Math 231b Lecture 07

G. Quick

7. Lecture 7: Stiefel-Whitney classes of projective spaces

Our next goal is to apply Stiefel-Whitney classes to prove the following important result by Stiefel.

7.1. Division algebras and projective spaces.

Theorem 7.1. Suppose that there is a structure of a division algebra on \mathbb{R}^n . Then the projective space \mathbb{P}^{n-1} is parallelizable. In particular, n must be a power of 2.

Remark 7.2. In fact, we know that there is the much stronger result that a division algebra structure exists on \mathbb{R}^n if and only if n = 1, 2, 4, 8. But to prove this final result we need stronger techniques. So for a moment let's be modest and see how the methods we know so far lead to a proof of this algebraic result.

7.2. Stiefel-Whitney classes of projective spaces.

Example 7.3. Stiefel-Whitney classes are not fine enough to decide if the tangent bundle of a sphere is trivial or not. For the tangent bundle of a sphere is stably trivial, hence $w(S^n) = w(\tau_{S^n}) = 1$.

Lemma 7.4. The total Stiefel-Whitney class of the canonical bundle γ_n^1 over \mathbb{P}^n is given by

$$w(\gamma_n^1) = 1 + a$$

where a denotes the nonzero element of $H^1(\mathbb{P}^n; \mathbb{Z}/2)$.

Proof. The standard inclusion $j \colon \mathbb{P}^1 \to \mathbb{P}^n$ is clearly covered by a bundle map from γ_1^1 to γ_n^1 . Therefore

$$j^*w_1(\gamma_n^1) = w_1(\gamma_1^1) \neq 0.$$

Hence $w_1(\gamma_n^1)$ cannot be zero, hence it must be equal to a. Since γ_n^1 is a line bundle, the first axiom for Stiefel-Whitney classes tells us that the higher classes must be zero.

Example 7.5. The canonical line bundle γ_n^1 over \mathbb{P}^n is contained as a sub-bundle in the trivial bundle ϵ^{n+1} . Let γ^{\perp} denote the orthogonal complement of γ_n^1 in ϵ^{n+1} . The total space $E(\gamma^{\perp})$ consists of all pairs

$$(\{\pm x\}, v) \in \mathbb{P}^n \times \mathbb{R}^{n+1}$$

with v orthogonal to x. Claim:

$$w(\gamma^{\perp}) = 1 + a + a^2 + \ldots + a^n.$$

For: Since $\gamma_n^1 \oplus \gamma^{\perp}$ is trivial we have

$$w(\gamma^{\perp}) = \bar{w}(\gamma_n^1) = (1+a)^{-1} = 1 + a + a^2 + \dots + a^n$$

In particular, we see that it is possible that all of the *n* Stiefel-Whitney classes of an \mathbb{R}^n -bundle can be non-zero.

Lemma 7.6. The tangent bundle τ of \mathbb{P}^n is isomorphic to $\operatorname{Hom}(\gamma_n^1, \gamma^{\perp})$.

Proof. Let L be a line through the origin in \mathbb{R}^{n+1} , intersecting S^n in the points $\pm x$, and let $L^{\perp} \subset \mathbb{R}^{n+1}$ be the complementary *n*-plane. Let $f: S^n \to \mathbb{P}^n$ denote the canonical map $f(x) = \{\pm x\}$. Note that the two tangent vectors (x,v) and (-x, -v) in DS^n both have the same image under the map

$$Df: DS^n \to D\mathbb{P}^n$$

which is induced by f. Thus the tangent manifold $D\mathbb{P}^n$ can be identified with the set of pairs $\{(x,v), (-x, -v)\}$ satisfying

$$x \cdot x = 1, \ v \cdot v = 0.$$

But each such pair determines, and is determined by, a linear mapping

$$\ell \colon L \to L^{\perp}$$

where

$$\ell(x) = v.$$

Thus the tangent space of \mathbb{P}^n at $\{\pm x\}$ is canonically isomorphic to the vector space $\operatorname{Hom}(L,L^{\perp})$. It follows that the tangent vector bundle $\tau = \tau_{\mathbb{P}^n}$ is isomorphic to the bundle $\operatorname{Hom}(\gamma_n^1,\gamma^{\perp})$.

Let us compute the total Stiefel-Whitney class $w(\mathbb{P}^n)$. We cannot use the previous formula for τ , since we do not a formula that relates the Stiefel-Whitney classes of $\operatorname{Hom}(\gamma_n^1, \gamma^{\perp}), \gamma_n^1$, and γ^{\perp} . Instead we do the following.

Theorem 7.7. the Whitney sum $\tau \oplus \epsilon^1$ is isomorphic the (n+1)-fold Whitney sum $\gamma_n^1 \oplus \gamma_n^1 \oplus \ldots \oplus \gamma_n^1$. Hence the total Stiefel-Whitney class of \mathbb{P}^n is given by

$$w(\mathbb{P}^n) = (1+a)^{n+1} = 1 + \binom{n+1}{1}a + \binom{n+1}{2}a^2 + \dots + \binom{n+1}{n}a^n.$$

Proof. The bundle $\text{Hom}(\gamma_n^1, \gamma_n^1)$ is trivial since it is a line bundle with a canonical nowhere zero section. Therefore

$$\tau \oplus \epsilon^1 \cong \operatorname{Hom}(\gamma_n^1, \gamma^\perp) \oplus \operatorname{Hom}(\gamma_n^1, \gamma_n^1).$$

2

But the latter is isomorphic to

$$\operatorname{Hom}(\gamma_n^1, \gamma^\perp \oplus \gamma_n^1) \cong \operatorname{Hom}(\gamma_n^1, \epsilon^{n+1}),$$

and therefore it is isomorphic to the (n + 1)-fold sum

 $\operatorname{Hom}(\gamma_n^1, \epsilon^1 \oplus \ldots \oplus \epsilon^1) \cong \operatorname{Hom}(\gamma_n^1, \epsilon^1) \oplus \ldots \oplus \operatorname{Hom}(\gamma_n^1, \epsilon^1).$

But the bundle $\operatorname{Hom}(\gamma^1_n,\epsilon^1)$ is isomorphic to $\gamma^1_n,$ since γ^1_n has a Euclidean metric. This proves that

 $\tau \oplus \epsilon^1 \cong \gamma_n^1 \oplus \ldots \oplus \gamma_n^1.$

The Whitney product formula implies that $w(\tau) = w(\tau \oplus \epsilon^1)$ is equal to

$$w(\gamma_n^1)\dots w(\gamma_n^1) = (1+a)^{n+1}$$

The binomial formula now completes the proof.

Corollary 7.8. The class $w(\mathbb{P}^n)$ is equal to 1 if and only if n + 1 is a power of 2. Thus the only projective spaces which can be parallelizable are $\mathbb{P}^1, \mathbb{P}^3, \mathbb{P}^7, \mathbb{P}^{15}, \ldots$

Proof. The identity $(a + b)^2 = a^2 + b^2$ modulo 2 implies that $(1 + a)^{2^r} = 1 + a^{2^r}$.

Therefore if $n + 1 = 2^r$ then

$$w(\mathbb{P}^n) = (1+a)^{n+1} = 1 + a^{n+1} = 1$$

Conversely if $n + 1 = 2^r m$ with m odd, m > 1, then

$$w(\mathbb{P}^n) = (1+a)^{n+1} = (1+a^{2^r})^m = 1+ma^{2^r} + \frac{m(m-1)}{2}a^{2\cdot 2^r} + \dots \neq 1,$$

since $2^r < n + 1$.

7.3. **Proof of Stiefel's theorem.** Assume there is a bilinear product operation $p \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

without zero divisors.

Let b_1, \ldots, b_n be the standard basis for the vector space \mathbb{R}^n . The correspondence

$$y \mapsto p(y,b_1)$$

defines an isomorphism of \mathbb{R}^n onto itself, since p has no zero divisors. Hence the formula

$$v_i(p(y,b_1)) = p(y,b_i)$$

defines a linear transformation

$$v_i \colon \mathbb{R}^n \to \mathbb{R}^n.$$

4

Note that we have $v_1(x) = x$, since $v_1(p(y,b_1)) = p(y,b_1)$ by definition. Moreover, for $x \neq 0$, the vectors $v_1(x), \ldots, v_n(x)$ are linearly independent. For if there was a nontrivial relation, for some $y \in \mathbb{R}^n$ with $x = p(y,b_1)$,

$$0 = \sum_{i} \lambda_{i} v_{i}(x) = \sum_{i} \lambda_{i} p(y, b_{i}) = p(y, \sum_{i} \lambda_{i} b_{i})$$

this implied

$$0 = \sum_{i} \lambda_i b_i$$

which implies $\lambda_i = 0$ for all *i*.

Now let L be a line through the origin. Each v_i defines a linear transformation

$$\bar{v}_i \colon L \to L^\perp$$

as follows. For $x \in L$, let $\bar{v}_i(x)$ denote the image of $v_i(x)$ under the orthogonal projection

$$\mathbb{R}^n \to L^\perp.$$

Since $v_1(x) = x$, we have $\bar{v}_1 = 0$. But the $\bar{v}_2, \ldots, \bar{v}_n$ are everywhere linearly independent, since the v_2, \ldots, v_n are everywhere linearly independent. Hence the v_2, \ldots, v_n give rise to n-1 linearly independent sections of the bundle

 $\operatorname{Hom}(\gamma_n^1,\gamma^\perp).$

Since this bundle is isomorphic the tangent bundle $\tau_{\mathbb{P}^{n-1}}$ of \mathbb{P}^{n-1} , we see that $\tau_{\mathbb{P}^{n-1}}$ is trivial. This completes the proof of Theorem 7.1.