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ADDED-MASS MATRIX AND ENERGY STORED IN THE
"NEAR FIELD"

by

Johannes Falnes

The so-called addes mass, associated with a body
which oscillates sinusoidally in water, is usually a

positive guantity. However, in some cases negative values

occur, as discussed in a recent paper by McIver and
Evans (Ref. 1). Negative added mass occurs when the oscil-
lating body produces a water motion where the associated

potential energy is larger than the associated kinetic
energy.

This follows from the formula
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where E;2 is the kinetic energy and Ep the potential
energy of the oscillating water. Further m,.

is an ele-

ment of the added mass matrix and u is the complex

velocity amplitude of "oscillator" no. i. Since each

body may oscillate in six different modes, the system
contains up to 6N "oscillators" if there are N
rate bodies. The summation indices i

over all "oscillators".

sepa-

, 3 in eg. (1) run

The original derivation of eqg. (1) is included in
the Appendix.

The occurrence of negative added mass and its re-

lation to eqg. (1) have been discussed by McIver and
Evans (Ref. 1)




We shall here use eqg. (1) to show that the added
mass is associatied with the "near field" (a term which
is traditionally used in antenna theory). When oscill-
ating bodies generate a wave it is, at large distance,
i.e. in the "far field", a circular wave in the three-
dimensional case, and a plane wave in the two-dimensio-
nal case. Apart from exceptional cases the simple far-
field wave can not match the boundary conditions on the
wetted surface of the bodies. The near-field part of the
wave is defined as the difference between the exact wave

and the far-field wave.

In the three-dimensional case the exact wave (ass-
uming linear theory) is given by the following complex
amplitude of the velocity potential:

¢ = i ¢; (r,6,2) u,
where r , © , z are cylindrical coordinates, the =z
axis pointing upwards. (The free surface is at =z = 0.)
The complex coefficient ®; satisfies the Laplace eqg-
uation, the radiation condition at infinity (r-«) and
the usual boundary conditions at the free surface, at
fixed surfaces and at oscillating surfaces. (See e.g.
Ref. 1 or Ref. 2.)

Assuming that all bodies are located within a 1i-
mited region and that the water depth h 1is constant at
large distance, the far-field wave is given by the as -

ymptotic expression for N

LDipFF = bi(Q)e(kz) (kr)"l/Ze-—ikr

Here k 1s the angular repetency, which is related to
the angular frequency w and to the acceleration of

gravity g through the dispersion relation
2
w” = gk tanh(kh)

Further

e(kz) = cosh(kz+kh) /cosh(kh)

(3)

(5)




and the far-field coefficient bi(e) depends on the geo-

metry and on the frequency. The resulting far-field wave

is

bop = B(B)e(kz) (kr) 1/ 2e7HkT (6)
where

B(B) = Z bi(e) us (7)

1

The exact velocity potential is given by

$(r,0,2) = ¢ = ¢y + b (8)
where ¢NF is the near-field part of the solution.
Note that r¢NF remains finite,

rlogpl < as r > {9)

(see Ref. 3 pp.475 - 478).

The time-average value Ep of the potential en-
ergy per unit area, associated  with the surface eleva-
tion, of complex amplitude

no=n(r,8) = ~-i§— 4(r,9,0), (10)

is
_ Pg 2
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At large distance (r - «) , where the near-field part

is negligible, we have

2
= P9 2 _ _pw” 2
By, pr = 4 | Mppl T = Zgrz [B(O)] (12)
The time-average value Ep of the kinetic energy
per unit area is
0
= (L (13972 1302 202
By ’_g i (far! tlegg 17+ g [7)az (13)
Carrying out differentiation and integration for the
dominating term we find after some manipulation,
2
__pw 2 -1/2
E, = — ([B(@)f + 0{ (kr) }) (14)
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In the final step of the derivation eq. (4) was used.

From the above results we have

Ek - E = O{(kr)"B/z} as kr -+ o (15)
and
2T o
E, - Ep = é dse g r dr(E, - Ek) (16)

Note that the integral exists for r =+ « because of the
result (15). However, both of Eh and Eh are infinite
except when no far-field wave is generated, that is,
when B(6) = 0 .

From the above it is obvious that it is the near-
field part which contributes to the integral (16). In
the far-field region there is no difference between the

kinetic energy and the potential energy.

While the above derivation was made for the three-
dimensional case, similar results can be obtained for
the two-dimensional case. The far-field wave is then

given by an expression as

bpp = AE e (K)o KX (17)

On the basis of the formula (1) we now attribute the
added mass matrix to the difference between the kinetic
energy and the potential energy of the water in the near
field. According to the definition of the added mass,
the right-hand side of formula (1) is expressed formally
as a kinetic energy. This interpretation is, however,

not physically valid, unless the potential energy is zero.

Using the equations (4), (25) and (27) in ref. 2,

we have the following expression for the added mass:

X
— , J _ dp*k
Mg =P SU ¢;—5y 45 péf ®i—Jd as (18)

where the first integral is taken over a vertical cylinder

S (r = constant) in the far-field region, while the

[ee]




second integral is taken over the totality S of the
wetted surfaces of the oscillating bodies. Note that the
first integral is independent of the radius r of the
cylinder S provided r is so large that the near-
field parts of O and mj are negligible.

This result (18) also demonstrates that the addeg
mass 1is attributed to the near field. It follows that
the added mass vanishes in a special case when there is
no near-field, that is if the far-field wave, as defined
by eg. (6) or eq.(l17), matches the boundary condition
at the wetted surface S. (Note that, in order to obtain
this result for the three~dimensional case, we have to
define the far-field solution (6) by the asymptotic form
of the Hankel function Hn(z) (kr) and not by the Hankel function
itself.)

However, it may happen that the added mass is zero
in spite of a non-vanishing near field. Several cases are

seen e.g. in Ref. 1.

A simple interpretation of the added mass would be
to consider it as the mass of a lump of water which is
pushed back and forth together with the oscillating body.
However, even in a case where the added mass is zero
water is pushed by the oscillating body. And it is evi-
dently not correct to interpret a negative added mass as
a "subtracted mass" of water. Hence this interpretation
is not physically correct. Negative added mass means
that there is more potential energy than kinetic energy

in the near field.

The correct interpretation of added mass is to
attribute it to reactive power or to stored energy in
the near field. This is analogous to the energy stored

in a resonator.
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Appendix

I derived the relation (1) while lecturing the
graduate course "Energy from ocean waves" (NTH dr.ing.-
fag nr. 71090 "Energi fra havbglgjer") and it was pre-
sented in a lecture 15th Qctober 1981.

After having found the relation for an example
I found it was more simple to derive it for the general
case. The following two pages is a copy of my original
derivation. This is my "unpublished note" which is men-—
tioned in Ref. 1. The next four pages are copied from
my notes to the leéture 15th October 1981. In the notes
some equations are labeled (Jn) where n is the same as

equation number in Ref. 2.




5 ; of ! 2 e P —
ot brngngn Oy = && S YRR
' e

%”/a : ‘ f ,! ~ - e

ik twpi Gy * S o ds= ¥ Z 2 wd; |y
("‘ 5 N (-
i, .

WX = o) o)
Ve TR = e ¢ g

""f
‘/:’Vn’mfm AP 4 %4/%! 4{/%4447

%;/: 7 f"i&i/z’f {% ﬁf%;}Vg (i/
/W /‘w’!fl@ éﬁ[ UL ng*@«{akﬂ,&wf /I

W, ¢ e, -
o g : : g
7 e,y TP e

/L}WLO%%W Ao il T T
ar N
é% = () qjg, Z(fm. é’bﬁ m&b\é{ 4:354&4 &ﬁﬁf‘é@«g @ﬁ - w?




i~

(OM(/) /)MJ/V P, Uj L /:) % . MA’)Q ()( f i ﬂ; &1 N\«,ui i;ww‘vW‘"Mﬁ

(Y, &é

& o {3 whovrtrne Lb
o= Ry = Ltog Sg ;f 45 ”;?’;‘“‘fi@ wtlihes

g

X ‘ :
| %ﬁb M /}/‘ﬁ’hf“?ﬁwx, ig /j/(/w;v/}w{fymj, N“f/t ek Sy vatﬂ}i&xg"ﬁw

Lk &, ’}xﬁ@ﬂj«é& M {‘% ﬁéﬁ@gg@m 23 oo 2 rogale | 3y Ao = —A0




bdag

o : ~
e Lok W? -2l m(’Wﬁg )

M [}

g:f %f; v WMLW!& J}W %{{&{,;’vé P g A, mﬁﬁf Lot g’w%kﬁ/ﬂ/f’é

W«)&' e Y eV PV Mﬂw a f%sﬁw)&W

Tdenindl @W«i . W“/"*W - f)ﬁ,(g 2¢) —

,@3« ,%“
Lz%w 1}»{2!@

(P?Wy% jw A{WQ A“M/%m

_(( NW LS = 9“‘“‘” 4{:’ Z fi‘g{ giyﬂfé
“4
S,

0




xw} A @ﬂ’g’@*’@éﬁ { WY /’V%f@

0 (fr | 4 (05 By
““’%/ fj; ;i 0 a “*“‘GS} N dr = 0 ;}; e d
R i

AL

&&W wwa?&%’wééé’ %ﬁgﬁé T A MM&P" T&M‘?‘%%&w%/ by @gﬁ%w

4 f/’k R M ff e éﬁfﬁ{w W%

b AN

i 'fwﬁ v ey SV ST
| /C:) * SW ggt}g éjf{g?, U 3m

{ /

KZ/, (é{ Lot D gﬁs Lo, @ Aot £ «‘j fg LA ' jg%é“ﬁ»&*"@”"g Gl flﬁ%ﬁﬂf?aﬂ"w
]l/ v {ﬁ“’fffé Vo f??”‘i’ Yoy g b 4 fg%%{%f @%‘”M?‘{ f’g‘z% 5«?%
,@@Z@@%@{ LM ff»ffw A A}é{l fﬁ%ﬁ%/ﬁ& g@ Us f// 3;5, {i/ wg%ﬁ

é%i = g g;:;: § ff‘%!;g /ﬁ«@f@ @ w;{}g g_g}g o“’%?%?{%%;%}




i F‘M’” bélye éz%*‘gﬁé%’? £ =By, =26,208,7 SI)°
Dd 1 4 fffﬂ?wgm W% i, %@W@w lrg fﬁg"‘m n W?MWQ-«W
/%Jhw p O W&é M iﬁj W}%’@f W‘«i ?mﬁv k/imwéxéwg L dnga

Miwdl Lnntnty w; %}/@@ 1 wfﬁ{% @ )i »@,r@%ﬂéfW/ On W‘“@”‘
/ft{»(m W%WWM f‘w fgﬁw s, (b Adlq

4

(,HW WA = m’?‘gw«)




7‘7[/5{)% ~ AP

f— ¢ f({/y ‘g}é? /
Zic = -l |} g 55 4
S

R =Rii = ~wo | g 9, 248

-

74

VAL WL{,% péh’j SV - w/‘ g}é%m ’fgé’%jfffm/f{ gmu A
/

&’Mj W»ﬁg/w éﬁ@} )Qw![@gmg(gw&w
s /fr £@> ﬂé:iﬁ ﬁ

by m

LS
%%

‘ é&é
il
R,

J/\}’} %&%é@é«x&x{. A {%L féfgf’“ Q&\/[}”W W 1% gg?
g@f‘g ﬁg& Py z«?ﬁ‘fé me ﬁﬁm«w WZM/&/MMM

1

iy = z;f,t% ifa@ - g { Sg C§€@%y5£

D

LA

vy
{






