Math 231b
Lecture 07
G. Quick

7. Lecture 7: Stiefel-Whitney classes of projective spaces

Our next goal is to apply Stiefel-Whitney classes to prove the following important result by Stiefel.

7.1. Division algebras and projective spaces.

Theorem 7.1. Suppose that there is a structure of a division algebra on \mathbb{R}^{n}. Then the projective space \mathbb{P}^{n-1} is parallelizable. In particular, n must be a power of 2 .

Remark 7.2. In fact, we know that there is the much stronger result that a division algebra structure exists on \mathbb{R}^{n} if and only if $n=1,2,4,8$. But to prove this final result we need stronger techniques. So for a moment let's be modest and see how the methods we know so far lead to a proof of this algebraic result.

7.2. Stiefel-Whitney classes of projective spaces.

Example 7.3. Stiefel-Whitney classes are not fine enough to decide if the tangent bundle of a sphere is trivial or not. For the tangent bundle of a sphere is stably trivial, hence $w\left(S^{n}\right)=w\left(\tau_{S^{n}}\right)=1$.
Lemma 7.4. The total Stiefel-Whitney class of the canonical bundle γ_{n}^{1} over \mathbb{P}^{n} is given by

$$
w\left(\gamma_{n}^{1}\right)=1+a
$$

where a denotes the nonzero element of $H^{1}\left(\mathbb{P}^{n} ; \mathbb{Z} / 2\right)$.
Proof. The standard inclusion $j: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ is clearly covered by a bundle map from γ_{1}^{1} to γ_{n}^{1}. Therefore

$$
j^{*} w_{1}\left(\gamma_{n}^{1}\right)=w_{1}\left(\gamma_{1}^{1}\right) \neq 0
$$

Hence $w_{1}\left(\gamma_{n}^{1}\right)$ cannot be zero, hence it must be equal to a. Since γ_{n}^{1} is a line bundle, the first axiom for Stiefel-Whitney classes tells us that the higher classes must be zero.
Example 7.5. The canonical line bundle γ_{n}^{1} over \mathbb{P}^{n} is contained as a sub-bundle in the trivial bundle ϵ^{n+1}. Let γ^{\perp} denote the orthogonal complement of γ_{n}^{1} in ϵ^{n+1}. The total space $E\left(\gamma^{\perp}\right)$ consists of all pairs

$$
(\{ \pm x\}, v) \in \mathbb{P}^{n} \times \mathbb{R}^{n+1}
$$

with v orthogonal to x. Claim:

$$
w\left(\gamma^{\perp}\right)=1+a+a^{2}+\ldots+a^{n}
$$

For: Since $\gamma_{n}^{1} \oplus \gamma^{\perp}$ is trivial we have

$$
w\left(\gamma^{\perp}\right)=\bar{w}\left(\gamma_{n}^{1}\right)=(1+a)^{-1}=1+a+a^{2}+\ldots+a^{n} .
$$

In particular, we see that it is possible that all of the n Stiefel-Whitney classes of an \mathbb{R}^{n}-bundle can be non-zero.

Lemma 7.6. The tangent bundle τ of \mathbb{P}^{n} is isomorphic to $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right)$.
Proof. Let L be a line through the origin in \mathbb{R}^{n+1}, intersecting S^{n} in the points $\pm x$, and let $L^{\perp} \subset \mathbb{R}^{n+1}$ be the complementary n-plane. Let $f: S^{n} \rightarrow \mathbb{P}^{n}$ denote the canonical map $f(x)=\{ \pm x\}$. Note that the two tangent vectors (x, v) and $(-x,-v)$ in $D S^{n}$ both have the same image under the map

$$
D f: D S^{n} \rightarrow D \mathbb{P}^{n}
$$

which is induced by f. Thus the tangent manifold $D \mathbb{P}^{n}$ can be identified with the set of pairs $\{(x, v),(-x,-v)\}$ satisfying

$$
x \cdot x=1, v \cdot v=0
$$

But each such pair determines, and is determined by, a linear mapping

$$
\ell: L \rightarrow L^{\perp}
$$

where

$$
\ell(x)=v
$$

Thus the tangent space of \mathbb{P}^{n} at $\{ \pm x\}$ is canonically isomorphic to the vector space $\operatorname{Hom}\left(L, L^{\perp}\right)$. It follows that the tangent vector bundle $\tau=\tau_{\mathbb{P} n}$ is isomorphic to the bundle $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right)$.

Let us compute the total Stiefel-Whitney class $w\left(\mathbb{P}^{n}\right)$. We cannot use the previous formula for τ, since we do not a formula that relates the Stiefel-Whitney classes of $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right), \gamma_{n}^{1}$, and γ^{\perp}. Instead we do the following.
Theorem 7.7. the Whitney sum $\tau \oplus \epsilon^{1}$ is isomorphic the $(n+1)$-fold Whitney sum $\gamma_{n}^{1} \oplus \gamma_{n}^{1} \oplus \ldots \oplus \gamma_{n}^{1}$. Hence the total Stiefel-Whitney class of \mathbb{P}^{n} is given by

$$
w\left(\mathbb{P}^{n}\right)=(1+a)^{n+1}=1+\binom{n+1}{1} a+\binom{n+1}{2} a^{2}+\ldots+\binom{n+1}{n} a^{n}
$$

Proof. The bundle $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)$ is trivial since it is a line bundle with a canonical nowhere zero section. Therefore

$$
\tau \oplus \epsilon^{1} \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right) \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)
$$

But the latter is isomorphic to

$$
\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp} \oplus \gamma_{n}^{1}\right) \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{n+1}\right),
$$

and therefore it is isomorphic to the $(n+1)$-fold sum

$$
\operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{1} \oplus \ldots \oplus \epsilon^{1}\right) \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{1}\right) \oplus \ldots \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{1}\right)
$$

But the bundle $\operatorname{Hom}\left(\gamma_{n}^{1}, \epsilon^{1}\right)$ is isomorphic to γ_{n}^{1}, since γ_{n}^{1} has a Euclidean metric. This proves that

$$
\tau \oplus \epsilon^{1} \cong \gamma_{n}^{1} \oplus \ldots \oplus \gamma_{n}^{1}
$$

The Whitney product formula implies that $w(\tau)=w\left(\tau \oplus \epsilon^{1}\right)$ is equal to

$$
w\left(\gamma_{n}^{1}\right) \ldots w\left(\gamma_{n}^{1}\right)=(1+a)^{n+1}
$$

The binomial formula now completes the proof.
Corollary 7.8. The class $w\left(\mathbb{P}^{n}\right)$ is equal to 1 if and only if $n+1$ is a power of 2 . Thus the only projective spaces which can be parallelizable are $\mathbb{P}^{1}, \mathbb{P}^{3}, \mathbb{P}^{7}, \mathbb{P}^{15}, \ldots$.

Proof. The identity $(a+b)^{2}=a^{2}+b^{2}$ modulo 2 implies that

$$
(1+a)^{2^{r}}=1+a^{2^{r}}
$$

Therefore if $n+1=2^{r}$ then

$$
w\left(\mathbb{P}^{n}\right)=(1+a)^{n+1}=1+a^{n+1}=1
$$

Conversely if $n+1=2^{r} m$ with m odd, $\mathrm{m}>1$, then

$$
\begin{aligned}
w\left(\mathbb{P}^{n}\right) & =(1+a)^{n+1}=\left(1+a^{2^{r}}\right)^{m} \\
& =1+m a^{2^{r}}+\frac{m(m-1}{2} a^{2 \cdot 2^{r}}+\ldots \neq 1
\end{aligned}
$$

since $2^{r}<n+1$.
7.3. Proof of Stiefel's theorem. Assume there is a bilinear product operation

$$
p: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

without zero divisors.
Let b_{1}, \ldots, b_{n} be the standard basis for the vector space \mathbb{R}^{n}. The correspondence

$$
y \mapsto p\left(y, b_{1}\right)
$$

defines an isomorphism of \mathbb{R}^{n} onto itself, since p has no zero divisors. Hence the formula

$$
v_{i}\left(p\left(y, b_{1}\right)\right)=p\left(y, b_{i}\right)
$$

defines a linear transformation

$$
v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Note that we have $v_{1}(x)=x$, since $v_{1}\left(p\left(y, b_{1}\right)\right)=p\left(y, b_{1}\right)$ by definition. Moreover, for $x \neq 0$, the vectors $v_{1}(x), \ldots, v_{n}(x)$ are linearly independent. For if there was a nontrivial relation, for some $y \in \mathbb{R}^{n}$ with $x=p\left(y, b_{1}\right)$,

$$
0=\sum_{i} \lambda_{i} v_{i}(x)=\sum_{i} \lambda_{i} p\left(y, b_{i}\right)=p\left(y, \sum_{i} \lambda_{i} b_{i}\right)
$$

this implied

$$
0=\sum_{i} \lambda_{i} b_{i}
$$

which implies $\lambda_{i}=0$ for all i.
Now let L be a line through the origin. Each v_{i} defines a linear transformation

$$
\bar{v}_{i}: L \rightarrow L^{\perp}
$$

as follows. For $x \in L$, let $\bar{v}_{i}(x)$ denote the image of $v_{i}(x)$ under the orthogonal projection

$$
\mathbb{R}^{n} \rightarrow L^{\perp}
$$

Since $v_{1}(x)=x$, we have $\bar{v}_{1}=0$. But the $\bar{v}_{2}, \ldots, \bar{v}_{n}$ are everywhere linearly independent, since the v_{2}, \ldots, v_{n} are everywhere linearly independent. Hence the v_{2}, \ldots, v_{n} give rise to $n-1$ linearly independent sections of the bundle

$$
\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right)
$$

Since this bundle is isomorphic the tangent bundle $\tau_{\mathbb{P}^{n-1}}$ of \mathbb{P}^{n-1}, we see that $\tau_{\mathbb{P}^{n-1}}$ is trivial. This completes the proof of Theorem 7.1.

