Math 231b
Lecture 07

G. Quick
7. LECTURE 7: STIEFEL-WHITNEY CLASSES OF PROJECTIVE SPACES

Our next goal is to apply Stiefel-Whitney classes to prove the following impor-
tant result by Stiefel.

7.1. Division algebras and projective spaces.

Theorem 7.1. Suppose that there is a structure of a division algebra on R".

Then the projective space P"~! is parallelizable. In particular, n must be a power
of 2.

Remark 7.2. In fact, we know that there is the much stronger result that a
division algebra structure exists on R™ if and only if n = 1,2,4,8. But to prove
this final result we need stronger techniques. So for a moment let’s be modest
and see how the methods we know so far lead to a proof of this algebraic result.

7.2. Stiefel-Whitney classes of projective spaces.

Example 7.3. Stiefel-Whitney classes are not fine enough to decide if the tangent
bundle of a sphere is trivial or not. For the tangent bundle of a sphere is stably
trivial, hence w(S™) = w(rgn) = 1.
Lemma 7.4. The total Stiefel-Whitney class of the canonical bundle ~} over P"
s given by

w(y,) =1+a
where a denotes the nonzero element of H'(P";7Z/2).

Proof. The standard inclusion j: P! — P" is clearly covered by a bundle map
from 7 to 7}. Therefore

7w () = wi(n) #0.
Hence wi(7;.) cannot be zero, hence it must be equal to a. Since 7, is a line

bundle, the first axiom for Stiefel-Whitney classes tells us that the higher classes
must be zero. O

Example 7.5. The canonical line bundle v} over P" is contained as a sub-bundle
in the trivial bundle €"*1. Let v+ denote the orthogonal complement of v} in e"*!.
The total space E(y1) consists of all pairs

({£z},v) € P" x R™!
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with v orthogonal to z. Claim:

wyt)=1+a+a*+...+a"

For: Since 7} @ vt is trivial we have
wy) =w()=1+a)=14+a+a*+...+a"
In particular, we see that it is possible that all of the n Stiefel-Whitney classes

of an R"-bundle can be non-zero.

Lemma 7.6. The tangent bundle T of P™ is isomorphic to Hom(v} 1),

Proof. Let L be a line through the origin in R™™! intersecting S™ in the points
+2, and let L+ C R"*! be the complementary n-plane. Let f: S™ — P" denote
the canonical map f(z) = {£x}. Note that the two tangent vectors (x,v) and
(—x, —v) in DS™ both have the same image under the map

Df: DS"™ — DP"
which is induced by f. Thus the tangent manifold DP" can be identified with
the set of pairs {(z,v), (—z, — v)} satisfying

z-x=1 v-v=0.
But each such pair determines, and is determined by, a linear mapping

(: L — L*,
where
l(z) =wv.

Thus the tangent space of P"* at {4} is canonically isomorphic to the vector space

Hom(L,LY). Tt follows that the tangent vector bundle 7 = 7« is isomorphic to
the bundle Hom(y},~y4). O

Let us compute the total Stiefel-Whitney class w(P"). We cannot use the
previous formula for 7, since we do not a formula that relates the Stiefel-Whitney
classes of Hom(+},7%), 71, and 4. Instead we do the following.

Theorem 7.7. the Whitney sum 7 @ €' is isomorphic the (n + 1)-fold Whitney
sum v ® vl @ ... @yl Hence the total Stiefel-Whitney class of P™ is given by

w(]P’”):(l—i—a)”“:l—i—(n—li_l)a—l—(n;—l)cﬁ—t—...—l—(n—i_l)a”.

n

Proof. The bundle Hom(7},~}) is trivial since it is a line bundle with a canonical
nowhere zero section. Therefore

7@€ = Hom(ys,v) @ Hom(v;},~L).



But the latter is isomorphic to

Hom(y,, 7" ®7,) = Hom(y,, ")

and therefore it is isomorphic to the (n + 1)-fold sum
Hom(7.,e' @ ... @ e') 2 Hom(y!,e") @ ... ® Hom(y}, ).
But the bundle Hom(~!, €') is isomorphic to 7.}, since 7! has a Euclidean metric.
This proves that
TOE N D... D
The Whitney product formula implies that w(7) = w(r @ €') is equal to
w(yy) - w(yy) = (14+a)"

The binomial formula now completes the proof. O

Corollary 7.8. The class w(P™) is equal to 1 if and only if n+ 1 is a power of 2.
Thus the only projective spaces which can be parallelizable are P!, P3 P P .. ..

Proof. The identity (a + b)? = a® 4+ b*> modulo 2 implies that
(14+a)* =1+d*.
Therefore if n + 1 = 2" then
w(P") = (1+a)" =1+a"" = 1.

Conversely if n + 1 = 2"m with m odd, m> 1, then
wP?) = (1+a)"t=0+a>)™
= 1+ma® +20a?? £1,
since 2" < n + 1. O

7.3. Proof of Stiefel’s theorem. Assume there is a bilinear product operation
p: R* x R" — R"
without zero divisors.

Let by,...,b, be the standard basis for the vector space R™. The correspon-
dence
y = p(y.br)
defines an isomorphism of R"™ onto itself, since p has no zero divisors. Hence the
formula

Uz<p<y7b1)) = p<y7bl)

defines a linear transformation
v;: R" — R".



Note that we have vy(x) = z, since v1(p(y,b1)) = p(y,b1) by definition. More-
over, for x # 0, the vectors vy(x), ..., v,(x) are linearly independent. For if there
was a nontrivial relation, for some y € R™ with = = p(y,b;),

0= Z A () = Z Aip(y.b:) = p(y, Z Aibi)

this implied

which implies \; = 0 for all 7.

Now let L be a line through the origin. Each v; defines a linear transformation
0. L — L+
as follows. For x € L, let v;(x) denote the image of v;(x) under the orthogonal

projection
R™ — L*.

Since vy (z) = x, we have v; = 0. But the 0y, ..., 7, are everywhere linearly
independent, since the vs, ..., v, are everywhere linearly independent. Hence the
Vg, ..., U, give rise to n — 1 linearly independent sections of the bundle

Hom (v, 77).

Since this bundle is isomorphic the tangent bundle 7pn—1 of P"~ !, we see that
Tpn—1 is trivial. This completes the proof of Theorem 7.1.
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