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G. Quick

7. Lecture 7: Stiefel-Whitney classes of projective spaces

Our next goal is to apply Stiefel-Whitney classes to prove the following impor-
tant result by Stiefel.

7.1. Division algebras and projective spaces.

Theorem 7.1. Suppose that there is a structure of a division algebra on Rn.
Then the projective space Pn−1 is parallelizable. In particular, n must be a power
of 2.

Remark 7.2. In fact, we know that there is the much stronger result that a
division algebra structure exists on Rn if and only if n = 1, 2, 4, 8. But to prove
this final result we need stronger techniques. So for a moment let’s be modest
and see how the methods we know so far lead to a proof of this algebraic result.

7.2. Stiefel-Whitney classes of projective spaces.

Example 7.3. Stiefel-Whitney classes are not fine enough to decide if the tangent
bundle of a sphere is trivial or not. For the tangent bundle of a sphere is stably
trivial, hence w(Sn) = w(τSn) = 1.

Lemma 7.4. The total Stiefel-Whitney class of the canonical bundle γ1
n over Pn

is given by
w(γ1

n) = 1 + a

where a denotes the nonzero element of H1(Pn; Z/2).

Proof. The standard inclusion j : P1 → Pn is clearly covered by a bundle map
from γ1

1 to γ1
n. Therefore

j∗w1(γ
1
n) = w1(γ

1
1) 6= 0.

Hence w1(γ
1
n) cannot be zero, hence it must be equal to a. Since γ1

n is a line
bundle, the first axiom for Stiefel-Whitney classes tells us that the higher classes
must be zero. �

Example 7.5. The canonical line bundle γ1
n over Pn is contained as a sub-bundle

in the trivial bundle εn+1. Let γ⊥ denote the orthogonal complement of γ1
n in εn+1.

The total space E(γ⊥) consists of all pairs

({±x}, v) ∈ Pn × Rn+1
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with v orthogonal to x. Claim:

w(γ⊥) = 1 + a+ a2 + . . .+ an.

For: Since γ1
n ⊕ γ⊥ is trivial we have

w(γ⊥) = w̄(γ1
n) = (1 + a)−1 = 1 + a+ a2 + . . .+ an.

In particular, we see that it is possible that all of the n Stiefel-Whitney classes
of an Rn-bundle can be non-zero.

Lemma 7.6. The tangent bundle τ of Pn is isomorphic to Hom(γ1
n,γ
⊥).

Proof. Let L be a line through the origin in Rn+1, intersecting Sn in the points
±x, and let L⊥ ⊂ Rn+1 be the complementary n-plane. Let f : Sn → Pn denote
the canonical map f(x) = {±x}. Note that the two tangent vectors (x,v) and
(−x,− v) in DSn both have the same image under the map

Df : DSn → DPn

which is induced by f . Thus the tangent manifold DPn can be identified with
the set of pairs {(x,v), (−x,− v)} satisfying

x · x = 1, v · v = 0.

But each such pair determines, and is determined by, a linear mapping

` : L→ L⊥,

where
`(x) = v.

Thus the tangent space of Pn at {±x} is canonically isomorphic to the vector space
Hom(L,L⊥). It follows that the tangent vector bundle τ = τPn is isomorphic to
the bundle Hom(γ1

n,γ
⊥). �

Let us compute the total Stiefel-Whitney class w(Pn). We cannot use the
previous formula for τ , since we do not a formula that relates the Stiefel-Whitney
classes of Hom(γ1

n,γ
⊥), γ1

n, and γ⊥. Instead we do the following.

Theorem 7.7. the Whitney sum τ ⊕ ε1 is isomorphic the (n + 1)-fold Whitney
sum γ1

n ⊕ γ1
n ⊕ . . .⊕ γ1

n. Hence the total Stiefel-Whitney class of Pn is given by

w(Pn) = (1 + a)n+1 = 1 +

(
n+ 1

1

)
a+

(
n+ 1

2

)
a2 + . . .+

(
n+ 1
n

)
an.

Proof. The bundle Hom(γ1
n, γ

1
n) is trivial since it is a line bundle with a canonical

nowhere zero section. Therefore

τ ⊕ ε1 ∼= Hom(γ1
n, γ

⊥)⊕ Hom(γ1
n, γ

1
n).
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But the latter is isomorphic to

Hom(γ1
n, γ

⊥ ⊕ γ1
n) ∼= Hom(γ1

n, ε
n+1),

and therefore it is isomorphic to the (n+ 1)-fold sum

Hom(γ1
n, ε

1 ⊕ . . .⊕ ε1) ∼= Hom(γ1
n, ε

1)⊕ . . .⊕ Hom(γ1
n, ε

1).

But the bundle Hom(γ1
n, ε

1) is isomorphic to γ1
n, since γ1

n has a Euclidean metric.
This proves that

τ ⊕ ε1 ∼= γ1
n ⊕ . . .⊕ γ1

n.

The Whitney product formula implies that w(τ) = w(τ ⊕ ε1) is equal to

w(γ1
n) . . . w(γ1

n) = (1 + a)n+1.

The binomial formula now completes the proof. �

Corollary 7.8. The class w(Pn) is equal to 1 if and only if n+ 1 is a power of 2.
Thus the only projective spaces which can be parallelizable are P1,P3,P7,P15, . . ..

Proof. The identity (a+ b)2 = a2 + b2 modulo 2 implies that

(1 + a)2r

= 1 + a2r

.

Therefore if n+ 1 = 2r then

w(Pn) = (1 + a)n+1 = 1 + an+1 = 1.

Conversely if n+ 1 = 2rm with m odd, m> 1, then

w(Pn) = (1 + a)n+1 = (1 + a2r
)m

= 1 +ma2r
+ m(m−1

2
a2·2r

+ . . . 6= 1,

since 2r < n+ 1. �

7.3. Proof of Stiefel’s theorem. Assume there is a bilinear product operation

p : Rn × Rn → Rn

without zero divisors.

Let b1, . . . , bn be the standard basis for the vector space Rn. The correspon-
dence

y 7→ p(y,b1)

defines an isomorphism of Rn onto itself, since p has no zero divisors. Hence the
formula

vi(p(y,b1)) = p(y,bi)

defines a linear transformation

vi : Rn → Rn.
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Note that we have v1(x) = x, since v1(p(y,b1)) = p(y,b1) by definition. More-
over, for x 6= 0, the vectors v1(x), . . . , vn(x) are linearly independent. For if there
was a nontrivial relation, for some y ∈ Rn with x = p(y,b1),

0 =
∑

i

λivi(x) =
∑

i

λip(y,bi) = p(y,
∑

i

λibi)

this implied

0 =
∑

i

λibi

which implies λi = 0 for all i.

Now let L be a line through the origin. Each vi defines a linear transformation

v̄i : L→ L⊥

as follows. For x ∈ L, let v̄i(x) denote the image of vi(x) under the orthogonal
projection

Rn → L⊥.

Since v1(x) = x, we have v̄1 = 0. But the v̄2, . . . , v̄n are everywhere linearly
independent, since the v2, . . . , vn are everywhere linearly independent. Hence the
v2, . . . , vn give rise to n− 1 linearly independent sections of the bundle

Hom(γ1
n, γ

⊥).

Since this bundle is isomorphic the tangent bundle τPn−1 of Pn−1, we see that
τPn−1 is trivial. This completes the proof of Theorem 7.1.


	7. Lecture 7: Stiefel-Whitney classes of projective spaces
	7.1. Division algebras and projective spaces
	7.2. Stiefel-Whitney classes of projective spaces
	7.3. Proof of Stiefel's theorem


