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2. Lecture 2: Vector bundles and sections

We have seen the definition and first examples of vector bundles. Today we
will first continue our list of examples. Let us get started.

Example 2.1. Recall that the real projective n-space RPn is the space of lines
in Rn+1 through the origin. Since each such line intersects the unit sphere Sn in
a pair of antipodal points, we can also regard RPn as the quotient space of Sn

in which antipodal pairs of points are identified, i.e., RPn = Sn/x ∼ (−x). The
topology of RPn is then the topology as a quotient of Sn. Let {±x} denote the
equivalence class of x in Sn/ ∼

The canonical line bundle γ1
n over RP n is the line bundle π : E → RPn with

total space

E(γ1
n) = {({±x}, v) ∈ RPn × Rn+1|v = tx for some t ∈ R} ⊂ RPn × Rn+1.

In other words, E is consisting of all pairs (`, v) such that the vector v lies on the
line `.

The map π : E → RPn is just the projection sending ({±x}, v) to {±x}.

Now we need to find local trivializations for γ1
n. Let U ⊂ Sn be any open set

which is small enough so as to contain no pair of antipodal points, and let U1

denote the image of U in RPn. Then a homeomorphism

h : U1 × R→ π−1(U1)

is defined by the requirement that

h({±x}, t) = ({±x}, tx)

for each (x,t) ∈ U × R. The pair (U1,h) is a local trivialization of γ1
n.

After seeing some examples of vector bundles we would like to be able to say
when two bundles are isomorphic.

Definition 2.2. 1) Let ξ and η be two vector bundles over some base space
B. Then we say that ξ is isomorphic to η, written ξ ∼= η, if there exists a
homeomorphism

f : E(ξ)→ E(η)
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between the total spaces which maps each vector space Eb(ξ) isomorphically onto
the corresponding vector space Eb(η).

2) We say that a bundle is trivial if it is isomorphic to the product bundle
B × Rn for some n ≥ 0.

Example 2.3. 1) The tangent bundle τ1 to S1 is isomorphic to the trivial bundle
S1 × R. The isomorphism is given by the map

τ1 → S1 × R, (eiθ, ieiθ) 7→ (eiθ, t) for eiθ ∈ S1 and t ∈ R.

Recall that the total space of τ 1 is given by the space

E(τ1) = {(x,v) ∈ S1 × R1| x⊥v} = {(eiθ, ieiθ)| t ∈ R, θ ∈ [0,2π]}.

Note: The triviality of τ1 is special to the case n = 1. Though the situation is
simpler for the normal bundle.

2) The normal bundle ν of Sn in Rn+1 is isomorphic to the product line bundle
Sn × R. The isomorphism is given by the map

(x,tx) 7→ (x,t).

Hence ν is trivial.

But, of course, not all bundles are trivial.

Proposition 2.4. The canonical line bundle γ1
n over RPn is not trivial for n ≥ 1.

We prove this claim by studying the sections of γ1
n.

Definition 2.5. A section of a vector bundle π : E → B is a continuous map

s : B → E

which takes each b ∈ B into the corresponding fiber π−1(b). In other words, s is
a continuous map such that π ◦ s = idB.

A section is called nowhere zero if s(b) is a non-zero vector of π−1(b) for each
b.

Example 2.6. • Every vector bundle has a zero section whose value is the
zero vector in each fiber.

• A trivial bundle possesses a nowhere zero section.

From the last point we see that in order to proof Proposition 2.4 it suffices to
show that γ1

n does not have nowhere zero section:
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Let

s : RPn → E(γ1
n)

be any section, and consider the composition

Sn → RPn s−→ E(γ1
n)

which carries each x ∈ Sn to some pair

({±x}, t(x)x) ∈ E(γ1
n).

Since this map is the composite of continuous maps it is itself continuous and
hence the map x 7→ t(x) is a continuous map Sn → R, i.e. it is a continuous real
valued function. Moreover, it satisfies

t(−x) = −t(x).

Since Sn is connected it follows from the intermediate value theorem that
t(x0) = 0 for some x0. Hence

s({±x0}) = ({±x0}, 0)

and s cannot be nowhere zero. Thus γ1
n is not trivial. 2

Example 2.7. Let us have a closer look at the space E(γ1
n) for the special case

n = 1. In this case, each point e = ({±x},v) of E(γ1
n) can be written as

e = ({±(cos θ, sin θ)}, t(cos θ, sin θ)) with 0 ≤ θ ≤ π, t ∈ R.

This representation is unique except that for the point

({±(cos 0, sin 0)}, t(cos 0, sin 0)) = ({±(cos π, sin π)},−t(cosπ, sin π)) for each t ∈ R.

In other words, E(γ1
n) can be obtained from the strip [0, π]×R in the (θ, t)-plane

by identifying the left hand boundary {0} × R with the right hand boundary
{π} × R under the correspondence

(0,t) 7→ (π,−t).

Thus E(γ1
n) is an open Möbius band over RP1. Since RP1 is just S1 we see

that in this case γ1
1 is just the Möbius bundle over S1 we defined in the previous

lecture. And we see once again that γ1
1 is non-trivial.

Another strategy to distinguish non isomorphic bundles is to look at the com-
plement of the zero section. For any vector bundle isomorphism must the zero
section to the zero section. Hence it induces a homeomorphism on the comple-
ments of the zero sections.
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Example 2.8. This gives us another way to see that the Möbius bundle is nontr-
vival. The complement of the zero section of the Möbius bundle is connected but
the complement of the zero section of the product bundle S1×R is not connected.
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