space of dimension one,
then V and V ⊗W are isomorphic, but not naturally isomorphic. However, taking
projective spaces makes things easier.

For any non-zero element w ∈ W the map

v 7→ v ⊗ w

defines an isomorphism between V and V ⊗W , and thus defines an isomorphism

P(w) : P(V )
∼=−→ P(V ⊗W ).

However, if w′ is any other non-zero element of W , w′ = λw for some non-zero
complex number λ ∈ C∗. Thus

P(w) = P(w′),

so the isomorphism between P(V ) and P(V ⊗W ) is natural.

Thus, if E is any vector bundle, and L is a line bundle, there is a natural
isomorphism

P(E) ∼= P(E ⊗ L),

which concludes our remark.
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If E is any vector bundle over X then each point a ∈ P(E)x = P(Ex) represents
a one-dimensional subspace H∗

x ⊂ Ex. The union of all these defines a subspace

H∗ ⊂ p∗E,

which consists of pairs of one-dimensional subspace in a fiber and a point on that
line.

Lemma 17.4. The space H∗ is a sub-bundle of p∗E over P(E).

Proof. The problem is local, so we may assume that E is a trivial. Then the
lemma reduces to the fact that the canonical line bundle over CPn is a sub-bundle
of the pullback of a trivial bundle. □

Remark 17.5. Note that we have met the real version of this line bundle before
when we proved the splitting principle.

Definition 17.6. Now we define H to be the dual line bundle of H over P(E),
i.e., for ϵ := ϵ1P(E) the trivial line bundle over P(E),

H := Hom(H∗,ϵ)

Remark 17.7. The choice of using H instead of H∗ has historical reasons and is
related to the use of canonical line- and quotient bundles in algebraic geometry.
We will come back to this point later.

Example 17.8. Let X be compact space and let ϵ⊕ ϵ be the sum of two trivial
line bundles over X. Then

P(ϵ⊕ ϵ) ∼= X × S2,

since the bundle ϵ⊕ ϵ has total space X × C2, and hence

P(ϵ⊕ ϵ) ∼= X × CP1 ∼= X × S2.

Moreover, H∗ is just the pullback of the canonical complex line bundle γ1C over
CP1 to X × CP1 ∼= X × S2. Hence H is the dual line bundle

H = Hom(γ1C, ϵ).

We can now state the periodicity theorem.

Theorem 17.9. Let X be a compact space, let L be a line bundle over X, and
let H = H(L ⊕ ϵ). Then, as a K(X)-algebra, K(P(L ⊕ ϵ)) is generated by [H],
and is subject to the single relation

([H]− [ϵ])([L][H]− [ϵ]) = 0.

The proof will be the topic of following lectures. Today we just point out
two consequences of the theorem. The first one follows from the theorem and
Example 17.8 for X = ∗ a point (and L = ϵ the trivial line bundle).
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Corollary 17.10. As a K(∗)-module K(S2) is generated by [H] and [H] is subject
to the single relation

([H]− [ϵ])2 = 0.

The second one requires a little bit of analysis of the ring structures given by
Theorem 17.9 and Corollary 17.10.

Corollary 17.11. Let X be a compact space and

µ : K(X)⊗K(S2) → K(X × S2)

be defined by
µ(a⊗ b) = (π∗

1a)(π
∗
2b),

where π1 and π2 are the projections onto the two factors. Then µ is an isomor-
phism of rings.

Proof. We know from Example 17.8

P(ϵX ⊕ ϵX) ∼= X × S2 and P(ϵ∗ ⊕ ϵ∗) ∼= S2.

Under the canonical map π2 : X × S2 → ∗× S2, the class [H∗] ∈ K(S2) is pulled
back to the class [HX ] ∈ K(X×S2). Using Theorem 17.9, we see that µ becomes
the homomorphism

K(X)⊗K(∗) K(∗)[[H∗]]/(([H∗]− 1)2) → K(X)[[HX ]]/(([HX ]− 1)2)

which by the above is just

K(X)⊗K(∗) K(∗)[[H∗]]/(([H∗]− 1)2) → K(X)[π∗
2([H∗])]/((π

∗
2([H∗)]− 1)2)

which is an isomorphism of rings. □
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18. Complex K-theory as a representable functor

We postpone the proof of the periodicity theorem for a while and first workout
more properties of the K-theory functor.

18.1. Reduced K-theory. Let X be a compact Hausdorff space. Recall that a
vector bundle overX may have different dimensions on the connected components
of X. If X is a based space, i.e., has a chosen base point ∗ ∈ X, then we can
define a function

d : Vect(X) → Z
that sends a vector bundle to the dimension of its restriction to the component
of the basepoint ∗. The function d is a homomorphism of semirings and hence
induces a dimension function

d : K(X) → Z,

which is a homomorphism of rings. Since d is an isomorphism when X is a point,
d can be identified with the induced map

K(X) → K(∗).

This leads to the following definition.

Definition 18.1. The reduced K-theory K̃(X) of a based space is the kernel of
d : K(X) → Z.

Remark 18.2. K̃(X) is an ideal of K(X) and thus a ring without identity. It
clearly holds

K(X) ∼= K̃(X)× Z.
If X does not have a base point yet, let

X+ := X ⨿ ∗

be X together with a disjoint base point. Then we have

K(X) ∼= K̃(X+).

We denote the stable equivalence class of a bundle ξ by {ξ} and the set of
stable equivalence classes of finite dimensional complex vector bundles over X
by EU(X). The set EU(X) forms an abelian group under direct sums, since we
know that for each bundle ξ there is bundle ξ′ such that ξ ⊕ ξ′ is trivial.

Proposition 18.3. There is a natural isomorphism of groups EU(X)
∼=−→ K̃(X).
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Proof. Denote the class of the trivial n-dimensional bundle ϵn over X by n. Then
we know that every element in K(X) can be written in the form [ξ]− q for some
vector bundle ξ and some non-negative integer q. Then we can define the required
homomorphism by

{ξ} 7→ [ξ]− d(ξ).

It is clear that this map is surjective and it is injective, since we know from the
previous lecture that [ξ] = [η] if and only if {ξ} = {η}. □

18.2. Complex K-theory as a representable functor. Let Grn(C) be the
infinite dimensional complex Grassmannian manifold of complex n-planes. It is
also common to write

BU(n) := Grn(C).
We know from Lecture 16 that there is a natural bijection

VectnC(X) ∼= [X,BU(n)]

where [−,−] denotes homotopy classes of maps. As we have just seen base points
can play a role for studying K-theory (as for any other cohomology theory). Let
[−,−]∗ denote the set of homotopy classes of basepoint preserving maps. Then
we have

VectnC(X) ∼= [X+, BU(n)]∗.

The map V 7→ C⊕ V defines an inclusion

in : BU(n) → BU(n+ 1),

and we denote the colimit by

BU := colim
n

BU(n)

with the direct limit (or union) topology.

Recall that a space is nondegenerately based, or well-pointed, if the inclusion of
its basepoint is a cofibration.1

Theorem 18.4. We endow Z with the discrete topology. For any compact space
X, there is a natural isomorphism

K(X) ∼= [X+, BU × Z]∗.
1A map i : A → X is a cofibration if for any commutative diagram of the form

A

i

��

h // Y I

p0

��
X //

>>

Y

there exists an h̃ : X → Y I that makes the diagram commute.
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For a nondegenerately based compact space X, there is a natural isomorphism

K̃(X) ∼= [X,BU × Z]∗.

Proof. When X is connected and ξ is an n-dimensional bundle over X with as-
sociated classifying map

fξ : X → BU(n) ⊂ BU,

the first isomorphism sends

[ξ]− q to the pair (fξ, n− q).

(Note that since Z is discrete, the map X → Z must be constant.) Then we
obtain also an isomorphism for non-connected spaces since both functors K(−)
and [−,BU × Z]∗ send disjoint unions to cartesian products.

For the second isomorphism follows from the first. For let S0 → X+ be the
cofibration induced by the basepoint and the disjoint basepoint. Then we can
identify d : K(X) → Z with the induced map

[X+, BU × Z]∗ → [S0, BU × Z]∗.

Hence we need to show that the kernel of this map is [X,BU×Z]∗. The cofibration
S0 → X+ with X+/S

0 = X induces an exact sequence

[S1 ∧ S0, BU × Z]∗ → [X,BU × Z]∗ → [X+, BU × Z]∗ → [S0, BU × Z]∗.

The left hand set is equal to [S1, BU × Z]∗. Since we are looking at basepoint
preserving maps, this is just [S1,BU ]+ = π1(BU). Hence we need to show that
π1(BU) is trivial or in other words that BU is simply connected. But π1(BU) is
isomorphic to the set of isomorphism classes of complex vector bundles over S1.
We will show on the next problem set that this set is trivial. □

For more general, non-compact, spaces it is best to define K-theory to be the
functor represented by the space BU × Z.

Definition 18.5. For a space X of the homotopy type of a CW-complex, we
define

K(X) := [X+, BU × Z]∗.
For a nondegenerately based space X of the homotopy type of a CW-complex,
we define

K̃(X) ∼= [X,BU × Z]∗.

When X is compact, we know that K(X) is a ring. The following result shows
that is also true for more general spaces.
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Proposition 18.6. The space BU × Z is a ring space up to homotopy. This
means that there are additive and multiplicative structures on BU × Z such that
the associativity, commutativity, and distributivity diagrams required of a ring
commute up to homotopy.

Idea of the proof. For the additive structure, note that taking direct sums induces
maps for each m and n

Grm(C∞)×Grn(C∞) → Grm+n(C∞ ⊕ C∞.

After choosing an isomorphism C∞ ⊕ C∞ ∼= C∞ we get a map

BU(m)×BU(n) → BU(m+ n).

Taking colimits over m and n then yields a map

⊕ : BU ×BU → BU.

This map is associative and commutative up to homotopy. The zero-dimensional
plane provides a basepoint which is a zero element up to homotopy. Using the
ordinary addition on Z, we obtain the additive H-space structure on BU × Z.
For multiplication, taking the tensor product of the canonical bundles induces a
homotopy class of classifying maps

BU(m)×BU(n) → BU(mn).

With a lot more effort than for direct sums, one can show that these maps pass
to colimits and define a multiplicative H-space structure on BU × Z. □
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19. Complex K-theory as a cohomology theory

19.1. K-theory as a cohomology theory. Let C be the category of compact
Hausdorff spaces, C+ be the category of compact Hausdorff spaces with a distin-
guished basepoint, and C2 the category of pairs. We have defined K-theory as
functors K on C and K̃ on C+. We extend it a functor on C2 by defining

K(X,Y ) := K̃(X/Y )

for any pair of compact spaces (X,Y ).

Definition 19.1. For n ≥ 0, we define functors by

K̃−n(X) = K̃(SnX) = K̃(Sn ∧X) for X ∈ C+

K−n(X,Y ) = K̃−n(X/Y ) = K̃(Sn(X/Y )) for (X,Y ) ∈ C2

K−n(X) = K̃−n(X,∅) = K̃(Sn(X+)) for X ∈ C
which are contravariant on the appropriate categories.

Lemma 19.2. For (X,Y ) ∈ C2 we have an exact sequence

K(X,Y )
j∗−→ K(X)

i∗−→ K(Y )

where i : Y → X and j : (X,∅ → (X,Y ) are the inclusions.

Proof. We could apply the representability of K-theory of the previous lecture.
But there is a very nice direct way to prove the lemma:
The composition i∗j∗ is induced by the composition

j ◦ i : (Y,∅) → (X,Y )

and so factors through the zero group K(Y,Y ). Thus i∗j∗ = 0. Suppose now that
α ∈ Ker (i∗). We may represent α in the form [ξ]− n where ξ is a vector bundle
over X. Since i∗(α) = 0 it follows that

[ξ|Y ] = n in K(Y ).

This implies that for some integer m we have

(ξ ⊕ ϵm)|Y = ϵn ⊕ ϵm,

i.e., we have a trivialization h of (ξ⊕ ϵm)|Y . This defines a bundle (ξ⊕ ϵm)/h on
X/Y in the following way. The total space is the quotient of the total space of
ξ ⊕ ϵm modulo the relation

h−1(y,v) ∼ h−1(y′,v) for y, y′ ∈ Y,

and the projection is just the induced quotient map. We omit the details to show
that this projection map staisfies local triviality. So we can define an element

α′ = [(ξ ⊕ ϵm)/h]− [ϵn ⊕ ϵm] ∈ K̃(X/Y ) = K(X,Y ).
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Then
j∗(α′) = [ξ ⊕ ϵm]− [ϵn ⊕ ϵm]

= [E]− n = ξ.

Thus α is in the image of j∗ and we have Ker (i∗) = Im(j∗), which proves the
exactness. □

Corollary 19.3. For (X,Y ) ∈ C2 and Y ∈ C+ (hence X ∈ C+ by taking the same
basepoint y0 ∈ X) the sequence

K(X,Y )
i∗−→ K̃(X)

i∗−→ K̃(Y )

is exact.

Proof. This follows from the previous lemma and the natural isomorphisms

K(X) ∼= K̃(X)⊕K(y0)

and

K(Y ) ∼= K̃(Y )⊕K(y0).

□

Proposition 19.4. For (X,Y ) ∈ C2 there is a natural exact sequence which
extends infinitely to the left

· · · → K−2(Y )
δ−→ K−1(X,Y )

j∗−→ K−1(X)
i∗−→ K−1(Y )

δ−→ K0(X,Y )
j∗−→ K0(X)

i∗−→ K0(Y ).

Proof. it suffices to show the exactness only for the sequence with terms of degree
−1 and 0. Once we have done that we cann apply suspensions and extend the
sequence to the left.
Let C and S denote cone and suspension respectively. Then we the following
sequence of maps

Y ↪→ X ↪→ X ∪ CY ↪→ (X ∪ CY ) ∪ CX ↪→ ((X ∪ CY ) ∪ CX) ∪ C(X ∪ CY )
↓p ↓ ↓
X/Y SY SX

The vertical maps are the quotient maps obtained by collapsing the most recently
attached cone to a point. Now we successicely apply Corollary 19.3 to the pairs
(X ∪CY,X), ((C ∪CY )∪ (CX), X ∪CY ), and (((X ∪CY )∪CX), ((X ∪CY )∪
CX) ∪C(X ∪CY )). We start with the pair (X ∪CY,X). By Corollary 19.3 we
get an exact sequence

K(X ∪ CY,X)
m∗
−→ K̃(X ∪ CY )

k∗−→ K̃(X).

Since CY is contractible, this implies by Lemma 19.6 below that

p∗ : K̃(X/Y ) → K̃(X ∪ CY )
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is an isomorphism. The composition k∗p∗ coincides with j∗. Let

θ : K(X ∪ CY,X) → K−1(Y ) = K(S1 ∧ Y+)

be the isomorphism induced by the homeomorphisms

(X ∪ CY )/X ≈ CY/Y ≈ S1 ∧ Y+.

Then defining

δ : K−1(Y ) → K(X,Y ) by δ = m∗θ−1

we obtain a diagram

K̃−1(Y )
δ //

θ−1

��

K(X,Y )

p∗

��

j∗ // K̃(X)

=
��

K(X ∪ CY,X)
m∗

// K̃(X ∪ CY )
k∗ // K̃(X)

where the vertical maps are isomorphisms/identities. Hence we obtain the exact
sequence

K̃−1(Y )
δ−→ K(X,Y )

j∗−→ K̃(X).

Applying the same sort of arguments to the remaining pairs yields the remaining
exactness (though it is a bit more complicated than the previous case). □

Example 19.5. In particular, we see that if X is the wedge sum A ∨ B, then
X/A = B and the sequence breaks up into split short exact sequences. This
implies

K̃(X) ∼= K̃(A)⊕ K̃(B).

Lemma 19.6. Let Y ⊂ X be closed contractible subspace. Then the quotient
map q : X → X/Y induces a bijection

q∗ : VectC(X/Y ) → VectC(X).

Proof. Let p : E → X be a bundle over X. Since Y is contractible, E|Y is trivial.
Thus there is a trivialization h

h : E|Y → Y × Cn.

Moreover, two such trivializations differ by an automorphism of Y × Cn, i.e., by
a map Y → GLn(C). But GLn(C) is connected and V is contractible. Thus
h is unique up to homotopy and so the isomorphism class of E/h is uiquely
determined by that of E. Thus we have constructed a map

VectC(X) → VectC(X/Y )

and this is a two-sided inverse for q∗. □
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This shows that the complex K-theory functor behaves very much like the sin-
gular cohomology functor. In fact, complex K-theory defines a complex oriented
cohomology theory.

19.2. Bott periodicity for K̃. We want a version of the periodicity theorem
for the reduced groups too. We start with the following observation.

Lemma 19.7. For nondegenerately based spaces X and Y , the projections of
X × Y on X and Y and the quotient map X × Y → X ∧ Y induce a natural
isomorphism

K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ) ∼= K̃(X × Y ).

The group K̃(X ∧ Y ) is the kernel of the map

K̃(X × Y ) → K̃(X)⊕ K̃(Y )

induced by the inclusions of X and Y into X × Y .

Proof. The inclusions and projections make X and Y into retracts of X×Y . This
implies that the map

K̃(X × Y ) → K̃(X)⊕ K̃(Y )

induced by the inclusions is a split surjection with splitting

K̃(X)⊕ K̃(Y ) → K̃(X × Y ), (a,b) 7→ p∗1(a) + p∗2(b)

where p1 and p2 are the projections. The inclusion X∨Y → X×Y is a cofibration
by our assumption on X and Y . The quotient of this map is X ∧ Y . This
cofibration induces an exact sequence

K̃(X ∧ Y ) → K̃(X × Y ) → K̃(X ∨ Y ).

Since we have

K̃(X ∨ Y ) ∼= K̃(X)⊕ K̃(Y )

this proves the lemma. □

Lemma 19.8. The Künneth map

µ : K(X)⊗K(Y ) → K(X × Y )

defined by

µ(a⊗ b) = (p∗1a)(p
∗
2b),

where p1 and p2 are the projections onto the two factors, induces a reduced map

µ̃ : K̃(X)⊗ K̃(Y ) → K̃(X ∧ Y ).
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Proof. For: Let x0 ∈ X and y0 ∈ Y be the basepoints, and let a ∈ K̃(X) =
Ker(K(X) → K(x0)) and b ∈ K̃(Y ) = Ker(K(Y ) → K(y0)). Then p∗1a restricts
to zero inK(Y ) and p∗2b restricts to zero inK(X). Hence the product (p∗1a)(p

∗
2b) ∈

K(X × Y ) restricts to zero in both K(X) and K(Y ) and hence in K(X ∨ Y ). In
particular, (p∗1a)(p

∗
2b) lies in K̃(X×Y ). Now Lemma 19.7 implies that (p∗1a)(p

∗
2b)

pulls back to a unique element in K̃(X ∧ Y ). This defines the reduced Künneth
map µ̃. □

We have a reduced splitting

K(X)⊗K(Y ) ∼= K̃(X)⊗ K̃(Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z,
which is compatible with the splitting of Lemma 19.7 and shows that the reduced
Künneth map is a ring homomorphism.

The unreduced version of the periodicity theorem of the previous lecture now
implies the following reduced version.

Theorem 19.9. For nondegenerately based compact spaces X, the map

µ̃ : K̃(X)⊗ K̃(S2) → K̃(X ∧ S2)

is an isomorphism.

Let H∗ be the canonical line bundle over CP1 = S2 and H be its dual. We
know from the previous lecture

K(S2) ∼= Z[H]/(([H]− 1)2),

and hence
K̃(S2) is the ideal Z([H]− 1).

Then Theorem 19.9 implies the following version of Bott periodicity.

Theorem 19.10 (Bott periodicity). For nondegenerately based compact spaces
X, the map

β : K̃(X) → K̃(X ∧ S2), a 7→ µ̃(a,[H]− 1)

is an isomorphism.

Corollary 19.11. We have K̃(S2n+1) = 0 and K̃(S2n) = Z, generated by the
n-fold recuced product ([H]− 1)n.
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20. K-theory of complex projective spaces

This was a guest lecture by Mike Hopkins. Unfortunately, there are no notes
available.

21. Splitting principle and the projective bundle formula in
K-theory

This was a guest lecture by Mike Hopkins. Unfortunately, there are no notes
available.

22. Thom classes and the Thom isomorphism in K-theory

This was a guest lecture by Mike Hopkins. Unfortunately, there are no notes
available.
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23. Proof of the Periodicity Theorem I

We still need to prove the periodicity theorem for complex K-theory. We will
prove it in the following special form. The proof of the more general form of
Lecture 17 is very similar. Let X be a compact Hausdorff space and H the
canonical line bundle over S2 = CP1. We calculated ine one of the homework
problems that we have the relation

(H ⊗H)⊕ 1 ∼= H ⊕H,

or in other words, in K(S2) we have (H1 − 1) = 0. This shows that there is a
natural homomorphism of rings

Z[H]/(H − 1)2 → K(S2).

Theorem 23.1. The natural homomorphism

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X)⊗K(S2) → K(X × S2)

is an isomorphism of rings.

The proof of the theorem will occupy the rest of today’s lecture and the next
one. It is based on a careful analysis of the construction of complex vector bundles
on X × S2 via clutching functions. In our exposition we follow Hatcher’s notes.
We encourage everyone to read Atiyah’s original lecture notes as well.

23.1. Clutching functions. We saw on Problem Set 4 that isomorphism classes
of complex vector bundles over S2 correspond to homotopy classes of maps

S1 → GLn(C).

Such functions are called clutching functions. In the proof of Theorem 32.1 we
make use of this idea to construct vector bundles over X × S2.

Let p : E → X be a vector bundle and let f : E × S1 → E × S1 be an auto-
morphism of the product vector bundle

p× id : E × S1 → X × S1.

This means that for each x ∈ X and z ∈ S1, f specifies an isomorphism

f(x,z) : p−1(x) → p−1(x).

From E and f we construct a vector bundle over X × S2 by taking two copies
of E ×D2 and identifying the subspaces E × S1 via f . We write this bundle as
[E,f ], and call f a clutching function for [E,f ]. If

ft : E × S1 → E × S1
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is a homotopy of clutching functions, then we get an induced isomorphism

[E, f0] ∼= [E,f1]

since from the homotopy ft we can construct a vector bundle over X × S2 × I
restricting to [E,f0] and [E,f1] over X × S2 × {0} and X × S2 × {1}. It is also
clear from the definitions that

[E1,f1]⊕ [E2,f2] ∼= [E1 ⊕ E2, f1 ⊕ f2].

Let us have a look at some examples:

Example 23.2. For the identity map on S1, [E, id] is just the pullback of E via
the projection X × S2 → X. As an element in K(X × S2), [E,id] is equal to
µ(E ⊗ 1).

Example 23.3. Recall the clutching function for the canonical line bundle H
over CP1: We can write the elements [Z0,z1] of CP1 as ratios

z = z0/z1 ∈ C ∪ {∞} = S2.

Then we can write points in the disk D2
0 inside the unit circle S1 ⊂ C uniquely

in the form

[z0/z1,1] = [z,1] with |z| ≤ 1,

and points in the disk D2
∞ outside S1 can be written uniquely in the form

[1,z1/z0] = [1,z−1] with |z−1| ≤ 1.

Over D2
0 the map

[z,1] 7→ (z,1)

defines a section of the canonical line bundle, and over D2
∞ a section is

[1,z−1] 7→ (1,z−1).

These sections determine trivializations of the canonical line bundle over these
two disks, and over their common boundary S1 we pass from the trivialization of
D2

∞ to the trivialization of D2
0 by multiplying with z. Thus by taking D2

∞ as D2
+

and D2
0 as D2

− we see that the canonical line bundle has the clutching function

f : S1 → GLn(C), f(z) = (z).

Example 23.4. a) Taking X to be a point in the previous example, we get

[1,z] ∼= H,

where 1 is the trivial line bundle over the point and z means scalar multiplication
by z ∈ S1 ⊂ C.
b) More generally, for n ≥ 0 we have

[1,zn] ∼= H ⊗ · · · ⊗H = Hn.
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Writing H−1 for the inverse of H with respect to the tensor product in K(X),
i.e., H ⊗H−1 ∼= 1, we can extend this formula to negative n too. For n ≤ 0, we
have

[1, zn] ∼= H−1 ⊗ · · · ⊗H−1 = Hn.

Example 23.5. a) Now if E is a vector bundle over a compact space X, we
deduce from the previous examples

[E,zn] ∼= µ(E ⊗ Ĥn) for n ∈ Z,

where Ĥn denotes the pullback of Hn via the projection X × S2 → S2.
b) More generally, if f is a clutching function we get

[E,znf ] ∼= [E,f ]⊗ Ĥn for n ∈ Z.

A key observation is that every bundle over X × S2 comes from a clutching
function. More precisely:

Lemma 23.6. Let F → X × S2 be a vector bundle of dimension n. Then there
is an n-dimensional bundle E → X and a clutching function f : S1 → GLn(C)
such that

F ∼= [E,f ] over X × S2.

Proof. As in Example 23.3, we consider the unit circle S1 ⊂ C ∪ {∞} = S2 and
decompose S2 into the two disks D0 and D∞. Let Fα denote the restriction of F
to X ×Dα for α = 0,∞. Now we define E to be the restriction of F to X ×{1}.
Since Dα is a disk, the projection

X ×Dα → X × {1}
is homotopic to the identity map of X ×Dα, so the bundle Fα is isomorphic to
the pullback of E by the projection map, and this pullback is E×Dα. This shows
we have an isomorphism

hα : Fα → E ×Dα.

Then we get
f = h0h

−1
∞ as a clutching function for F.

□

Remark 23.7. We may assume that a clutching function f is normalized to be
the identity over X × {1}, since we may normalize any isomorphism of the form
hα : Eα → E × Dα by composing it over each X × {z} with the inverse of its
restriction over X × {1}.
Moreover, any two choices of normalized hα are homotopic through normalized
hα’s, since they differ by a map gα from Dα to the automorphisms of E with
gα(1) = id, and such a gα is homotopic to the constant map id by composing it
with a deformation retraction of Dα to ∗.
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Thus any two choices f0 and f1 of normalized clutching functions are joined by a
homotopy of normalized clutching functions ft.

We now know that clutching functions are a tool to understand all vector
bundles over X×S2. The proof of Theorem 32.1 will require that we understand
all possible clutching functions that are needed to construct all vector bundles
over X×S2. The strategy will be to successively simplify the clutching functions.

23.2. Laurent polynomial clutching functions. The first step is to reduce
to Laurent polynomial clutching functions, which have the form

ℓ(x,z) =
∑
|i|≤n

ai(x)z
i

where ai : E → E is a map which restricts to a linear transformation ai(x) in
each fiber p−1(x). Such an ai will be called an endomorphism of E.

Note: The linear transformation ai(x) is not required to be invertible, hence
the terminology. Nevertheless, the linear combination

∑
|i|≤n ai(x)z

i must be
invertible, since clutching functions are automorphisms.

Hence the first step is to prove the following simplification.

Proposition 23.8. Every vector bundle [E,f ] is isomorphic to [E,ℓ] for some
Laurent polynomial clutching function ℓ. Laurent polynomial clutching functions
ℓ0 and ℓ1 which are homotopic through clutching functions are homotopic by a
Laurent polynomial clutching function homotopy

ℓt(x,z)
∑
|i|≤n

ai(x,t)z
i.

The proof is based on the fact that on a compact space X, we can approximate
continuous functions f : X×S1 → C by Laurent polynomial functions of the form∑

|n|≤N

an(x)z
n =

∑
|n|≤N

an(x)e
inθ,

where z = eiθ ∈ S1 and each an is a continuous function X → C. Motivated by
Fourier series, we set

an(x) =
1

2π

∫ 2π

0

f(x,eiθ)e−inθdθ.

For positive real r, consider the series

u(x,r,θ) =
∑
n∈Z

an(x)r
|n|einθ.
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For fixed r < 1, this series converges absolutely and uniformly as (x,θ) ranges
over X × [0,2π]. This follows from the fact that the geometric series∑

n

rn

converges, and, since X × S1 is compact,

|f(x, eiθ)| is bounded and hence also |an(x)|.

Now we need to show that u(x,r,θ) approaches f(x,eiθ) uniformly in x and θ
as r goes to 1. For then sums of finitely many terms in the series for u(r,x,θ)
with r near 1 will give the desired approximations to f by Laurent polynomial
functions. Hence we need the following lemma.

Lemma 23.9. As r → 1, u(r,x,θ) → f(x,eiθ) uniformly in x and θ.

Proof. For r < 1 we have

u(x,r,θ) =
∑∞

n=−∞
1
2π

∫ 2π

0
r|n|ein(θ−t)f(x,eit)dt

=
∫ 2π

0
1
2π

∑∞
n=−∞ r|n|ein(θ−t)f(x,eit)dt

where the order of summation and integration can be interchanged since the series
in the latter formula converges uniformly, by comparison with the geometric series∑

n r
n. Define the Poisson kernel

P (r,φ) =
1

2π

∞∑
n=−∞

r|n|einφ for 0 ≤ r ≤ 1 and φ ∈ R.

Then we have

u(r,x,θ) =

∫ 2π

0

P (r, θ − t)f(x,eit)dt.

By summing the two geometric series for positive and negative n in the formula
for P (r, φ), one computes that

P (r,φ) =
1

2π
[1− 1

1− reiφ
+

1

1− re−iφ
] =

1

2π

1− r2

1− 2r cosφ+ r2
,

where one uses the formula

eiφ + e−iφ = 2 cosφ.

We will need three facts about P (r,φ):

(a) As a function of φ, P (r,φ) is even, of period 2π, and monotone decreasing
on [0,π], since the same is true for cosφ which appears in the denominator
of P (r,φ) with a minus sign. In particular, we have

P (r,φ) ≥ P (r,π) > 0 for all r < 1.
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(b)
∫ 2π

0
P (r,φ)dφ = 1 for each r < 1. This follows from integrating the series

for

P (r,φ) =
1

2π
[1 + 2

∞∑
n=1

cos(nφ)]

term by term (the integral over all terms in the sum yield 0 and the
integral over 1 yields 2π).

(c) For fixed φ ∈ (0,π), P (r,φ) → 0, since the numerator of P (r,φ) approaches
0 and the denominator approaches 2− 2 cosφ ̸= 0.

Now to show uniform convergence of u(r,x,θ) to f(x,eiθ) we first observe that,
using (b), we have

|u(x,r,θ)− f(x,eiθ)| = |
∫ 2π

0
P (r, θ − t)f(x,eit)dt−

∫ 2π

0
P (r, θ − t)f(x,eiθ)dt|

≤
∫ 2π

0
P (r, θ − t)|f(x,eit)− f(x,eiθ)|dt.

Given ϵ > 0, there exists a δ > 0 such that

|f(x,eit)− f(x,eiθ)| < ϵ for |t− θ| < δ and all x,

since f is uniformly continuous on the compact space X × S1. Let Iδ denote the
integral∫ 2π

0

P (r, θ − t)|f(x,eit)− f(x,eiθ)|dt over the interval |t− θ| ≤ δ,

and let I ′δ denote this integral over the complement of the interval |t− θ| ≤ δ in
an interval of length 2π. Then we have

Iδ ≤
∫
|t−θ|≤δ

P (r, θ − t)ϵdt ≤ ϵ

∫ 2π

0

P (r,θ − t)dt = ϵ.

By (a) the maximum value of P (r,θ − t) on |t− θ| ≥ δ is P (r, δ). Hence

I ′δ ≤ P (r,δ)

∫ 2π

0

|f(x,eit)− f(x,eiθ)|dt.

The integral here as a uniform bound for all x and θ since f is bounded. Thus
by (c) we can make

I ′δ ≤ ϵ by taking r close enough to 1.

Therefore

|u(x,r,θ)− f(x,θ)| ≤ Iδ + I ′δ ≤ 2ϵ.

□

Now we are ready for the proof of the proposition.
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Proof of Proposition 23.8. Choosing a Hermitian inner product on E, the endo-
morphisms of E × S1 form a vector space End(E × S1) with a norm

∥α∥ = sup
|v|=1

|α(v)|.

Note that the triangle inequality holds for the sup-norm, so balls in End(E×S1)
are convex. The subspace Aut(E×S1) of automorphisms is open in the topology
defined by this norm since it is the preimage of (0,∞) under the continuous map

End(E × S1) → [0,∞), α 7→ inf
(x,z)∈X×S1

| det(α(x,z))|.

Hence in order to prove the first statement of the proposition it will suffice to
show that the Laurent polynomials are dense in End(E×S1), since a sufficiently
close Laurent polynomial approximation ℓ to f will then be homotopic to f via
the linear homotopy

tℓ+ (1− t)f through clutching functions

which is in Aut(E×S1) for all 0 ≤ t ≤ 1. Hence f is homotopic to ℓ in Aut(E×S1)
and

[E,f ] ∼= [E,ℓ].

The second statement follows similarly by approximating a homotopy from
ℓ0 to ℓ1, viewed as an automorphism of E × S1 × I by a Laurent polynomial
homotopy ℓ′t. Then we can combine these approximations with linear homotopies
from ℓ0 to ℓ′0 and ℓ1 to ℓ′1 to obtain a homotopy ℓt from ℓ0 to ℓ1.

Hence we need to show that every f ∈ End(E × S1) can be approximated by
Laurent polynomial endomorphisms. Therefor we choose open sets Ui covering
X together with isomorphisms

hi : p
−1(Ui) → Ui × Cni .

We may assume that hi takes the chosen inner product in p−1(Ui) to the stan-
dard inner product in Cni , by applying the Gram-Schmidt process to h−1

i of the
standard basis vectors.

Let {ϕi} be a partition of unity subordinate to {Ui} an let {Xi} be the support
of ϕi. Since X is compact, we cann choose {ϕi} such that each Xi is a compact
subset in Ui. Via hi, the linear maps f(x,z) for x ∈ Xi can be viewed as matrices.
The entries of these matrices define functions

Xi × S1 → C.

Applying Lemma 23.9 to each entry of the matrices, we can find Laurent poly-
nomial matrices ℓi(x,z) whose entries uniformly approximate those of f(x,z) for
x ∈ Xi. It follows that ℓi approximates f in the ∥ · ∥-norm, since the entries are
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uniformly approximated. From the Laurent polynomial approximations ℓi over
Xi we form the convex linear combination

ℓ =
∑
i

ϕiℓi,

which is a Laurent polynomial approximating f over all of X × S1. □



88 GEREON QUICK

24. Proof of the Periodicity Theorem II

We continue the sketch of the proof of the periodicity theorem for complex
K-theory.

Theorem 24.1. The natural homomorphism

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X)⊗K(S2) → K(X × S2)

is an isomorphism of rings.

The proof on a careful analysis of the construction of complex vector bundles
on X × S2 via clutching functions. We conclude the proof today with an outline
of the ideas.

24.1. Laurent polynomial clutching functions. The first step is to reduce
to Laurent polynomial clutching functions, which have the form

ℓ(x,z) =
∑
|i|≤n

ai(x)z
i

where ai : E → E is a map which restricts to a linear transformation ai(x) in
each fiber p−1(x). Such an ai will be called an endomorphism of E.

Note: The linear transformation ai(x) is not required to be invertible, hence
the terminology. Nevertheless, the linear combination

∑
|i|≤n ai(x)z

i must be
invertible, since clutching functions are automorphisms.

Hence the first step is to prove the following simplification.

Proposition 24.2. Every vector bundle [E,f ] is isomorphic to [E,ℓ] for some
Laurent polynomial clutching function ℓ. Laurent polynomial clutching functions
ℓ0 and ℓ1 which are homotopic through clutching functions are homotopic by a
Laurent polynomial clutching function homotopy

ℓt(x,z)
∑
|i|≤n

ai(x,t)z
i.

The proof is based on the fact that on a compact space X, we can approximate
continuous functions f : X×S1 → C by Laurent polynomial functions of the form∑

|n|≤N

an(x)z
n =

∑
|n|≤N

an(x)e
inθ,
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where z = eiθ ∈ S1 and each an is a continuous function X → C. Motivated by
Fourier series, we set

an(x) =
1

2π

∫ 2π

0

f(x,eiθ)e−inθdθ.

For positive real r, consider the series

u(x,r,θ) =
∑
n∈Z

an(x)r
|n|einθ.

For fixed r < 1, this series converges absolutely and uniformly as (x,θ) ranges
over X × [0,2π]. This follows from the fact that the geometric series∑

n

rn

converges, and, since X × S1 is compact,

|f(x, eiθ)| is bounded and hence also |an(x)|.

Now we need to show that u(x,r,θ) approaches f(x,eiθ) uniformly in x and θ
as r goes to 1. For then sums of finitely many terms in the series for u(r,x,θ)
with r near 1 will give the desired approximations to f by Laurent polynomial
functions. The proof of the following lemma can be found in the notes of the
previous lecture (and of course in Hatcher’s lecture notes).

Lemma 24.3. As r → 1, u(r,x,θ) → f(x,eiθ) uniformly in x and θ.

Now we are ready for the proof of the proposition.

Proof of Proposition 23.8. Choosing a Hermitian inner product on E, the endo-
morphisms of E × S1 form a vector space End(E × S1) with a norm

∥α∥ = sup
|v|=1

|α(v)|.

Note that the triangle inequality holds for the sup-norm, so balls in End(E×S1)
are convex. The subspace Aut(E×S1) of automorphisms is open in the topology
defined by this norm since it is the preimage of (0,∞) under the continuous map

End(E × S1) → [0,∞), α 7→ inf
(x,z)∈X×S1

| det(α(x,z))|.

Hence in order to prove the first statement of the proposition it will suffice to
show that the Laurent polynomials are dense in End(E×S1), since a sufficiently
close Laurent polynomial approximation ℓ to f will then be homotopic to f via
the linear homotopy

tℓ+ (1− t)f through clutching functions
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which is in Aut(E×S1) for all 0 ≤ t ≤ 1. Hence f is homotopic to ℓ in Aut(E×S1)
and

[E,f ] ∼= [E,ℓ].

The second statement follows similarly by approximating a homotopy from
ℓ0 to ℓ1, viewed as an automorphism of E × S1 × I by a Laurent polynomial
homotopy ℓ′t. Then we can combine these approximations with linear homotopies
from ℓ0 to ℓ′0 and ℓ1 to ℓ′1 to obtain a homotopy ℓt from ℓ0 to ℓ1.

Hence we need to show that every f ∈ End(E × S1) can be approximated by
Laurent polynomial endomorphisms. Therefor we choose open sets Ui covering
X together with isomorphisms

hi : p
−1(Ui) → Ui × Cni .

We may assume that hi takes the chosen inner product in p−1(Ui) to the stan-
dard inner product in Cni , by applying the Gram-Schmidt process to h−1

i of the
standard basis vectors.

Let {ϕi} be a partition of unity subordinate to {Ui} an let {Xi} be the support
of ϕi, which is a compact subset in Ui. Via hi, the linear maps f(x,z) for x ∈ Xi

can be viewed as matrices. The entries of these matrices define functions Xi ×
S1 → C. Applying Lemma 24.3 to each entry of the matrices, we can find Laurent
polynomial matrices ℓi(x,z) whose entries uniformly approximate those of f(x,z)
for x ∈ Xi. It follows that ℓi approximates f in the ∥ · ∥-norm, since the entries
are uniformly approximated. From the Laurent polynomial approximations ℓi
over Xi we form the convex linear combination

ℓ =
∑
i

ϕiℓi,

which is a Laurent polynomial approximating f over all of X × S1. □

Now we are reduced to Laurent polynomial clutching functions. In fact, we are
reduced to polynomial clutching functions, since if ℓ is a Laurent polynomial we
can write it as

ℓ = z−mq for a polynomial function q and some m.

Then we get

[E,ℓ] ∼= [E,q]⊗ Ĥ−m.

The next step is to simplify from polynomials to linear clutching functions.

Proposition 24.4. If q is a polynomial clutching function of degree at most n,
then

[E,q]⊕ [nE,id] ∼= [(n+ 1)E,Lnq] for a linear clutching function Lnq.
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Proof. Let
q(x,z) = an(x)z

n + · · ·+ a0(x).

Each of the matrices

A =



1 −z 0 · · · 0 0
0 1 −z · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1 −z
an an−1 an−2 · · · a1 a0

 B =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 q


defines an endomorphism of (n+1)E by interpreting the (i,j)-entry of the matrix
as a linear map from the jth summand of (n + 1)E to the ith summand, with
the entries 1 denoting the identity E → E and z denoting z times the identity,
for z ∈ S1.

Now we define the sequence qr(z) = qr(x,z) inductively by

q0 = q, zqr+1(z) = qr(z)− qr(0).

Then we have the following matrix identity:

A =



1 0 0 · · · 0 0
q1 1 0 · · · 0 0
q2 0 1 · · · 0 0
...

...
... · · · ...

...
qn−1 0 0 · · · 1 0
qn 0 0 · · · 0 1





1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 q





1 −z 0 · · · 0 0
0 1 −z · · · 0 0
0 0 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1 −z
0 0 0 · · · 0 1


We can rewrite this identity as

(8) A = (1 +N1)B(1 +N2)

where N1 and N2 are nilpotent. If N is nilpotent, then 1 + tN is an invertible
matrix for 0 ≤ t ≤ 1. Since matrix B defines a clutching function for

[E,q]⊕ [nE, id],

it is invertible in each fiber. Hence (8) shows that A is invertible in each fiber.
Thus A defines an automorphism of (n + 1)E for each z ∈ S1 and therefore a
clutching function which we denote by Lnq. Since Lnq has the form

Lnq(x,z) = a(x)z + b(x),

Moreover, it follows from (8) that A and B define homotopic clutching func-
tions. Hence we obtain an isomorphism of vector bundles:

[E,q]⊕ [nE, id] ∼= [(n+ 1)E,Lnq].

□
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24.2. Linear clutching functions. For linear clutching functions we have the
following key fact:

Proposition 24.5. Let a, b ∈ End(E) and assume we are given a bundle [E, a(x)z+
b(x)]. Then there is a splitting E ∼= E− ⊕ E+ with

[E, a(x)z + b(x)] ∼= [E+, z]⊕ [E−,id](∼= E+ ⊗H ⊕ E−).

To prepare the proof of the proposition, we start with a brief side discussion.
Let T be an endomorphism of a finite dimensional vector space E, and let S be
a circle in the complex plane which does not pass through any eigenvalue of T .
Then

Q =
1

2πi

∫
S

(z − T )−1dz

is a projection operator in E, i.e., Q2 = Q, which commutes with T . This induces
a decomposition

E = E+ ⊕ E−, E+ = QE and E− = (1−Q)E,

which is invariant under T . Hence T can be written as

T = T+ ⊕ T−.

Moreover, the eigenvalues of T+ are all inside S, while the eigenvalues of T− are
all outside of S.

Sketch of a proof of Proposition 24.5. For a,b ∈ End(E), write p(x) = a(x)z +
b(x). Since a(x)z+ b(x) is invertible for all x, b(x) has no eigenvalues on the unit
circle S1. We define an endomorphism of E by

Q =
1

2πi

∫
|z|=1

(az + b)−1adz.

(Hence Q defines a linear transformation on each fiber Ex of E.) It is even a
projection operator. Moreover, Q commutes with a and b. Now one defines

E+ = QE and E− = (1−Q)E.

Now one has to check that E+ and E− inherit a vector bundle structure from E.
Once this is done, we get a decomposition

E ∼= E+ ⊕ E−

and our endomorphisms induce endomorphisms

p+ = a+z + b+ ∈ End(E+ × S1) and p− = a−z + b− ∈ End(E− × S1).

Moreover, a+ and b− are isomorphisms (and so are a− and b+.) Setting

pt = pt+ + pt−, where p
t
+ = a+z + tb+, p

t
− = ta−z + b−, 0 ≤ t ≤ 1,
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we obtain isomorphisms

[E,p] ∼= [E, a+z + b−] from the homotopies above
∼= [E+,a+z]⊕ [E−,b−]
∼= [E+,z]⊕ [E−,id] since a+z ∼ z and b− ∼ id

□

24.3. Proof of the Periodicity Theorem. As a consequence of the previous
discussion we obtain that for every vector bundle F over X × S2 there is an
integer n ≥ 0 and bundles E1, E2 and E3 over X such that

F ⊗Hn ⊕ π∗E1
∼= π∗E2 ⊗H ⊕ π∗E3,

where π : X × S2 → X is the projection.

Moreover, the homotopy of clutching functions(
z2 0
0 1

)
=

(
z 0
0 1

)(
z 0
0 1

)
∼

(
z 0
0 1

)(
1 0
0 z

)
=

(
z 0
0 z

)
implies

H2 ⊕ 1 = H ⊕H.

Hence we have

([H]− 1)2 = ([H]−1 − 1)2 = 0 in K(X × S2).

Finally, this implies that every element ξ in K(X × S2) can be written as

ξ = π∗ξ1 + π∗ξ22 · ([H]− 1)

with ξ1, ξ2 ∈ K(X). This shows the surjectivity statement of the Periodicity
Theorem.

The injectivity can then be proved by showing that the elements ξ1 and ξ2 are
in fact unique in K(X). One has to check that all the choices we made during
the constructions did not matter. We omit the careful analysis that is necessary
to do this. We refer to Atiyah’s book orHatcher’s lecture notes for more details.

In the end, the Periodicity Theorem tells us that K(X × S2) is a free K(X)-
module with generators 1 and [H] − 1. The ring structure on K(X × S2) is
determined by the single relation ([H]− 1)2 = 0.
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25. Adams operations in complex K-theory

There are very important ring homomorphisms in complex K-theory, called
Adams operations. Today we are going to see how they can be defined and that
they have the following properties:

Theorem 25.1. For each non-zero integer k and each compact Hausdorff space
X, there is a ring homomorphism

ψk : K(X) → K(X)

satisfying the following properties:

(1) ψ1 = id and ψ−1 is induced by conjugation of complex bundles.
(2) ψkf ∗ = f ∗ψk for all maps f : X → Y , i.e., the ψk are natural homomor-

phisms.
(3) ψk(L) = Lk = L⊗ · · · ⊗ L if L is a line bundle.
(4) ψk ◦ ψℓ = ψkℓ.
(5) ψp(α) ≡ αp modulo p for a prime p
(6) If X is a based space, then, by the naturality property (2), each ψk restricts

to an operation
ψk : K̃(X) → K̃(X),

since K̃(X) is the kernel of the homomorphism K(X) → K(x0).
For 2n-spheres, the Adams operations act as

ψk(x) = knx for x ∈ K̃(S2n).

The proof of the theorem will occupy the rest of today’s lecture.

First of all, if we impose property (4), ψ−k = ψkψ−1, and use (1) to define ψ−1,
we only need to construct the ψk for k > 1.

By extending the construction from vector spaces to bundles we can form an
exterior power λk(E) which has the following properties:

(i) λk(E1 ⊕ E2) ∼= ⊕i+j=kλ
i(E1)⊗ λj(E2).

(ii) λ0(E) = 1, the trivial line bundle.
(ii) λ1(E) = E.
(iv) λk(E) = 0 for k greater than the maximum dimension of the fibers of E.

Lemma 25.2. The λk extend to operations on K-theory

λk : K(X) → K(X).

Proof. Consider the multiplicative group G of power series with constant term 1
in the ring K(X)[[t]] of formal power series in the variable t. We define a function
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from equivalence classes of vector bundles to this abelian group by setting

Λ(E) := 1 + λ1(E)t+ · · ·+ λk(E)tk + · · · .
Property (i) above implies

Λ(E1 ⊕ E2) = Λ(E1)Λ(E2).

This means that Λ is a morphism of monoids and hence induces a homomorphism
of groups

Λ: K(X) → G.

We define
λk(x) to be the coefficient of tk in Λ(x).

□

Back to the Adams operations. Let us consider the special case of a vector
bundle E which is a sum of line bundles Li. Then properties (3) and (4) give us
a formula

ψk(L1 + · · ·+ Ln) = Lk1 + · · ·+ Lkn.

The construction of the ψk will be based on showing that there is a polynomial
Qk with integral coefficients with

Lk1 + · · ·+ Lkn = Qk(λ
1(E), . . . , λk(E)).

This leads us to define

ψk(E) = Qk(λ
1(E), . . . , λk(E))

for arbitrary E.

So we need to find these polynomials Qk. Therefor we consider the polynomial
algebra Z[x1, . . . , xn] and let

σi = x1x2 · · ·xi + · · ·
be the ith elementary symmetric function in the xi’s. The σi’s form a subring

Z[σ1, . . . , σn] ⊂ Z[x1, . . . , xn],
and satisfy

(1 + x1) · · · (1 + xn) = 1 + σ1 + · · ·+ σn.

The crucial property for us is that every symmetric polynomial of degree k in
x1, . . . , xn can be expressed as a unique polynomial in σ1, . . . , σk. In particular,
there is a polynomial Qk such that

(9) Qk(σ1, . . . , σk) = xk1 + · · ·+ xkn.

Moreover, this Qk is independent of n as long k ≤ n, since we can pass from n
to n− 1 by setting xn = 0.
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Lemma 25.3. The Qk satisfy the recursive formula

Qk = σ1Qk−1 − σ2Qk−2 + · · ·+ (−1)k−2σk−1Q1 + (−1)k−1kσk.

Proof. This is an exercise. □

The lemma yields for example

Q1 = σ1, Q2 = σ2
1 − 2σ2, Q3 = σ3

1 − 3σ1σ2 + 3σ3.

Lemma 25.4. For E = L1 + · · ·+ Ln:

Lk1 + · · ·+ Lkn = Qk(λ
1(E), . . . , λk(E)).

Proof. The assumption on E implies

Λ(E) =
∏
i

Λ(Li) =
∏
i

(1 + λ1(Li)t) =
∏
i

(1 + Lit).

When we compute the product we see that the coefficient λi(E) of ti in Λ(E)
satisfies

λi(E) = σi(L1, . . . , Ln).

Substituting Li for xi in (9) now yields the assertion. □

Now we can define ψk.

Definition 25.5. For every element ξ in K(X) we define

ψk(ξ) = Qk(λ
1(ξ), . . . , λk(ξ)).

Now we need to show that the ψk’s satisfy the properties of the theorem. To
do this we will use the following fact, known as the Splitting Principle, which is
very useful for proving all kinds of statements in K(X).

Theorem 25.6. Given a vector bundle E → X over a compact Hausdorff space
X, there is a compact Hausdorff space F (E) and a map p : F (E) → X such that
the induced map p∗ : K∗(X) → K∗(F (E)) is injective and p∗(E) splits as a sum
of line bundles.

Using Theorem 25.6 we finish the proof of Theorem 34.7:

(1) holds by definition for ψ−1 and follows from Q1 = σ1 and Theorem 25.6
for ψ1.

(2) follows from the naturality of λk, i.e., f ∗(λi(E)) = λi(f ∗(E)).
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(3) If E = L is a line bundle, then λ1(L) = L and λk(L) = 0 for k ≥ 2. Hence

ψk(L) = Qk(L) = Lk.

For it follows from Lemma 25.3 that Qk ≡ σk1 modulo terms in the ideal
generated by the σi’s for i > 1.

Additivity: Let E and F be vector bundles over X. By (2) and Theorem 25.6 we take
a pullback to split E and then take another pullback to split F as sums
of line bundles. But then the identity

ψk(L1 + · · ·+ Ln) = Lk1 + · · ·Lkn
shows us that ψk is additive for sums of line bundles. The injectivity
statement of Theorem 25.6 implies that we have

ψk(E ⊕ F ) = ψk(E) + ψk(F ).

This implies that ψk is an additive map K(X) → K(X).
Multiplicativity: Let E and F be vector bundles over X. By (2) and Theorem 25.6 we take

a pullback to split E of line bundles Li’s and then take another pullback
to split F as sums of line bundles Mj’s. Then E ⊗ F is a sum of line
bundles Li ⊗Mj. Hence

ψk(E ⊗ F ) =
∑
i,j

ψk(Li ⊗Mj) =
∑
i,j

(Li ⊗Mj)
k =

∑
i

Lki
∑
j

Mk
j = ψk(E)ψk(F ).

This implies that ψk is a multiplicative map K(X) → K(X).
(4) Theorem 25.6 and Additivity reduce us to the case E = L a line bundle.

But in this case we know

ψk(ψℓ(L)) = Lkℓ = ψkℓ(L).

(5) Once again we can assume E = L1 + · · ·+ Ln. Then

ψp(E) = Lp1 + · · ·+ Lpn ≡ (L1 + · · ·+ Ln)
p = Ep modulo p.

(6) We know from before that K̃(S2) is generated by 1− [H] with (1− [H])2 =
0. By additivity, we know

ψk(1− [H]) = 1− [H]k.

By induction on k, one sees 1− [H]k = k(1− [H]). For

1− [H]k = (1− [H]k−1)[H]+(1− [H]) = (k−1)(1− [H])+(1− [H]) = k(1− [H]).

This shows the formula for S2. Now we use that

S2n = S2 ∧ · · · ∧ S2

and K̃(S2n) is generated by the k-fold tensor power

(1− [H])⊗ · · · ⊗ (1− [H]).

Now (6) follows from the multiplicativity of ψk.
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26. The Hopf invariant one problem via K-theory

We return to one of our initial problems and answer the question for which
n there can be a division algebra structure on Rn. The answer to this question
will follow from the solution of a famous problem in algebraic topology, the Hopf
invariant one problem.

26.1. The Hopf invariant. For n ≥ 2, let Sn be an oriented n-sphere. Assume
we are given a pointed map f : S2n−1 → Sn. Considering S2n−1 as the boundary
of an oriented 2n-cell, we can form the cell complex X = Xf = Sn ∪f e2n, the
cofiber of f . It is the complex formed from the disjoint union of Sn and e2n by
identifying each point in S2n−1 = e̊2n with its image under f . The cell complex
X has a single vertex, a single n-cell and a single 2n-cell.

Let

π : X → X/Sn ∼= S2n

be the quotient map that collapses Sn. It fits into a sequence

S2n−1 f−→ Sn
i−→ X

π−→ S2n Σf−→ Sn+1.

Now we specialize to the case that n is even and form the long exact sequence in
reduced K-theory of the pair (X,Sn). Since

K̃1(S2n) = K̃1(Sn) = 0

we obtain a short exact sequence

(10) 0 → K̃(S2n)
π∗
−→ K̃(X)

i∗−→ K̃(Sn) → 0.

Let in be a generator of K̃(Sn) and i2n be a generator of K̃(S2n). Choose an
element

a ∈ K̃(X) such that i∗(a) = in and let b = π∗(i2n) ∈ K̃(X).

The sequence (12) shows that K̃(X) is a free abelian with generators a and b,
since

K̃(S2n) ∼= K̃(Sn) ∼= Z.

Since any square in K̃(Sn) vanishes we have i2n = 0. Hence

a2 = h(f) · b for some integer h(f).

Lemma 26.1. The integer h(f) is well-defined.
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Proof. We need to show that h := h(f) does not depend on the choice of a. Be-
cause of the exactness of (12), a is unique up to adding a multiple of b. Moreover,

(a+mb)2 = a2 + 2m · a · b, since b2 = π∗(i22n) = 0.

Hence it suffices to show a · b = 0. Since b maps to 0 in K̃(Sn), so does a · b.
Hence

a · b = k · b for some integer k.

Multiplying the equation k · b = b · a on the right by a gives

k · b · a = b · a2 = b · h · b = h · b2 = 0 since b2 = 0.

Thus k · b · a = 0, which implies a · b = 0 since a · b lies in the image of K̃(S2n) in
K̃(X) which is an infinite cyclic subgroup of K̃(X). □

Definition 26.2. The Hopf invariant of f is the integer h(f).

Example 26.3. If n is 2, 4, or 8, there exists a map f : S2n−1 → Sn with Hopf
invariant one. For n = 2, f may be taken as the natural projection

f : S3 → S2 = CP1,

viewing S3 as the unit sphere in the complex plane C2. Such an f is the attaching
map in the complex projective plane

CP2 = S2 ∪f e4.

Then we have h(f) = 1, since K̃(CP2) ∼= Z · a⊕ Z · a2, and hence the generator
b is exactly a2.

The cases n = 4 and n = 8 correspond to the quaternionic plane and the
Cayley plane, respectively. We will get back to these examples later.

Remark 26.4. The Hopf invariant is usually defined using integral cohomology
groups. But we will show later that both definitions yield the same number.
Using the cohomological definition it is clear that, if n is odd, then h(f) = 0 for
all f . So n even is the only interesting case and our initial reduction to that case
is not really a restriction.

Remark 26.5. The homotopy type of X depends only on the homotopy class
of the map f . Thus h(f) only depends on the homotopy class of f . We may
therefore speak of the Hopf invariant of a homotopy class and consider h as a
function

h : π2n−1(S
n) → Z.

The Hopf invariant has the following properties.

Proposition 26.6. Let n ≥ 2 be an even integer. The Hopf invariant has the
following properties:
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(1) If g : S2n−1 → S2n−1 has degree d, then h(f ◦ g) = d · h(f).
(2) If e : Sn → Sn has degree d, then h(e ◦ f) = d2 · h(f).
(3) There exists a map f : S2n−1 → Sn with Hopf invariant two.
(4) The Hopf invariant defines a homomorphism of groups π2n−1(S

n) → Z.

We will postpone the proof of the proposition. We just mention an immediate
consequence for the structure of the homotopy groups of spheres.

Corollary 26.7. If n is even, then π2n−1(S
n) contains an infinite cyclic subgroup

as a direct summand.

Proof. In fact, the cyclic subgroup generated by the homotopy class of a map of
Hopf invariant two must be mapped isomorphically onto the even integers by the
homomorphism h. □

The much more important and harder result is the following famous theorem
of J. F.Adams. Adams’ initial proof was based on cohomological methods. Using
Adams operations in complexK-theory yields a much simpler proof due to Adams
and Atiyah.

Theorem 26.8. For an even integer n ≥ 2, there exists a map f : S2n−1 → Sn

with h(f) = ±1 only if n = 2, 4, or 8.

Proof. We write n = 2m. Since we computed the effect of the kth Adams opera-
tion ψk on K̃(S2m) we know

ψk(i2n) = k2mi2n and ψk(in) = kmin.

Hence

ψk(b) = k2mb and ψk(a) = kma+ µk

for some integer µk. For k = 2 this is

2ma+ µ2b = ψ2(a) ≡ a2 = h(f) · b mod 2.

Thus h(f) = ±1 implies that µ2 is odd.

Now, for any odd k,

ψkψ2(a) = ψk(2ma+ µ2b)
= km2ma+ (2mµk + k2mµ2)b

while
ψ2ψk(a) = ψ2(kma+ µkb)

= 2mkma+ (kmµ2 + 22mµk)b.
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Since ψkψ2 = ψ2k = ψ2ψk, these two expressions must be equal. Moreover, since
K̃(X) is a free abelian group, the coefficients of b must agree

2m(2m − 1)µk = km(km − 1)µ2.

Since µ2 is odd, this implies that 2m divides km − 1. Already with k = 3, the
following elementary number theoretic lemma shows that this implies m = 1, 2,
or 4. □

Lemma 26.9. If 2m divides 3m − 1 then m = 1, 2, or 4.

Proof. Write m = 2ℓk with k odd. It suffices to show that the highest power of 2
dividing 3m − 1 is 2 for ℓ = 0 and 2ℓ+2 for ℓ > 0. Then the lemma follows, since
if 2n divides 3m − 1, then we deduce m ≤ ℓ + 2, hence 2ℓ ≤ 2ℓk = m ≤ ℓ + 2.
This implies ℓ ≤ 2 and m ≤ 4. The cases m = 1, 2, 3, and 4 can then be checked
individually.

We use induction on ℓ. For ℓ = 0 we have

3m − 1 = 3k − 1 ≡ 2 mod 4, since 3 ≡ −1 mod 4 and k is odd.

Hence the highest power of 2 dividing 3m−1 is 2. In the next case ℓ = 1, we have

3m − 1 = 32k − 1 = (3k − 1)(3k + 1).

The highest power of 2dividing the first factor is 2 as we just showed and the
highest power of 2 dividing the second factor is 2 since

3k + 1 ≡ 4 mod 8 because 32 ≡ 1 mod 8 and m is odd.

So the highest power of 2 dividing the product (3k − 1)(3k + 1) is 8. For the
inductive step of passing from ℓ to ℓ+ 1 with ℓ ≥ 1, or in other words from m to
2m with m even, write

32m − 1 = (3m − 1)(3m + 1).

Then 3m + 1 ≡ 2 mod 4 since m is even, so the highest power dividing 3m + 1 is
2. Thus the highest power of 2 dividing 32m − 1 is twice the highest power of 2
dividing 3m − 1. □
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27. Consequences of the Hopf invariant one problem

Last time we discussed the K-theoretical proof of the following fundamental
result.

Theorem 27.1. For an even integer n ≥ 2, there exists a map f : S2n−1 → Sn

with Hopf invariant one only if n = 2, 4, or 8.

Today we will see some consequences of this result.

27.1. H-space structures on Sn−1. As an important consequence of the the-
orem we can determine for which n the sphere Sn admits an H-space structure,
i.e., there is a continuous multiplication map

g : Sn × Sn → Sn

with a two-sided identity element.

Theorem 27.2. If Sn−1 is an H-space, then n = 1, 2, 4, or 8.

Let us first deal with the case that n is odd. Write n − 1 = 2k. Since the
K-theory group K(S2k) is isomorphic to Z[α]/(α2), the Bott periodicity theorem
implies

K(S2k × S2k) ∼= Z[α,b]/(α2,β2)

where α and b denote the pullback of generators of K(S2k) and K(S2k) under the
projections of S2k×S2k onto its two factors. An additive basis for K(S2k×S2k)is
thus {1, α, β, αβ}.

Now let us assume we had an H-space multiplication map

µ : S2k × S2k → S2k

and let e be the identity element. The induced homomorphism of K-rings has
the form

µ∗ : Z[γ]/(γ2) → Z[α,β]/(α2,β2).

We claim
µ∗(γ) = α + β +mαβ for some integer m.

For: the composition

S2k i−→ S2k × S2k µ−→ S2k

is the identity, where i is the inclusion onto either of the subspaces S2k × {e} or
{e}×S2k (with e the identity element of the H-space structure). The map i∗ for
i the inclusion onto the first factor sends α to γ and b to 0, so the coefficient of α
in µ∗(γ) must be 1. Similarly the coefficient of β in µ∗(γ) must be 1. This proves
the claim.
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But this leads to a contradiction, since it implies

µ∗(γ2) = (α + β +maβ)2 = 2αβ ̸= 0,

which is impossible since γ2 = 0.

The strategy to prove Theorem 27.2 for n even is the following: given an H-
space structure on Sn−1, we construct from it a map f : S2n−1 → Sn of Hopf
invariant one.

Let g : Sn−1 × Sn−1 → Sn−1 be a continuous map. Regard S2n−1 as

∂(Dn ×Dn) = ∂Dn ×Dn ∪Dn × ∂Dn,

and we consider Sn as the union of two disks Dn
+ and Dn

− with their boundaries
identified. Then f : S2n−1 → Sn is defined by

f(x,y) = |y|g(x,y/|y|) ∈ Dn
+ on ∂Dn ×Dn

and

f(x,y) = |x|g(x/|x|,y) ∈ Dn
− on Dn × ∂Dn.

Note that f is well-defined and continuous, even when |x| or |y| is zero, and f
agrees with g on Sn−1 × Sn−1.

Lemma 27.3. Let n ≥ 2 be an even integer. If g : Sn−1×Sn−1 → Sn−1 is an H-
space multiplication, then the associated map f : S2n−1 → Sn has Hopf invariant
±1.

Proof. Let e ∈ Sn−1 be the identity element for the H-space multiplication, and
let f be the map constructed above. In view of the definition of f it is natural
to view the characteristic map ϕ of the 2n-cell of Xf as a map

ϕ : (Dn ×Dn, ∂(Dn ×Dn)) → (Xf , S
n).

In the following commutative diagram the horizontal maps are the product maps.
The diagonal map is the external product, equivalent to the external product

K̃(Sn)⊗ K̃(Sn) → K̃(S2n),
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which is an isomorphism since it is an iterate of the Bott periodicity isomorphism.

K̃(Xf )⊗ K̃(Xf ) // K̃(Xf )

K̃(Xf ,D
n
−)⊗ K̃(Xf , D

n
+) //

∼=

OO

ϕ∗⊗ϕ∗
��

K̃(Xf , S
n)

OO

∼=ϕ∗

��

K̃(Dn ×Dn, ∂Dn ×Dn)⊗ K̃(Dn ×Dn, Dn × ∂Dn) //

∼=
��

K̃(Dn ×Dn, ∂(Dn ×Dn))

K̃(Dn × {e}, ∂Dn × {e})⊗ K̃({e} ×Dn, {e} × ∂Dn)

∼=
22

By the definition of an H-space and the definition of f , the map ϕ restricts to a
homeomorphism from Dn×{e} onto Dn

+ and from {e}×Dn onto Dn
−. It follows

that the element a⊗ a in the upper left group maps to a generator of the group
in the bottom row of the diagram, since a maps to a generator of K̃(Sn) by
definition. Therefore by the commutativity of the diagram, the product map in
the top row sends

a⊗ a 7→ ±b
since b was defined to be the image of a generator of K̃(Xf ,S

n). Thus we have

a2 = ±b,
which means that the Hopf invariant of f is ±1. □

Theorem 27.2 is now an immediate consequence of the lemma.

27.2. Division algebra structures on Rn. The determination of which spheres
are H-spaces has the following important implications.

Theorem 27.4. Let ω : Rn×Rn → Rn be a map with two-sided identity element
e ̸= 0 and no zero-divisors. Then n = 1, 2, 4, or 8.

Proof. The product restricts to give Rn − {0} an H-space structure. Since Sn−1

is homotopy equivalent to Rn − {0}, it inherits an H-space structure. Explicitly,
we may assume that e ∈ Sn−1by rescaling the metric, and we give Sn−1 the
multiplication

ϕ : Sn−1 × Sn−1 → Sn−1

defined by
ϕ(x,y) = ω(x,y)/|ω(x,y)|.

This is well-defined, since ω has no zero divisors. □
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Remark 27.5. Note that ω need not be bilinear, just continuous. it also need
not have a strict unit. All we needed is that e is a two-sided unit up to homotopy
for the restriction of ω to Rn − {0}.

In Lecture 3, we showed that there are trivializations of the tangent bundle of
the spheres S1, S3, and S7. Now we can show that there are no other spheres
with trivial tangent bundle.

Theorem 27.6. If Sn is parallelizable, i.e., if the tangent bundle τ to Sn is
trivial, then n = 0, 1, 3, or 7.

Proof. The case n = 0 is trivial. So let n ≥ 1 and assume that Sn is paral-
lelizable. Let v1, . . . , vn be a tangent vector field which are linearly independent
at each point of Sn. By the Gram-Schmidt process we may make the vectors
x, v1(x), . . . , vn(x) orthonormal for all x ∈ Sn. We may assume also that at the
first standard basis vector e1, the vectors v1(e1), . . . , vn(e1) are the standard basis
vectors e2, . . . , en+1. To achieve this we might have to change the sign of vn to
get the orientations right and then deform the vector fields near e1.

Now let ϕx ∈ SO(n + 1) send the standard basis to x, v1(x), . . . , vn(x). Then
the map

ϕ : (x,y) 7→ ϕx(y)

defines an H-space structure on Sn with the identity element e1 since ϕe1 is the
identity map and ϕx(e1) = x for all x. Hence n = 1, 3, or 7. □
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28. The Chern character

We have seen that singular cohomology and K-theory enjoy similar properties.
The splitting principle implies a direct connection between them which we will
describe in today’s lecture.

28.1. The Chern character. Let X be a compact Hausdorff space. We want
to define a ring homomorphism, called Chern character, from K-theory to coho-
mology.

Before we define this homomorphism we think of an assignment that sends
vector bundles to cohomology classes, the Chern classes. We need to understand
how the tensor product of line bundles behaves under Chern classes. Recall

CP∞ ≃ K(Z,2)

and that line bundles are classified by their Chern classes regarded as elements
of

[X,CP∞] ∼= H2(X;Z).
The tensor product of two line bundles is represented by a product map

ϕ : CP∞ × CP∞ → CP∞

which gives CP∞ an H-space structure. We may think of ϕ as an element of

H2(CP∞ × CP∞;Z) ∼= H2(CP∞;Z)⊕H2(CP∞;Z)

and this element is the sum of the Chern classes in the two copies of H2(CP∞;Z)

This shows that for two line bundles L1 and L2 over X, we have

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Now we would like to define a ring homomorphism ch : K(X) → H∗(X;Q).
We start with the case of a line bundle L → X. We want ch to send the tensor
product to products in in cohomology. So we set

ch(L) = ec1(L) = 1 + c1(L) + c1(L)/2! + · · · ∈ H∗(X;Q),

because then

ch(L1 ⊗ L2) = ec1(L1⊗L2) = ec1(L1)+c1(L2) = ch(L1) · ch(L2).

(If the sum defining ch(L) has infinitely many terms, it will not lie in the direct
sum but rather in the direct product of the groups H∗(X;Q). But in the main
examples, Hn(X;Q) will be zero for n sufficiently large.)
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For a direct sum of line bundles E = L1 ⊕ · · · ⊕ Ln we define

ch(E) =
∑
i

ch(Li) =
∑
i

eti = n+ (t1 + · · ·+ tn) + · · ·+ (tk1 + · · ·+ tkn)/k! + · · ·

where ti = c1(Li). The total Chern class c(E) is then

c(E) = (1 + t1) · · · (1 + tn) = 1 + c1(E) + · · · cn(E)
and cj(E) = σj is the jth elementary symmetric polynomial in the ti’s.

As we saw in Lecture 25, there is a polynomial Qk with

Qk(σ1, . . . , σk) = tk1 + · · ·+ tkn.

Hence the above formula reads

ch(E) = dimE +
∑
k>0

Qk(c1(E), . . . , ck(E))/k!.

For general E, we define ch(E) by this formula.

Remark 28.1. In fact, if we want to define ch as a natural ring homomorphism
which sends “generators for spheres to generators” then we have only one chance
to do this. For, assume ch is such a map. Then for X = S2 = CP1

ch : K(S2) → H∗(S2;Q)

the generator H − 1 is sent to a generator x in H2(S2;Q), hence H is sent to
1 + x in H∗(S2;Q). For CP∞ this implies

ch : K(CP∞) → H∗(CP∞;Q), H 7→ 1 + x+ · · · = f(x)

where f(x) is some power series in x. Now looking at the commutative diagram

K(CP∞ × CP∞) //

ch
��

K(CP∞)

ch
��

H∗(CP∞ × CP∞;Q) // H∗(CP∞;Q)

we see that the series f must satisfy f(x+ y) = f(x) · f(y), where y is the label
for the generator of the cohomology of the other copy of CP∞. But there is only
one power series that does the job, namely f(x) = ex.

28.2. A more formal description of ch. Let R be a any commutative ring
and consider a formal power series

f(t) =
∑
i

ait
i ∈ R[[t]].

Given an element x ∈ Hn(X;R), we let

f(x) =
∑

aix
i ∈ H∗∗(X;R),
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where H∗∗(X;R) =
∏

iH
i(X;R) whose elements are considered as formal sums∑

i yi with deg(yi) = i.

Via the splitting principle we can use f to construct a natural homomorphism
of abelian monoids

f̂ : Vect(X) → H∗∗(X;R)

For a line bundle L over X, we set

f̂(L) = f(c1(L)).

For a sum E = L1 ⊕ · · · ⊕ Ln of line bundles over X, we set

f̂(E) =
n∑
i=1

f(c1(L)).

For a general n-plane bundle E over X, we let f̂(E) be the unique element of
H∗∗(X;R) such that

p∗(f̂(E)) = f̂(p∗(E)) ∈ H∗∗(F (E);R).

More explicitly, writing p∗E = L1 ⊕ · · ·Ln, we know by the definition of Chern
classes ∏

1≤k≤n

(x− c1(Lk)) = 0.

This implies that

ck(p
∗E) = p∗(ck(E)) = σk(c1(L1), . . . , c1(Ln))

is the kth elementary symmetric polynomial in the c1(Lk). Likewise, we see that

f̂(p∗E) is a symmetric polynomial in the c1(Li) and can therefore be written as a
polynomial in the elementary symmetric polynomials. Applying this polynomial
to the ck(E) gives the element f̂(E) ∈ H∗∗(X;R). For a vector bundle E over
a non-connected space X, we add the elements obtained by restricting E to
the components of X. By the naturality property of K(X), f̂ extends to a
homomorphism

f̂ : K(X) → H∗∗(X;R).

There is also an analogous multiplicative extension f̄ of f that starts from the
definition

f̄(E) =
n∏
i=1

f(c1(Li))

on a sum E = L1 ⊕ · · · ⊕ Ln of line bundles.

As an example, we look at the following special case.
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Lemma 28.2. For any R, if f(t) = 1 + t, then f̄(E) = c(E) is the total Chern
class of E.

Proof. For a line bundle, we have f̄(L) = 1 + c1(L) = c(L), and for a sum
E = L1 ⊕ · · · ⊕ Ln of line bundles we get

f̄(E) =
∏
i

(1 + c1(Li)) = 1 + c1(E) + · · ·+ cn(E)

since ck(E) is equal to the kth elementary symmetric function in the c1(Li)’s.
Hence if E is an arbitrary bundle, then

f̄(E) = 1 + c1(E) + · · ·+ cn(E) = c(E).

□

The example we are interested in is the Chern character which gives rise to an
isomorphism between rationalized K-theory and rational cohomology.

Definition 28.3. For R = Q and f(t) = et =
∑

i t
i/i!, we define the Chern

character

ch(E) ∈ H∗∗(X;Q) by ch(E) = f̂(E).

It is clear that both descriptions of ch agree.

28.3. Properties of ch. This allows us to prove the following result.

Proposition 28.4. The Chern character is a ring homomorphism

ch : K(X) → H∗∗(X;Q).

Proof. By the splitting principle and the construction of ch it suffices to check
this when E1 and E2 are sums of line bundles. In this case we have

ch(E1 ⊕ E2) = ch(⊕i,jLij) =
∑

ec1(Lij) = ch(E1) + ch(E2)

and

ch(E1⊗E2) = ch(⊕j,k(L1j⊗L2k)) =
∑

ch(L1j⊗L2k) =
∑

ch(L1j)·ch(L2k) = ch(E1)·ch(E2).

□

Proposition 28.5. For n ≥ 1, the Chern character maps K̃(S2n) isomorphically
onto the image of H2n(S2n;Z) in H2n(S2n;Q).
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Proof. Since ch(x⊗(H−1)) = ch(x) ·ch(h−1) we have the commutative diagram

K̃(X)
∼= //

ch
��

K̃(S2 ∧X)

ch
��

H̃∗(X;Q)
∼=// H̃∗+2(S2 ∧X;Q)

where the upper map is the external tensor product with H − 1, and the lower
map is the product with

ch(H − 1) = ch(H)− ch(1) = 1 + c1(H)− 1 = c1(H),

which is a generator of H2(S2;Z). Hence the lower map is an isomorphism too
and even restricts to an isomorphism with Z-coefficients. Taking X = S2n, the
result follows by induction on n, starting with the trivial case n = 0. □

Corollary 28.6. A class in H2n(S2n;Z) occurs as a Chern class cn(E) if and
only if it is divisible by (n− 1)!.

Proof. For vector bundles E → S2n we have c1(E) = · · · = cn−1(E) = 0, so

ch(E) = dimE+Qn(c1, . . . ,cn)/n! = dimE±ncn(E)/n! = dimE±cn(E)/(n−1)!

by the recursive formula for Qn we mentioned in Lecture 25

Qn = σ1Qn−1 − σ2Qn−2 + · · ·+ (−1)n−2σn−1Q1 + (−1)n−1nσn.

□

Now since Chern classes are in even degrees, the image of ch lies in the sum
of the even degree elements in H∗∗(X;Q) which we denote by Heven(X;Q). We
define Hodd(X;Q) to be the sum of the odd degree elements. Then we can
extend ch to Z/2-graded reduced cohomology by defining ch on K̃1(X) to be the
composite

K̃1(X) ∼= K̃(ΣX)
ch−→ H̃even(ΣX;Q) ∼= H̃odd(X;Q).

Then we can prove the following fundamental result.

Theorem 28.7. For any pointed finite CW-complex X, ch induces an isomor-
phism

K̃∗(X)⊗Q
∼=−→ H̃∗∗(X;Q).

Sketch of the proof. We think of both the source and the target as Z/2-graded.
The Proposition 36.5 implies the conclusion when X = Sn for any n. The cru-
cial point is that the map of the theorem is part of a natural transformation of
cohomology theories. Then the assertion follows from the result for X = Sn, the
five lemma and induction on the number of cells of X.
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More explicitely, the case of a cell complex with a single cell is trivial. Then if X
is obtained from a subcomplex A by attaching a cell, then we get a sequence

X/A→ S1 ∧ A→ S1 ∧X → (S1 ∧X)/(S1 ∧ A) → S2 ∧ A.
Applying the Chern character to this sequence yields a commutative diagram
of five-term exact sequence (tensoring with Q is exact). Now the spaces X/A
and (S1 ∧ X)/(S1 ∧ A) are spheres, and both S1 ∧ A and S2 ∧ A are both cell
complexes with the same number of cells as A (we collapse the suspension or
double suspension of a 0-cell). The five-lemma gives us the result for S1 ∧ X.
Then we obtain the result forX by replacingX with S1∧X in the above argument
and using that ch commutes with double suspension. □
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29. The e-invariant

Today we are going to elaborate a little bit more on the construction we used
for the Hopf invariant one problem. It turns out that this picture contains much
more information.

29.1. Getting information about maps between spheres. Let us look at
a slight variation of the way we defined the Hopf invariant using K-theory. For
m,n ≥ 1, let

f : S2n+2m−1 → S2n

be a pointed map. Let
X = Xf = S2n ∪f e2n+2m

be the mapping cone of f , i : S2n ↪→ X be the inclusion, and

π : X → X/S2n ∼= S2n+2m

be the map that collapses S2n. We would like to measure the extend to which f
is not null, i.e., not homotopic to a constant map. Therefor we would like to use
our favorite (at least for the moment) cohomology theory, complex K-theory.

As in Lecture 26, the sequence

S2n+2m−1 f−→ S2n i−→ S2n ∪f e2n+2m π−→ S2n+2m

(or rather the pair (X,S2n)) induces a long exact sequence in reduced K-theory.
Since the K-theory of spheres is concentrated in even degrees, the K-theory
degree of f , i.e., K̃(f), is zero. For our goal to measure the extend to which f is
not null this is bad news. But there is still some more information to exploit.

Since K̃(f) = 0, we obtain a short exact sequence

(11) 0 → K̃(S2n+2m)
π∗
−→ K̃(S2n ∪f e2n+2m)

i∗−→ K̃(S2n) → 0.

We know that the outermost groups are the integers and the group in the
middle is an extension. We would like to understand how far from the trivial
extension the sequence (12). In order to make this more precise we need to think
a little bit more about what kind of groups we are talking about.

We have already noticed that the outermost groups in (12) are the integers.
But we also know that the Adams operation ψk acts on K̃(S2n) by kn and it acts
on K̃(S2n+2m) by kn+m. So let us write Z(n) for the first group and Z(n+m) for
the second. We want to consider them in some category of “abelian groups with
Adams operations”.

Let us make an informal definition:
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Definition 29.1. An abelian group with Adams operations is an abelian group A
together with morphisms ψk : A→ A, for k ∈ Z, which commute with each other
and satisfy ψℓψk = ψkℓ.

But we can say even a little bit more about the K-theory groups. In the
previous lecture we defined the Chern character

ch : K(Y ) → ⊕nH
2n(Y ;Q)

which becomes an isomorphism after tensoring K(Y ) with Q (assuming Y is a fi-
nite cell complex). The splitting principle now tells us that the Adams operations
on cohomology are given by

ψk = kn on H2n(Y ;Q).

To check this, write a bundle E as a sum of line bundles. Then we only need to
compute the effect of ψk on the 2nth component chn of ch(L) for a line bundle.
Then we have ψk(L) = Lk, and hence

chn(ψk(L)) = chn(Lk) = (c1(L
k))n/n! = (kc1(L))

n/n! = knc1(L)
n/n! = knchn(L).

Hence the action of the Adams operations is semisimple on rational K-theory.
In other words, if A is in the image of the K-theory functor, then A⊗Q is a big
sum of copies of Q(n).

29.2. The e-invariant as an extension. Now let us get back to the geometric
situation. The short exact sequence (12) corresponds to an element e(f) (“e” for
extension) in

Ext1(Z(n),Z(n+m))

where the Ext is in the category of abelian groups together with Adams opera-
tions.

What can we say about this group Ext1(Z(n),Z(n + m))? The short exact
sequence

0 → Z(n+m) → Q(n+m) → Q/Z(n+m) → 0

induces a long exact sequence of Ext-groups

Hom(Z(n),Q(n+m)) → Hom(Z(n),Q/Z(n+m)) → Ext1(Z(n),Z(n+m)) → Ext1(Z(n),Q(n+m)).

Lemma 29.2. For m ̸= 0, the two outermost groups Hom(Z(n),Q(n+m)) and
Ext1(Z(n),Q(n+m)) are zero.

Proof. We only prove the first assertion. If there is a non-trivial homomorphism
Z(n) → Q(n + m), then 1 ∈ Z(n) is sent to some element α ∈ Q(n + m),
and thus kn would have to be sent to kn+mα which is a contradiction. Hence
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Hom(Z(n),Q(n + m)) = {0}. The second assertion requires a little bit more
work. Since the discussion is more philosophical for the moment, we skip the
proof. □

As a consequence of the lemma we get an isomorphism

Hom(Z(n),Q/Z(n+m)) ∼= Ext1(Z(n),Z(n+m)).

The group Hom(Z(n),Q/Z(n+m)) is a subgroup of Q/Z and consists of things
compatible with the Adams operations.

In order to understand this group a bit more, let us spell out what we know.
A homomorphism

Z(n) → Q/Z(n+m)

is determined by where it sends 1 ∈ Z(n). Let us call the image x ∈ Q/Z(n+m).
Then x has to satisfy a condition in order to make the map a homomorphism of
abelian groups with Adams operations. Namely, for all k, we must have

(kn+m − kn) · x = 0 ∈ Q/Z,

because this expresses the compatibility with ψk. This means that the denomi-
nator of x must divide all the numbers (kn+m − kn) for all k.

In other words, the group Ext1(Z(n),Z(n+m)) is cyclic of order

the greatest common divisor of kn(km − 1) for all k.

Hence we should calculate this greatest common divisor. There is a nice answer
for it. But before we do this let us make things a bit more concrete. We should
also think about the specific element in Ext1(Z(n),Z(n+m)) that sequence (12)
produces.

29.3. The e-invariant as an element in Q/Z. Let i2n be a generator of K̃(S2n)
and i2n+2m be a generator of K̃(S2n+2m). Choose an element

a ∈ K̃(S2n∪fe2n+2m) such that i∗(a) = i2n and let b = π∗(i2n+2m) ∈ K̃(S2n∪fe2n+2m).

Then for any k, we have

ψk(a) = kn · a+ µk · b.
Since the Adams operations commute, we must have

ψk(ψℓ(a)) = ψk(ℓna+µℓb) = ℓnkna+ℓnµkb+k
n+mµℓb = ℓnkna+knµℓb+ℓ

n+mµkb = ψℓ(ψk(a))

and hence

kn(km − 1)µℓ = ℓn(ℓm − 1)µk
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for any k and ℓ. This shows us that the rational number

e(f) :=
µk

kn(km − 1)
∈ Q.

is independent of k. But it might depend on our choice of a. If we change a by
a multiple of b, then e(f) is changed by an integer. (For a′ = a + p · b, we get
e′(f) = e(f) + p.) Thus e(f) is well-defined as an element of Q/Z.

Finally, recalling where we started we see that we have produced an assignment

(f : S2n+2m−1 → S2n) 7→ e(f) ∈ Q/Z.

Remark 29.3. 1. The map e is called the e-invariant. It plays an important role
in understanding the structure of the (stable) homotopy groups of the sphere. To
get further into this story we introduce in the next lecture the J-homomorphism.
2. That e(f) is an element in Q/Z fits well with our discussion above. To
determine an element in Hom(Z(n),Q/Z(n + m)) we needed to determine the
image of 1 in Q/Z(n+m).

Lemma 29.4. If f ∼ g, then e(g) = e(f), i.e., e induces a map

e : π2n+2m−1(S
2n) → Q/Z.

Proof. This follows from applying the functor K̃ to the diagram

S2n+2m−1 f //

id
��

S2n i //

id
��

S2n ∪f e2n+2m π //

��

S2n+2m
Σ(f)

//

id
��

S2n+1

id
��

S2n+2m−1 g // S2n i′ // S2n ∪g e2n+2m π′
// S2n+2m

Σ(g)
// S2n+1.

□
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30. The e-invariant and the J-homomorphism

We are trying to detect interesting maps between spheres. Last time we defined
the e-invariant and showed that we should think of it as an element in some Ext
group of abelian groups with Adams operations. This group is finite and cyclic
and we saw a criterion for determining its order. But we still need to determine
this order. The reason why this is so interesting is that the order will tell us
something about the size of some of the stable homotopy groups of spheres.

Let us recall the setup. For m,n ≥ 1, let

f : S2n+2m−1 → S2n

be a pointed map,

X = Xf = S2n ∪f e2n+2m

be the mapping cone of f , i : S2n ↪→ X be the inclusion, and

π : X → X/S2n ∼= S2n+2m

the map that collapses S2n. This gives us a short exact sequence

(12) 0 → K̃(S2n+2m)
π∗
−→ K̃(S2n ∪f e2n+2m)

i∗−→ K̃(S2n) → 0.

Let i2n be a generator of K̃(S2n) and i2n+2m be a generator of K̃(S2n+2m).
Choose an element

a ∈ K̃(S2n∪fe2n+2m) such that i∗(a) = i2n and let b = π∗(i2n+2m) ∈ K̃(S2n∪fe2n+2m).

Then for any k, we have

ψk(a) = kn · a+ µk · b.
Since the Adams operations commute, we must have

kn(km − 1)µℓ = ℓn(ℓm − 1)µk

for any k and ℓ. This shows us that the rational number

e(f) :=
µk

kn(km − 1)
∈ Q.

is independent of k. But it might depend on our choice of a. If we change a by
a multiple of b, then e(f) is changed by an integer. Thus e(f) is well-defined as
an element of Q/Z.

The e-invariant defines a map

e : π2n+2m−1(S
2n) → Q/Z.
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An alternative description of the e-invariant can be given using the Chern
character. The Chern character gives us a commutative diagram

(13) 0 // K̃(S2n+2m)
π∗

//

ch
��

K̃(Xf )
i∗ //

ch
��

K̃(S2n) //

ch
��

0

0 // H̃∗(S2n+2m;Q)
π∗

// H̃∗(Xf ;Q)
i∗
// H̃∗(S2n;Q) // 0

whose rows are exact.

Let y = π∗(ch(i2n+2m)) ∈ H̃2n+2m(Xf ;Q) and x be an element in H̃2n(Xf ;Q)
that maps to the generator ch(i2n). Then we have ch(b) = y. Let r(f) ∈ Q be
such that

ch(a) = x+ r(f) · y ∈ H̃2n(Xf ;Q)⊕ H̃2n+2m(Xf ;Q).

Lemma 30.1. r(f) = e(f) ∈ Q/Z.

Proof. We calculate

ch(ψk(a)) = ch(kn ·a+µk · b) = kn · ch(a)+µk · ch(b) = kn ·x+(kn · r(f)+µk) · y.

On the other hand, we have seen above that ψk acts on H̃2n by multiplication by
kn. Hence

ψk(ch(a)) = knchn(a) + kn+mchn+m(a) = kn · x+ kn+m · r(f) · y.
Comparing the coefficients of y in both formulas gives

µk = r(f) · (kn(km − 1)).

□

Lemma 30.2. The map e is a group homomorphism.

Proof. Let Xf,g be obtained from S2n by attaching two 2n+2m-cells by f and g,
so Xf,g contains both Xf and Xg. There is a quotient map

Q : Xf+g → Xf,g

collapsing a sphere S2n+2m−1 that separates the 2n+2m-cell of Xf,g into a pair of
2n+2m-cells. (This is also called the “pinching map”.) It induces a commutative
diagram

K̃(Xf,g)
Q∗

//

ch
��

K̃(Xf+g)

ch
��

H̃∗(Xf,g;Q)
Q∗
// H̃∗(Xf+g;Q).
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In the upper row, the generators bf and bg are mapped to bf+g and af,g is mapped
to af+g. Similarly, in the lower row, the generators yf and yg are mapped to yf+g
and xf,g is mapped to xf+g. Using the previous lemma it now suffices to work
with r and to look at

ch(af,g) = xf,g + r(f)yf + r(g)yg

and hence

ch(af+g) = xf+g + (r(f) + r(g))yf+g.

□

Remark 30.3. The e-invariant is in fact a stable invariant. We know that the
mapping cone satisfiesXS2∧f = S2∧Xf and we noticed in the proof of Proposition
28.5 of Lecture 28 that ch commutes with double suspension. This shows that
we have a commutative diagram

π2n+2m−1(S
2n)

S2∧− //

e
&&

π2n+2+2m−1(S
2n+2)

e
ww

Q/Z

Hence we can view e also as a homomorphism

e : πs2m−1(S
0) → Q/Z

from the (2m− 1)-stable homotopy group of the sphere spectrum.

Now we should start to calculate the e-invariant. The maps for which we get
the most important results are in the image of the J-homomorphism.

30.1. The J-homomorphism. The J-homomorphism is a natural way to con-
struct maps between spheres. Let us first look at the idea of the construction.

Let O(n) be the group of orthogonal n× n-matrices. It acts on the Euclidean
n-space Rn by linear isometries. A linear isometry of Rn extends to the one-point
compactification Sn. Hence there is a natural map

J : O(n) → LinIso(Rn,Rn) → Map∗(S
n, Sn) = ΩnSn

where Map∗(−,−) denotes the space of basepoint preserving continuous maps
(with the compact-open topology). This induces a homomorphism

J : πk(O(n)) → πk(Ω
nSn) = πk+n(S

n).
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Remark 30.4. There is a little subtlety concerning the above construction of
J . For the basepoint of ΩnSn is the constant map at the basepoint. The space
ΩnSn has many path components, one for each degree. The image of O(n) lies
in the path components Ωn

1S
n and Ωn

−1S
n of paths of degree ±1 (remembering

that O(n) has two components). The basepoint of O(n), the identity map, goes
to the identity map of Sn. Hence the map O(n) → ΩnSn, as described above, is
not basepoint preserving. So we should modify the map by “subtracting off” (in
some group model for ΩnSn) the identity map. Hence we should use

J : O(n) → Ωn
1S

n −1−→ Ωn
0S

n.

Here is a more concrete way to define the J-homomorphism. Let k ≥ 1. An
element [f ] ∈ πk(O(n)) is represented by a family of isometries

fx ∈ O(n), x ∈ Sk with fx = id when x is the basepoint of Sk.

Writing

Sn+k = ∂(Dk+1 ×Dn) = Sk ×Dn ∪Dk+1 × Sn−1 and Sn = Dn/∂Dn,

let

Jf(x,y) = fx(y) for (x,y) ∈ Sk ×Dn and Jf(Dk+1 × Sn−1) = ∂Dn,

where we think of the latter ∂Dn as the basepoint of Dn/∂Dn.

It is easy to see that if f ≃ g then Jf ≃ Jg. Hence we obtain a map

J : πk(O(n)) → πk+n(S
n).

Lemma 30.5. J is a homomorphism.

Proof. Exercise. □

It is easy to check that if we embed O(n) into O(n + 1) this corresponds to
taking suspension. Since both groups πk(O(n)) and πk+n(S

n) are independent of
n for n−1 > k, we can pass to the limit in n and get the stable J-homomorphism

J : πk(O) → πsk(S
0) = πk(S

0).

The image of the J-homomorphism in πk(S
0) is the main part of the stable

homotopy groups which is accessible to direct computations.
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30.2. The complex J-homomorphism. In our computations we will focus on
the following complex version of J . We can compose J with the map

πk(U) → πk(O) induced by the natural inclusions U(n) ⊂ O(2n).

This defines the stable complex J-homomorphism

JC : πk(U) → πk(S
0).

On the groups πk(S
0) we have defined the e-invariant. Our goal now is to com-

pute the e-invariant on the image of JC, i.e., we want to compute the composition

e ◦ JC : πk(U) → Q/Z.

There is the following great result.

Theorem 30.6. Let f : S2k−1 → U(n) represent a generator in π2k−1(U). Then

e(JCf) = ±βk/k
where βk is defined by the power series

x

ex − 1
=

∑
k

βkx
k

k!
.

Hence the image of J in π2k−1(S
0) has order divisible by the denominator of βk/k

(that is the denominator when we take βk/k in reduced form).
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31. The image of the J-homomorphism

The stable J-homomorphism J : πk(O) → πk(S
0) is an important tool to pro-

duce interesting maps between spheres. Last time we also considered its complex
analogue

JC : πk(U) → πk(O) → πk(S
0)

which is a little bit easier to handle. Today we start to prove the following great
result:

Theorem 31.1. If f : S2k → BU represents a generator x2k in π2k(BU), then

e(JCf) = ±Bk/k

where Bk is the kth Bernoulli number defined by the power series

x

ex − 1
=

∑
k

Bkx
k

k!
.

Hence the image of J in π2k−1(S
0) has order divisible by the denominator of Bk/k

(that is the denominator when we take Bk/k in reduced form).

Before we start let us think a bit more about the maps in question. We can
rewrite JC as

πm−1U = πmBU ∼= K̃0(Sm) → πm−1(S
0)

and it factors through the real J-homomorphism

πm−1O = πmBO ∼= K̃O
0
(Sm) → πm−1(S

0)

where K̃O
0
(Sm) denotes the real K-theory of Sm.

The groups πm−1U alternate between being Z and 0: if m is even, then we get
Z; if m is odd, then we get 0:

m 1 2 3 4 5 6 7 8
πm−1U 0 Z 0 Z 0 Z 0 Z.

The homotopy groups πm−1O of O show an 8-fold periodicity:

m 1 2 3 4 5 6 7 8
πm−1O Z/2 Z/2 0 Z 0 0 0 Z.

The map

Z ∼= πm−1U → πm−1O ∼= Z
is an isomorphism whenm ≡ 4 mod 8 and is multiplication by 2 whenm ≡ 0 mod
8. (One can see this by looking at the composite πmBU → πmBO → πmBU .)
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We formulated our theorem in terms of the complex J-homomorphism, because
it makes things easier. But from the table of πm−1BO we see immediately that
the J-homomorphism is zero when m is odd.

Moreover, the cost of working with complex rather than real K-theory is an
overall factor of two, i.e., by computing

π2k−1U
JC−→ π2k−1S

0 eC−→ Q/Z
we get twice the value of the real e-invariant eR of the real J-homomorphism of
the generator of real K-theory.

The theorem tells us that if x2n ∈ π2nBU is a generator, then eC(JC(x2n)) =
Bn

n
.

Then one can deduce from the above discussion the following result.

Corollary 31.2. If y4n ∈ π4nBO is a generator, then eR(JR(y4n)) =
B2n

4n
.

31.1. Thom complexes and the J-homomorphism. The initiating idea for
the proof of the theorem is based on the following very important fact. If we want
to show that a map of spheres is nontrivial, we have to make computations in the
mapping cone. When a map is in the image of J , we have a lot of information
about this mapping cone: it is actually a Thom complex.

Proposition 31.3. Let ξ be an n-dimensional complex vector bundle over S2k

classified by a map
ξ : S2k → BU(n).

The Thom complex of ξ is S2n ∪Jξ e2n+k.

Proof. Since π2k(BU(n)) ∼= π2k−1(U(n)), there is a map

f : S2k−1 → U(n).

We consider f as a clutching function for ξ. In fact, we can identify ξ with the
bundle ξf obtained from D2k × Cn ⨿ Cn by identifying

(x,v) ∼ fx(v) for x ∈ ∂D2k.

Restricting to the unit disk bundle D(ξf ) we have D(ξf ) expressed as a quotient
of D2k × D2n ⨿ D2n by the same relation. The quotient T (ξf ) = D(ξf )/S(ξf )
contains a sphere S2n = D2n/∂D2n, coming from the second copy of D2n, and
T (ξf ) is obtained from S2n by attaching a cell e2k+2n with characteristic map the
quotient map

D2k ×D2n → D(ξf ) → T (ξf ).

The attaching map of the cell is precisely J(f), since it is given by

(x, v) 7→ fx(v) ∈ D2n/∂D2n on ∂D2k ×D2n

and maps all of D2k × ∂D2n to the point ∂D2n/∂D2n. □
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If we want to compute eJC(f) we need to compute ch(a) for an element

a ∈ K̃(XJf ) = K̃(Tξ) which restricts to a generator in K̃(S2n)

where S2n is a fiber of D(ξ) as in the previous proof. A class in K̃(T (ξ)) which
restricts to a generator for each sphere Sn coming from a fiber of ξ is called a
Thom class of ξ. Hence we need to understand the Chern character of Thom
classes in K-theory.
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32. The image of the J-homomorphism and Thom classes

We are still on the way to prove the following theorem on the complex J-
homomorphism

JC : πk(U) → πk(O) → πk(S
0).

Theorem 32.1. If x2k in π2k(BU) is a generator, then

e(JCf) = ±Bk/k

where Bk is the kth Bernoulli number defined by the power series

x

ex − 1
=

∑
k

Bkx
k

k!
.

Hence the image of J in π2k−1(S
0) has order divisible by the denominator of Bk/k

(that is the denominator when we take Bk/k in reduced form).

32.1. Thom classes and the Thom isomorphism in K-theory. We saw last
time that if E is an n-dimensional complex vector bundle over S2n classified by
a map

f : S2k → BU

then the Thom complex of ξ is S2n ∪Jf e2n+k.

Hence if we want to compute eJC(f) we need to compute ch(a) for an element

a ∈ K̃(XJf ) = K̃(Tξ) which restricts to a generator in K̃(S2n)

where S2n is a fiber of D(ξ) as in the previous proof. A class in K̃(T (ξ)) which
restricts to a generator for each sphere Sn coming from a fiber of ξ is called a
Thom class of ξ. Hence we need to understand the Chern character of Thom
classes in K-theory.

We have seen Thom classes before. But let us briefly recall the basic theory.
Let E be a complex vector bundle of dimension n over the compact Hausdorff
space X. Let XE := T (E) = D(E)/S(E) denote the Thom space of E over X.
The Thom class is an element

U ∈ K̃0(XE)

which restricts to a generator under the restriction map

K̃0(XE) → K̃0((XE)x) ∼= K̃0(E+
x )

∼= Z

for every x ∈ X, where E+
x denotes the one-point compactification of the fiber Ex

(it’s a 2n-sphere whence the last isomorphism). There are several natural ways
to get such a Thom class. One construction uses the projective bundle formula.
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First we remark that we can identify XE with P(E ⊕ 1)/P(E). Let V be the
vector space given by the fiber Ex over some x ∈ X. Given a line ℓ through
the origin in V ⊕ 1 which does not lie in V , there is a unique point v in V such
that (v, 1) ∈ V ⊕ 1. This defines a map P(V ⊕ 1) → V . The lines that are in V
correspond to the point at ∞ in the fiber of the Thom complex of V . Hence we
have checked on each fiber that we have an isomorphism

XE = P(E ⊕ 1)/P(E).

Now it is easier to produce the Thom class on the right hand side, because we
know that we have the tautological line bundle L over the projective space.

Let L be the canonical line bundle over P(E⊕ 1). We know that K∗(P(E⊕ 1))
is the freeK∗(X)-module with basis 1, L, . . . , Ln. Restricting to P(E) ⊂ P(E⊕1),
we see that K∗(P(E)) is the free K∗(X)-module with basis (the restrictions to
P(E) of) 1, L, . . . , Ln−1. So we have a short exact sequence

0 → K̃∗(XE) → K∗(P(E ⊕ 1))
ρ−→ K∗(P(E)) → 0.

The map ρ sends Ln to Ln. But in K∗(P(E)) we have the relation∑
i

(−1)iλi(E)Ln−i = 0

where the λi(E) are the Chern classes of E in K∗(X) by definition. The class
UK ∈ K̃0(XE) that maps to the nonzero element∑

i

(−1)iλi(E)Ln−i ∈ K0(P(E ⊕ 1))

is the Thom class of E that we were looking for.

Moreover, we get that multiplication by UK gives the Thom isomorphism

UK : K0(X) ∼= K̃0(XE)

and K̃0(XE) is a free K0(X)-module with one generator UK .

Remark 32.2. We will also sometimes identify

UK with
∑
i

(−1)iλi(E)Ln−i in K̃0(P(E ⊕ 1)).

Note that all this makes sense for virtual bundles too, since it is an isomorphism
of modules over K0(X).

Remark 32.3. The previous discussion applies to any cohomology theory with
a projective bundle formula for complex vector bundles. In particular, it applies
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to H̃even(−;Q). If x = x(E) ∈ H2(P(E ⊕ 1);Q) is an element that restricts to a
generator of H2(CPn−1;Q) in each fiber, then there is the relation∑

i

(−1)ici(E)x
n−i = 0 in H∗(P(E);Q).

Hence the element
∑

i(−1)ici(E)x
n−i ∈ H∗(P(E ⊕ 1);Q) comes from an element

UH ∈ H2n(XE;Q) (where we use that x(E ⊕ 1) restricts to x(E)). This is
the Thom class in cohomology. In H∗(P(E ⊕ 1);Q) we can identify UH with∑

i(−1)ici(E)x
n−i. Then we get UH ·x = 0 in H∗(P(E⊕ 1);Q), because we know

ci(E ⊕ 1) = ci(E) and hence

0 =
∑
i

(−1)ici(E ⊕ 1)xn+1−i =
∑
i

(−1)ici(E)x
n+1−i = UH · x.

To prove the theorem we need to calculate ch(UK). By the splitting principle
we may assume that E = L1⊕· · ·⊕Ln splits as a sum of line bundles. The Thom
class UH =

∑
i(−1)ici(E)x

n−i in P(E ⊕ 1) then factors as the product

UH =
∏
i

(x− xi) ∈ H∗(P(E ⊕ 1);Q)

where xi = c1(Li). Similarly, the Thom class in K-theory becomes

UK =
∏
i

(L− Li) ∈ K̃0(P(E ⊕ 1)).

Therefore we have

ch(UK) =
∏
i

ch(L− Li) =
∏
i

(ex − exi) = UH ·
∏
i

(
exi − ex

xi − x
).

Since UH · x = 0, we can set x = 0 and simplify this expression to

ch(UK) = UH ·
∏
i

(
exi − 1

xi
).

Since the Thom isomorphism ϑ : H∗(X;Q) → H∗(XE;Q) is given by multipli-
cation with UH , we get the formula

ϑ−1ch(UK) =
∏
i

(
exi − 1

xi
) ∈ H∗(X;Q).

Dealing with such power series becomes easier when we take the logarithm.

There is a power series expansion for log( e
y−1
y

) of the form
∑

k ck
yk

k!
for some
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coefficients ck since the function ey−1
y

is nonzero at 0. Then we can have

log ϑ−1ch(UK) = log(
∏
i

(
exi − 1

xi
)) =

∑
i

log(
exi − 1

xi
) =

∑
i,k

ck
xki
k!

=
∑
k

ckch
k(E)

where chk(E) is the component of ch(E) in dimension 2k. The last equation
uses the fact that E is the sum of line bundles and the definition of the Chern
character for line bundles. The splitting principle then tells us that the formula
also holds for arbitrary E.

We need to calculate the coefficients ck. Therefor we differentiate both sides of∑
k

cky
k/k! = log(

ey − 1

y
) = log(ey − 1)− log y.

This yields ∑
k cky

k−1/(k − 1)! = ey

ey−1
− y−1

= 1 + 1
ey−1

− y−1

= 1− y−1 +
∑

k≥0Bky
k−1/k!

= 1 +
∑

k≥1Bky
k−1/k!

where the last equation follows from the fact that B0 = 1. Thus we obtain

ck = Bk/k for k > 1 and 1 +B1 = c1.

Since B1 = −1/2, we get c1 = 1/2 and c1 = −B1/1.

32.2. The proof of Theorem 32.1. Now we apply the discussion to the n-
dimensional bundle E → S2k corresponding to the element x2k ∈ π2kBU . We
choose UK ∈ K̃0(XJf ) = K̃0((S2k)E) as the element mapping to a generator in

K̃0(S2k) (changing signs if necessary). We know

ch(UK) = a+ r · b ∈ H∗(XJf ;Q)

and hence

ϑ−1ch(UK) = 1 + r · s
where s is a generator of H2k(S2k;Q) and r = e(JCf) in Q/Z. Hence

log ϑ−1ch(UK) = r · s

since log(1 + z) = z − z2/2 + · · · and s2 = 0. On the other hand, we have

log ϑ−1ch(UK) = ckch
k(E)

since H2j(S2k;Q) = 0 for j ̸= k. Moreover, we showed in Lecture 28 that

chk(E) = s ∈ H2k(S2k;Q).
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Thus, by comparing the two formulas for log ϑ−1ch(UK) we get

e(JCf) = r = ck = ±Bk/k.

This finishes the prof of Theorem 32.1.
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33. Clifford algebras and vector fields on spheres

This was a guest lecture by Mike Hopkins. Here are my notes of his lecture:
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34. The image of J and the Adams conjecture

34.1. The image of J. The stable real J-homomorphism is a map

πk−1O → πsk−1(S
0) = πk−1S

0.

We are interested in the case k = 4n because in those degrees the homotopy
groups of O provide the most interesting image in the stable homotopy groups.
We saw in the previous lectures that if x4n−1O is a generator then

e(Jx4n) = ±B2n/4n

where Bi is the ith Bernoulli number. Hence the order of the image of J in
π4n−1S

0 is divisible by the denominator of B2n/4n. Today we want to explore the
information of the J-homomorphism a bit further.

Let us denote the denominator of B2n/4n by m(2n). We have a lower bound
for the image of J , for the order of Im J is divisible by m(2n). So what about an
upper bound? Adams showed that there is actually an upper bound and thereby
determined the image of J in π4n−1S

0 completely. (Well, almost completely since
he could not figure out a possible factor of 2 for 4n ≡ 0 mod 8.) We want to
follows Adams’ great ideas and see how close he got to determine the image of J .

Adams proved the following result.

Theorem 34.1. The image J(π4n−1O) of the stable J-homomorphism in π4n−1S
0

is cyclic of order

(i) m(2n) if 4n ≡ 4 modulo 8
(ii) m(2n) or 2m(2n) if 4n ≡ 0 modulo 8.

Remark 34.2. Mahowald showed later that the factor 2 in (ii) is not there.
Adams could not settle this factor since he could prove his conjecture only for the
complex K-theory and not for the real K-theory of S4n. Adams’ conjecture was
then proven independently and in full generality by Quillen-Friedlander, Quillen,
Sullivan and Becker-Gottlieb. We are going to sketch a proof in the next lecture.

Before we think about a proof, let us first note a consequence of Theorem 34.1.
Let j : Im J ↪→ π4n−1S

0 denote the inclusion. Adams shows that the image of
e in Q/Z is precisly the subgroup of cosets z/m(2n), z ∈ Z. Hence we have a
commutative diagram

π4n−1S
0

e

&&
Im J

j
::

e◦j // Z/m(2n).
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By Theorem 34.1 and its improvement we know that Im J is cyclic of orderm(2n).
Therefore the diagram provides a direct sum splitting

π4n−1S
0 ∼= Im J ⊕Ker e.

Example 34.3. For r = 4n − 1 let us take the generator in πrSO and let its
image under J : πrSO → πrS

0 be jr. Then we have:

e(j3) = 1/24, e(j7) = −1/240, e(j11) = 1/504, e(j15) = −1/480, e(j19) = 1/264.

For r = 3, 7, 11, we have

π3S
0 ∼= Z/24, π7S0 ∼= Z/240, π11S0 ∼= Z/504.

Or in other words, the kernel of e is trivial in these cases. But for r = 15, 19, the
kernel of e is Z/2.

Remark 34.4. Since the numbersm(2n) are unbounded we see that, even though
the stable homotopy groups πrS

0 are of finite, arbitrarily large orders can occur.

34.2. Adams’ upper bound for Im J. We know that Im J is divisible bym(2n).
To prove Theorem 34.1 we need an argument in the opposite direction.

Let Y be an abelian group with Adams operations, i.e., an abelian group
with endomorphisms ψk for every k ∈ Z. A map between such groups is a
homomorphism of abelian groups which is compatible with the operations.

Let e be a function that assigns to each pair k ∈ Z, y ∈ Y a non-negative
integer e(k, y). Then we define Ye to be the subgroup of Y generated by the
elements

ke(k,y)(ψk − 1)y.

It is clear that if

e1 ≥ e2, then Ye1 ⊆ Ye2 .

Hence we can define

J ′′(X) := Y/ ∩e Ye
where the intersection runs over all functions e.

Remark 34.5. If Y is finitely generated, it is easy to see that it suffices to let e
run over the functions f which are independent of y and get the same quotient
group J ′′(X). For it is clear that

∩eYe ⊆ ∩fYf .
For y ∈ Y , let y1, . . . , yn generate y. For any function e(k, y) define the corre-
sponding function f(k) by

f(k) := Max1≤r≤ne(k, yr).
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It is clear that we have Yf ⊆ Ye and hence

∩fYf ⊆ ∩eYe.
Moreover, if Y1 and Y2 are finitely generated, then we have

(Y1 ⊕ Y2)f = (Y1)f ⊕ (Y2)f

and hence
∩f (Y1 ⊕ Y2)f = ∩f (Y1)f ⊕ ∩f (Y2)f .

As a consequence we get

J ′′(Y1 ⊕ Y2) = J ′′(Y1)⊕ J ′′(Y2).

For Y = K(X) we set J ′′
C(X) := J ′′(K(X)) and for Y = KO(X) we set

J ′′(X) := J ′′(KO(X)). Let

r : K(X) → KO(X)

be the canonical map. Since it is compatible with the Adams operations, it
induces a map

J ′′
C(X) → J ′′(X).

Proposition 34.6. a) Let P be a point. Then

J ′′(P ) = Z.
b) If X is a finite cell complex, then

J ′′(X) = Z+ J̃ ′′(X) with J̃ ′′(X) = J ′′(K̃O(X)).

Proof. a) We knowKO(P ) = Z and the operations are just given by (ψk−1)y = 0
for all k and y.
b) We just need to apply part a) and the second part of the above remark. □

Here is the reason why we are interested in the groups J ′′(Y ) for real K-
theory. Adams made the following important conjecture. The formulation of
the conjecture and its proof require to give a different interpretation of J(X)
in terms of spherical fibrations. Since we will need some time to think about
these fibrations in more detail, we postpone this interpretation for a moment.
Nevertheless we formulate the conjecture in its general form and think for now
of the special case X = Sm.

The Adams conjecture 34.7 (The Adams Conjecture). Let X be a finite cell
complex, k an integer, and y ∈ KO(X). Then there exists a non-negative integer
e = e(k, y) such that

ke(ψk − 1)y ∈ Ker J.

Moreover, these elements (for all k) generate the kernel of J .
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The consequence of the conjecture for our discussion is the following.

Proposition 34.8. Suppose for S4n Conjecture 34.7 holds for all k and y. Then
J̃ ′′(S4n) is an upper bound for Im J in the sense that the surjective map J : KO(S4n) →
Im J factors through an epimorphism J̃ ′′(S4n) → Im J .

Example 34.9. Take X to be the sphere S4n. We claim that the group J̃ ′′(S4n)
is cyclic of order m(2n). If y ∈ K̃O(S4n), we have

kf(k)(ψk − 1)y = kf(k)(k2n − 1)y

since ψk acts on the K-theory of S4n by multiplication by k2n. (We proved this
only for complex K-theory, but the same argument shows it for real K-theory
too.) Thus the subgroup Yf of K̃O(S4n) = Z consists of the multiples of h(f, 2n)
where h(f, 2n) is the greatest common divisor of the integers

kf(k)(k2n − 1), for all k ∈ Z.
But this number is exactly m(2n). Hence J̃ ′′(S4n) = K̃O(S4n)/Yf = Z/m(2n).

34.3. A comment on Adams’ proof of Theorem 34.1. Adams proved the
assertion for the real K-theory of a sphere S2n under the assumption that the
map

r : K̃(S2n) → K̃O(S2n)

is an epimorphism.

For 4n ≡ 4 modulo 8, the map

r : K̃(S4n) → K̃O(S4n)

is an epimorphism. Hence by Proposition 35.7 J̃ ′′
R(S

4n) is an upper bound for

Im J . By Example 34.9 this implies that J̃R(S
4n) divides m(2n).

For 4n ≡ 0 modulo 8 the proof would be the same except that in this case
image of the map

r : K̃(S4n) → K̃O(S4n)

consists of the elements divisible by 2. For this case Adams could not prove his
conjecture for S4n and hence he could not settle the factor 2. We will investigate
this further in the next lecture.
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35. Sphere bundles and the Adams conjecture

35.1. Sphere bundles. Let X be a connected finite cell complex. We saw that
the J-homomorphism could be defined by sending an automorphism of Rn to
the induced automorphism of the one-point compactification. Today we want to
generalize this construction and study J as a construction on vector bundles as
follows.

Let E → X be an n-dimensional real vector bundle. By taking the fiberwise
one-point compactification we get an associated fiber bundle S(E) → X whose
fibers are all n-spheres Sn. We call such a bundle a sphere bundle.

We will say that a map f : S(E) → S(E ′) of bundles is a fiber homotopy
equivalence if there is a bundle map g : S(E ′) → S(E) such that f ◦ g and g ◦ f
are homotopic through bundle maps to the respective identities.

Taking the associated sphere bundle of a vector bundle respects direct sums in
the sense that

S(E ⊕ E ′) ∼= S(E) ∧X S(E ′)

where ∧X denotes the fiberwise smash product.

Definition 35.1. We denote by SF(X) the Grothendieck group of pointed sphere
bundles over X modulo fiber homotopy equivalence. The group law is given by
the fiberwise smash product.

Remark 35.2. A fiber bundle whose fibers who are all of the homotopy type of a
sphere is called a pointed spherical fibration. Hence we could have defined SF(X)
also as the Gorthendieck group of (pointed) spherical fibrations.

Sending a vector bundle to its fiberwise one-point compactification defines a
homomorphism

KO(X) → SF(X).

Example 35.3. We want to understand this map for X a sphere. A vector
bundle over X is determined by its clutching function. This can be expressed as
an isomorphism

K̃O(Sn) ∼= πn−1O.

Similarly, a sphere bundle is determined by a clutching function

f : Sn−1 → Homeo(Sk, Sk).

Since we are only interested in sphere bundles modulo fiber homotopy equivalence,
it suffices to specify the clutching function up to homotopy equivalence. Hence a
function

f : Sn−1 → Equiv(Sk, Sk)
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to the monoid of homotopy self-equivalences of Sk determines a spherical fibration
over X or a sphere bundle up to fiber homotopy equivalence . Let us denote this
topological monoid by G(k) = Equiv(Sk, Sk). If we choose k large enough, we
have an isomorphism

SF(Sn) ∼= πn−1G(k) for k ≫ 0.

But we can say a bit more. An element of G(k) is a map Sk → Sk. Now we
observe that G(k) is a subset of maps of degree ±1

Ωk
±1S

k ⊂ ΩkSk = Map∗(S
k, Sk).

Therefore, if we subtract the identity, we get an isomorphism

πn−1G(k) ∼= πn−1+k(S
k) for k ≫ 0.

Thus, the group SF(Sn) is equal to the (n− 1)st stable homotopy group of the
sphere

SF(Sn) ∼= πsn−1(S
0).

Hence, for X = Sn, the map

KO(Sn) → SF(Sn)

defined by taking fiberwise one-point compactifications is the J-homomorphism.

Motivated by this example, we will call the map

J : KO(X) → SF(X)

the J-homomorphism for any finite cell complex X. As a consequence of the
discussion in Example 35.3 we also get the following finiteness result of Atiyah’s.

Proposition 35.4. If X is a connected finite cell complex, the group SF(X) is
finite.

Sketch of a proof. We can argue just as in Example 35.3 that every element in
SF(X) is classified by a homotopy class of a map

X → BG(k) for k ≫ 0

where BG(k) denotes the classifying space of the monoid G(k) (such a classifying
space construction exists). Since X is a finite cell complex we can use induction
on the number of cells and are reduced to show that πnBG(k) is finite. But the
latter group is equal to πn−1G(k) and we have seen in Example 35.3 that this
group is equal to πsn−1(S

0). The stable homotopy groups of the sphere spectrum
are finite by Serre. □
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35.2. The Adams conjecture. Recall that Adams conjectured the following
property of the J-homomorphism.

The Adams conjecture 35.5. Let X be a finite cell complex, k an integer, and
y ∈ KO(X). Then there exists a non-negative integer e = e(k, y) such that

ke(ψk − 1)y ∈ Ker J.

Moreover, these elements (for all k) generate the kernel of J .

Remark 35.6. We could reformulate the assertion of the theorem as follows. For
every prime p not dividing k the kernel of the map

KO(X)(p) → SF(X)(p)

is generated by elements of the form (ψk − 1)y.

Before we go on, let us see how the following result of Adams’, used in the
previous lecture for X = S4n, follows from the first part of Conjecture 35.5. (We
use the notation of the previous lecture.)

Proposition 35.7. The group J ′′(X) is an upper bound for the image of J in
SF(X).

Proof. Let T (X) be the kernel of J and Y = KO(X). By 35.5 there is a function
e(k, y) such that Ye ⊆ T (X), where Ye is the subgroup of Y generated by all ele-
ments of the form ke(ψk−1)y. This shows that the intersection ∩eYe is contained
in T (X). But J ′′(X) is by definition the quotient

J ′′(X) = Y/ ∩e Ye.
So we have a surjective map KO(X)/ ∩e Ye → KO(X)/T (X). In particular,
every element in the image of J is also in the image of the induced map J ′′(X) →
SF (X). □

35.3. Line bundles and the mod k Dold theorem. We will sketch a proof of
Adams’ conjecture in the next lecture. Today we study some special cases. We
begin with an easy observation.

Remark 35.8. If the first assertion of 35.5 holds for all vector bundles of even
rank, then it holds for all vector bundles. For, if ξ is a bundle of odd rank, then
by assumption there is an N such that

kN(ψk − 1)(ξ ⊕ ϵ1) ∈ Ker J,

and hence

kN(ψk − 1)ξ = kN(ψk(ξ)− ξ) + kN(ϵ1 − ϵ1) = kN(ψk(ξ ⊕ ϵ1)− (ξ ⊕ ϵ1)) ∈ Ker J.
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Proposition 35.9. Let y ∈ KO(X) be a linear combination of real line bundles
over the finite cell complex X. Then there exists an e ∈ N (depending only on
the dimension of X) such that

ke(ψk − 1)y = 0.

Proof. Since ke(ψk − 1)y is linear in y, it suffices to consider the case in which y
is a real line bundle. In this case, since X is a finite cell complex, there exists a
map f : X → RPn for some n such that y = f ∗γ, where γ is the canonical real
line bundle over RPn. Hence it suffices to prove the assertion for y = γ.

The KO(RPn) is a finite 2-group generated by 1−γ. (If you know about spec-
tral sequences, you can deduce this easily from the Atiyah–Hirzebruch spectral
sequence and the fact that the cohomology of RPn is a finite 2-group.) Hence
there is an e ∈ N such that

2e(ψk − 1)y = 0.

If k is even, this implies ke(ψk − 1)y = 0. If k is odd, then we have the relation
y2 = 1 in KO(RPn). This implies ψk(y) = yk = y and hence (ψk − 1)y = 0.
To see that we have y2 = 1 there are many different ways. For example, one
could use the fact that real line bundles are characterized by their first Stiefel–
Whitney class. Or one notices that the structure group of a real line bundle is
O(1) = {+1,−1} from which one sees γ ⊗ γ = 1. □

The proof of Adams’ conjecture 35.5 uses the following generalization of Dold’s
results.

Theorem 35.10 (mod k Dold theorem). Let X be a finite cell complex. Suppose
there is a map of sphere bundles ξ1 → ξ2 of the same dimension such that the map

on fibers Sn
k−→ Sn is of degree k. Then there exists a non-negative integer e such

that keξ1 and k
eξ2 are fibre homotopy equivalent and hence keξ1 = keξ2 ∈ SF(X).

Example 35.11. Let L be a complex line bundle, or equivalently an oriented
2-dimensional real vector bundle. Then the map

X → CP∞ k−→ CP∞

classifies L⊗k. The map CP∞ k−→ CP∞ is covered by a map of universal bundles
which is fiberwise the degree k map. For sending L to L⊗k corresponds in each
fiber to the map z 7→ zk. Then the mod k Dold theorem implies that there is an e
such that keψk(L) = keL⊗k and keL are fiber homotopy equivalent. Alternatively,
we could say that ψk(L)− L = 0 ∈ SF(X)[k−1].
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35.4. Sketch of Adams’ proof for X = S4n, 4n ≡ 4 mod 8. Let X = S2n

such that the map
r : K(S2n) → KO(S2n)

is surjective. So given y ∈ KO(S2n) there is a z ∈ K(S2n) such that y = r(z).
Now consider the map

q : W = S2 × · · · × S2 → S2 ∧ · · · ∧ S2 → S2n

Over W every vector bundle is a linear combination of complex line bundles
(think of S2 as CP1). In particular, q∗z is such a linear combination. Therefore

q∗y = r(q∗z)

is a linear combination of oriented 2-dimensional real vector bundles. By Example
35.11 we know that there is an e such that

ke(ψk − 1)q∗y = q∗(ke(ψk − 1)y)

maps to zero in SF(W ). Finally, Adams shows that the map

q∗ : SF(S2n) → SF(W )

is a monomorphism. (This requires only some knowledge about the classifying
space BG(k) and mapping cones.)

Adams also proved the case that y ∈ KO(X) is a linear combination of O(1)-
and O(2)-bundles. The general case was later proved independently and by very
different methods by Quillen–Friedlander, Quillen, Sullivan, and Becker Gottlieb.
We will sketch a proof in the next lecture.
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36. Sullivan’s proof of the Adams conjecture

Today we will have a look at Sullivan’s beautiful ideas on Galois symmetries
in topology and his proof of the Adams conjecture in the complex case. We will
omit a lot of details and just outline the ideas. We encourage everyone to read
Sullivan’s original paper and lecture notes.

36.1. The Adams conjecture. Let X be a connected finite cell complex. We
defined SF(X) as the Grothendieck group of sphere bundles over X modulo
fiber homotopy equivalence. Sending a vector bundle to its fiberwise one-point
compactification defines the J-homomorphism

J : KO(X) → SF(X).

For X = Sn a sphere we showed that there is a natural isomorphism

SF(Sn) ∼= πsn−1(S
0)

with the stable homotopy group of the sphere.

Our goal is to show the following result.

Theorem 36.1 (The Adams Conjecture). Let X be a finite cell complex, k an
integer, and y ∈ KO(X). Then there exists a non-negative integer e = e(k, y)
such that

ke(ψk − 1)y ∈ Ker J.

Last time we defined the monoid G(n) = Equiv(Sn, Sn) of self-homotopy equiv-
alences of Sn. Taking smash product with a circle defines a map G(n) → G(n+1).
Moreover, since a linear self-transformation of Rk extends via one-point com-
pactification to a self-homotopy equivalence of Sn, we have a canonical map
O(n) → G(n). Since we study only the complex case today (though the real case
follows from an analogous argument), we compose this map with U(n) → O(2n)
and get a map

U(n) → G(2n).

This map induces a map of corresponding classifying spaces

BU(n) → BG(2n).

We denote the colimit of the BG(n) over n by BG:

BG := colim
n→∞

BG(n).
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Overall, we obtain a commutative diagram

(14) BU(n)

��

// BG(2n)

��
BU // BG.

The space BG is the classifying space of (stable) spherical fibration (sphere
bundles up to fiber homotopy equivalence). Hence the set of spherical fibrations
over X is in bijection to the set of homotopy classes of maps

[X,BG].

Now the (complex) J-homomorphism K(X) → SF(X) corresponds to a map

[X,BU ] → [X,BG]

which is induced by the above map of classifying spaces which we also denote by

J : BU → BG.

Furthermore, the kth Adams operation corresponds to a map of classifying spaces

ψk : BU → BU.

Now given an n-dimensional complex vector bundle E over X, its associated
sphere bundle corresponds to a map

X
E−→ BU(n)

i−→ BU
J−→ BG

where i is the inclusion. If we apply the kth Adams operation we get a corre-
sponding map

X
E−→ BU(n)

ψk

−→ BU
J−→ BG.

Hence to prove the Adams conjecture we need to show that up to multiplication
by some power ke the map

(15) BU(n)
ψk−i−−−→ BU

J−→ BG

is null-homotopic, that is homotopic to a constant map.

Let us dream about a strategy for the proof for a moment. The homotopy class
of the map

J ◦ i : BU(n) → BG

classifies a sphere bundle up to fiber homotopy. This bundle is the sphere bundle
associated to the canonical bundle γn over BU(n). Now it turns out that this
bundle is fiber homotopy equivalent to the fibration

BU(n− 1) → BU(n).
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Hence we can also think of BU(n−1) as the total space of the spherical fibration
J(γn).

Then if we had a (homotopy) pullback diagram of the form

(16) BU(n− 1)

i
��

ψk

// BU(n− 1)

i
��

BU(n)
ψk

// BU(n)

with self-homotopy equivalences ψk then we would be done. For, the diagram
would show that

• the spherical fibration over BU(n) classified by J ◦ ψk is the pullback of

i : BU(n− 1) → BU(n) along ψk : BU(n) → BU(n);

• and hence, since the maps ψk are equivalences, the sphere bundles corre-
sponding to J ◦ i and J ◦ ψk are fiber homotopy equivalent.

Unfortunately, the Adams operations ψk are self-homotopy equivalences of BU
and there is no way to produce them as operations on BU(n) (at least not com-
patibly for all n and with all properties).

This is a bummer. But here comes Sullivan’s great idea. Even though the

ψk do not exist on the BU(n), they exist on the profinite completion ˆBU(n).
Moreover, they fit into a beautiful picture of Galois symmetries in topology. Let
us have a look at how this works.

36.2. Galois symmetries. The crucial observation is that the homotopy groups
of BG are finite (remember they are isomorphic to the stable homotopy groups of
the sphere spectrum). This implies that the map J : BU → BG factors through
the profinite completion of BU

B̂U
Ĵ

""
BU

<<

J // BG.

The space B̂U is the profinite completion of BU , i.e., it is a space endowed with
a map BU → B̂U which induces the profinite completion on homotopy groups

π∗BU → π∗B̂U = (π∗BU)
∧,

which, in even degrees, is just the completion of the integers Z → Ẑ.
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We call
K̂(X) = [X, B̂U ]

the profinite K-theory of X.

Remark 36.2. Such a space B̂U exists and Sullivan establishes a lot of interesting
results about profinite homotopy. We will skip to explain how you obtain B̂U and
omit the technical subtleties, since there is more interesting theory to explore.
Another source for profinite completion in homotopy theory is the work of Artin-
Mazur.

Now Sullivan shows that the map from stable fiber homotopy types to profi-
nite stable homotopy types is injective. Hence it suffices to show that, up to
multiplication by some power ke, the induced composite map

(17) ˆBU(n)
ψk−i−−−→ B̂U

Ĵ−→ BG

is null-homotopic. In fact, since we are only interested in showing that the map
is null-homotopic after localizing at p, (p, k) = 1, it suffices to consider pro-p-

completions. So we consider B̂U as the p-completed space if necessary, even
though we will omit the p in the notation. (The smarter way to handle this is to
redefine the ψk on the profinite completion as the identity if p divides k.)

Next comes a really cool move of Sullivan’s. Using algebraic geometry, in
particular étale homotopy theory, he interprets the Adams operations on the
profinite completion of BU as elements in the absolute Galois group of Q and

shows that there are unstable operations ψk on each ˆBU(n). This is all the
more remarkable, since the ψk do not exist as operations BU(n) → BU(n) (if we
require all the nice properties they have as self-maps of BU).

Here is the idea. We can write the complex Grassmannian Grn(Cn+k) as a
quotient

(18) Grn(Cn+k) ∼= GL(n+ k,C)/(GL(n,C)×GL(k,C)).
So we may consider the Grassmannian as an affine smooth complex algebraic
variety (for the real Grassmannian replace GL(−,C) with O(−,C)).

Now there is a purely algebraic way to assign to every algebraic variety V over
any base field a homotopy type represented by a CW-complex. The machinery
which does this is called étale homotopy theory and has been developed by Artin-
Mazur and Friedlander. The idea is similar to computing cohomology via Čech
coverings. If X is a nice topological space we can compute its cohomology by
taking an open covering U → X and form the Čech nerve. If the covering is
nice, i.e., if each intersection of open sets is contractible, then the cohomology of
the Čech nerve is equal to the cohomology of X. Not every space admits nice
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coverings, but if we take the limit over all coverings, i.e., the colimit over all
cohomology groups of the corresponding Čech nerves, then we still recover the
cohomology of X.

Now we transport this idea to algebraic geometry. Unfortunately, there are not
enough open coverings of a variety V in its intrinsic topology, the Zariski topology.
But Grothendieck showed that we do not actually need a topology in the usual
sense to compute cohomology, it suffices to consider maps U → X of a certain
types (instead of taking open subsets). The correct generalization of an open
subset in our case is the notion of an étale map. An étale map between (smooth)
algebraic varieties is the analogue of a local diffeomorphism between manifolds.
You should think about what that means or read about it. There is actually a
criterion using Jacobian determinants which makes the analogy obvious.

So we can speak of an étale open covering by taking an étale surjective map
U → V . Now we can apply the Čech construction and form a simplicial variety
U· whose nth term is the (n+ 1)-fold fiber product

U ×X U ×X · · · ×X U

of U over X. Applying the connected component functor to U· in each degree
yields a simplicial set π0(U·). Taking its geometric realization gives us a CW-
complex. If V is a finite-dimensional smooth variety, then this is actually a finite
cell complex.

As in topology taking just one such covering is not enough to describe the
homotopy type of V . But if we make the coverings finer and finer and consider
the colimit over all of them (actually the cofiltering system of all such coverings),
then we get the correct profinite homotopy type.

Remark 36.3. Using étale Čech coverings is actually sufficient for smooth quasi-
projective varieties over a field. For more general schemes one has to consider
hypercoverings. But that’s a different story.

So let us focus on our case. What we learn from this story is that there is a
purely algebraic construction of the profinite homotopy type of the Grassmannian
manifold and we can write

(19) Ĝrn(Cn+k) ≃ lim
α
Nα

where the Nα run through these algebraic étale coverings space (actually the
associated finite cell complexes).

Now we come to the crucial point. The equations defining the Grassmannian
in (18) actually have rational (in fact integer) coefficients. So we can consider
the Grassmannian as a variety defined over Q. Hence each automorphism σ of C
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fixing Q acts on the (complex) points of the Grassmannian. This is nice, though
there is the problem: the action of σ is “highly discontinuous”, at least in the
sense that it does not induce an interesting automorphism on cohomology.

That’s bad news. But here is the solution: Each variety Nα in (19) is defined
over Q and the Galois group Gal(C/Q) acts on the system of the Nα’s. After
taking the union over all k, this defines an action of Gal(C/Q) on the profinite

classifying space ˆBU(n) (and on B̂U).

Now consider the natural surjective homomorphism

χ : Gal(C/Q) → Ẑ∗
p

obtained by letting σ ∈ Gal(C/Q) act on the roots of unity. (This is also called
the cyclotomic character.)

Example 36.4. One can check that Gal(C/Q) acts on ˆBU(1) = ĈP
∞

= K(Ẑp, 2)

via χ and the natural action of Ẑ∗
p on K(Ẑp, 2). (You should do this yourself after

reading more about étale coverings, but you could also look it up in Sullivan’s
MIT notes §5.)

From this example it follows by naturality and the splitting principle that

Gal(C/Q) acts through Ẑ∗
p and χ on ˆBU(n). That means that σ acts on coho-

mology via

σ(ci) = χ(σ)−1ci

where ci is the ith Chern class (which is a generator of the cohomology of BU(n)).

Proposition 36.5. Given k in Ẑ∗
p , choose a σ ∈ Gal(C/Q) such that χ(σ) = k−1.

Then

σ : ˆBU(n) → ˆBU(n)

is an unstable Adams operation in the sense that the diagram

ˆBU(n)

σ
��

// B̂U

ψ̂k

��
ˆBU(n) // B̂U

is commutative up to homotopy. Moreover, the operations σ are compatible if n
varies.

Sketch of the proof. To show that the diagram is homotopy commutative amounts
to show that the elements in profinitely completed K-theory corresponding to the
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horizontal maps agree. For this it suffices to show by the splitting principle that
the diagram

ˆBU(1)

σ
��

// B̂U

ψ̂k

��
ˆBU(1) // B̂U

is commutative up to homotopy. But we know from the above example that σ
raises elements to the kth power and this is what ψk does on line bundles. □

Remark 36.6. The fact that we can define Adams operations on the profinite

completion ˆBU(n) is very remarkable, since there are no unstable Adams opera-
tions on BU(n) itself. The key is the natural Galois action on the inverse system
of étale coverings.

So Sullivan concludes that we can reformulate the Adams conjecture in the
following way.

Theorem 36.7. The stable fiber homotopy type of elements in profinite K-theory
is constant on the orbits of the Galois group.

Proof. Proposition 36.5 shows that we have a homotopy pullback diagram

(20) ˆBU(n− 1)

i
��

ψk

// ˆBU(n− 1)

i
��

ˆBU(n)
ψk

// ˆBU(n)

where the ψk are given by the Galois symmetries σ and are homotopy equiva-
lences. So for the profinite completions we can argue as we wanted that

• the completed spherical fibration over ˆBU(n) classified by Ĵ ◦ ψk is the
pullback of

i : ˆBU(n− 1) → ˆBU(n) along ψk = σ : ˆBU(n) → ˆBU(n);

• and hence, since the maps ψk = σ are equivalences, the completed sphere
bundles corresponding to Ĵ ◦ i and Ĵ ◦ ψk are fiber homotopy equivalent.

This shows that the sphere bundles associated to γ̂n and ψk(γ̂n) = γ̂σn have the
same unstable profinite homotopy types. But this implies that also the stable
sphere bundles associated to γ̂ and ψk(γ̂) = γ̂σ have the same stable profinite
homotopy types. □
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Remark 36.8. 1. This completes the proof of the Adams conjecture in the
complex case. The argument for the real case is similar. We just have to take
care of the extra information of the extension C/R.
2. The proof shows more than just the stable version in Theorem 36.7. It also
proves an unstable (real and complex) profinite version of the Adams conjecture.
3. It is in fact not necessary to just complete at primes p with (p, k) = 1. If one
redefines the Adams operations appropriately at the primes p dividing k one can
take profinite completions with respect to all primes at once.
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Appendix A. Slides from talks on the Adams conjecture

What follows are parts of my slides from an invited lecture series on étale
homotopy theory at Heidelberg University in March 2014. I extracted and put
together the parts on the Adams conjecture. I hope the slides are interesting and
helpful.



Proofs of the Adams conjecture:

We will discuss two methods to prove the Adams 
conjecture (and there are more). Both involve 
etale homotopy theory in an essential way.

• Today: Quillen-Friedlander’s approach. 

Compare spaces over complex numbers with spaces 
in characteristic p and use the Frobenius map.  

• In Lecture 3: Sullivan’s approach. 

Galois symmetries on profinite completions of 
spaces are induced by etale homotopy types.



Spherical fibrations:

Let X be a finite CW-complex and let E be an n-
dimensional complex vector bundle over X. 

By endowing E with a Hermitean metric and 
looking at vectors of length 1 in E-0 we get a 
fiber bundle 

S(E) → X

with fiber a 2n-1-sphere S2n-1. 



Fiber homotopy equivalence:

there are maps f and g  

We say that two fiber bundles F and F’ over X 

F F’

X

are “fiber homotopy

 equivalent” if  

f

g

and homotopy equivalences gf≃idF and fg≃idF’ which 
at each time t are maps of fiber bundles. 



The J-homomorphism:

Let K(X) be the Grothendieck group of finite 
dimensional complex vector bundles over X. 

Let SF(X) be the Grothendieck group of spherical 
fibrations modulo fiber homotopy equivalence. 

The functor S(-) induces the J-homomorphism  

J: K(X) → SF(X).



The Adams conjecture:

Let ψk be the kth Adams operation on K(X). It is a 
functorial ring homomorphism. For a line bundle L, 
it is ψk(L)=Lk in K(X). 

Adams’ conjecture: Let E be a complex vector bundle 
over a finite CW-complex X and k an integer. 

Then there is an integer n such that kn(ψkE-E) maps 
to zero under J. 

(In fact, Adams conjectures also the case of real 
vector bundles.) 



The Quillen-Friedlander approach:

Let us assume we already knew there is a CW-
complex Vet which represents the etale homotopy 
type for every reasonable scheme V.  

The idea of the proof is based on three 
obeservations:



Quillen’s observation 1:

• Homotopy types are visible in charateristic p.  

Let R be a strict henselization of Z at p, R⊂C an 
embedding and k=Fp the closed point of R, VR a 
proper smooth scheme over R.   

-

VC,cl → VC,et → VR,et ← Vk,et  ^^^ ^∼ ∼∼

Then there are canonical equivalences of spaces  

where ^ denotes profinite completion away from p.  



Quillen’s observation 2:

• Frobenius maps give Adams operations.  

Let V be a scheme of characteristic p and E an 
algebraic vector bundle over V.   

Then we have an equality in K(V) 

ψp(E) = E(p). 

Let F: V→V be the Frobenius map and write  

E(p) = F*E. 



• The Frobenius identifies sphere bundles.  

Quillen’s observation 3:

Let E be an algebraic vector bundle over a 
scheme in characteristic p.  

Frobenius E→E(p) restricts to E-0→E(p)-0   

and induces an equivalence   

(E-0)^ ≈ (E(p)-0)^.et et



The Quillen-Friedlander proof:

It suffices to prove the conjecture for 

the Grassmannian Gr=:V and 

the canonical bundle E→V.   

Crucial point: The Grassmannian and the canonical 
bundle can be defined as schemes over the 
integers.    
Then we should be able to apply the observations 
in the following way:     

First of all, since ψab = ψa ψb, we can assume that 
k=p is a prime number.  



The Quillen-Friedlander proof:

K(VC,cl)

SF(VC,cl) SF(VC,cl) SF(VC,et) SF(Vet) SF(Vk,et)

K(VC) K(V) K(Vk)

^ ^^ ^

J J JJ

ΘL

Observe:      An element in the kernel of ΘL is 

of order pn for some n.

It suffices to show ΘL(J(ψpEC-EC)) = 0 in SF(VC,cl).    ^

For then we have pnJ(ψpEC-EC) = 0 in SF(VC,cl).    



The Quillen-Friedlander proof:

K(VC,cl)

SF(VC,cl) SF(VC,cl) SF(VC,et) SF(Vet) SF(Vk,et)

K(VC) K(V) K(Vk)

^ ^^ ^

J J JJ

ΘL

We need to show: J(ψp(EC)-EC) = 0 in SF(VC,cl). ^

By the comparison of classical and etale 
homotopy types,  

≈

^J(ψp(EC)-EC) = 0 in SF(VC,et). 

it suffices to show:



K(VC,cl)

SF(VC,cl) SF(VC,cl) SF(VC,et) SF(Vet) SF(Vk,et)

K(VC) K(V) K(Vk)

^ ^^ ^

J J JJ

ΘL ≈

The Quillen-Friedlander proof:

We need to show: J(ψp(EC)-EC) = 0 in SF(VC,et). ^

Since “characteristic p sees homotopy”,

≈≈

J(ψp(Ek)-Ek) in SF(Vk,et).

it suffices to show:

^



K(VC,cl)

SF(VC,cl) SF(VC,cl) SF(VC,et) SF(Vet) SF(Vk,et)

K(VC) K(V) K(Vk)

^ ^^ ^

J J JJ

ΘL ≈ ≈ ≈

The Quillen-Friedlander proof:

We need to show: J(ψp(Ek)-Ek) = 0 in SF(Vk,et). ^

By “Frobenius = Adams operation” it suffices to show:

J(Ek(p)-Ek) in SF(Vk,et).^

This holds by Observation 3 and we are done!



Friedlander’s theorem:

There is a very difficult point we just assumed:    

• If V is a scheme over R and E an algebraic vector 
bundle of dimension n, then    

(E-0)et → Vet^ ^

is a (completed) (2n-1)-sphere fibration.    

In his thesis, Friedlander proved that geometric and 
homotopy fibers behave well under etale homotopy 
types, thereby proved the Adams conjecture.   



• Sullivan and Galois symmetries in topology:

Let us have a second look at the (complex version 
of the) Adams conjecture:

Let BG be the classifying space of (stable) spherical 
fibrations. 

Let BU(n) be the Grassmannian of complex n-planes, 
BU be the infinite complex Grassmannian.   



Sullivan and Galois symmetries in topology:
Adams: For all k, the map 

J°(ψk-1) : BU(n) → BU → BG[1/k]

is null-homotopic, i.e., homotopic to a constant map.
First step: As in Lecture 1, it suffices to consider 
the p-completed maps (for each p with (k,p)=1)

J°(ψk-1) : BU(n)^ → BU^ → BG(Sp^).

Sullivan’s amazing idea:

Interpret the Adams operations as “Galois 
symmetries” on profinitely completed homotopy 
types of classifying spaces.     



Galois symmetries in topology:

Concretely: σ ∈ GalQ acts on π2(Pn(C)^)=Zp by 
multiplication with χ(σ) where χ denotes the 
cyclotomoic character. 

The complex projective n-space Pn is defined over Q 
and we know   

Pn(C)^ ≈ Pn .   et

The absolute Galois group GalQ of Q acts on Pn and 
this defines an action of GalQ on Pn(C)^. 

et



Galois symmetries in topology:

Just seen: σ ∈ GalQ acts on π2(Pn(C)^) via χ(σ). 

This is a surprising fact, since the action of GalQ on 
P1(C) is “wildly discontinuous”. Only after completion 
we obtain a nice action.  

Key fact: The etale homotopy type tells us how to 
read off the action on finite covers.



Galois symmetries in topology:

In the same way: There is a nice action of GalQ on 
P∞(C)^ (≈K(Zp,2)) and on BU(n)^:   

Concretely: σ ∈ GalQ acts on BU(n)^ such that 

σ(ci) =  χ(σ)-i⋅ci 

on cohomology, where ci is the ith Chern class. 



Galois symmetries in topology:

Key observation: This σ is an “unstable version” of 
the Adams operation ψk. (Use splitting principle and 
compute the effect on line bundles.)    

Choose σ ∈ GalQ such that χ(σ) = k-1 ∈ Zp×. Then 

σ(ci) =  ki⋅ci. 

σ : BU(n)^ → BU(n)^ with

This is very remarkable: Without completions, ψk 
is an endomorphism of BU and not BU(n).   



The conclusion of the proof:

is homotopy commutative and cartesian.  

BU(n)^  →  BU(n)^

BU(n-1)^  →  BU(n-1)^
↓ ↓

σ=ψk

σ=ψk

i i

Thus, twisting by ψk does not change the 
corresponding spherical fibration. This completes the 
sketch of Sullivan’s proof of the Adams conjecture.   

We conclude: the diagram   
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