"Electronic" pages (title page, preface and contents) of:

TOPICS ON EXTRACTION OF OCEAN-WAVE ENERGY

Various Leftover Lecture Notes

by

Johannes Falnes

Department of Physics

Norwegian University of Science and Technology NTNU

Trondheim, Norway

2002

Preface and summary

My textbook "Ocean Waves and Oscillation Systems: Linear interactions including waveenergy extraction" (Cambridge University Press, 2002, ISBN 0-521-78211-2) was published two months ago. From the Preface of this textbook (below referred to as OWOS) I cite the following:

"The present book is mainly based on lecture notes from a postgraduate university course on water waves and extraction of energy from ocean waves, which I have taught many times since 1979. For the purposes of this book, I have selected those parts of the subject which have more general interest, rather than those parts of my course which pertain to wave-power conversion in particular. I hope that the book is thus of interest to a much wider readership than just the wave-energy community."

The leftover parts are collected in the present issue entitled 'Topics on Extraction of Ocean-Wave Energy". These parts are simply copied from my previous lecture notes, made available in 1993 as a two-volume work entitled "Theory for extraction of ocean-wave energy". On the copied pages, I have (between lines) written (by hand) references to chapters, sections and equations in the textbook OWOS.

The following chapters were included in my 1993 lecture notes:

- A. Mathematical description of oscillations and waves
- B. Potential theory for an ideal incompressible fluid
- S. Statistics and energy transport of real ocean waves
- D. Interaction between a harmonic wave and an oscillating body
- E. Excitation force on a single body
- O. Interaction between a harmonic wave and an oscillating water column (OWC)
- P. Interaction of waves with oscillating bodies and OWCs
- K. Parallel rows of oscillating bodies and OWCs
- T. Time-invariant linear systems

All matter of chapters A and E is included in OWOS, in chapters 2 and 3 and in section 5.6, respectively. Almost all matter of chapters B, O, P and T is included in OWOS, in chapter 4 (B), in chapter 7 (O and P) and in sections 2.5, 2.6, 5.3, 5.9 and 6.3 (T). Significant parts of chapter D are included in chapters 5 and 6 of OWOS. From chapter S only some basic matter is included in OWOS, in section 4.5. Except for figure K10, the matter of chapter K is not included in OWOS. As compared with my 1993 lecture notes, the new textbook OWOS contains substantial additional matter in chapters 2, 4, 5 and 6.

The present issue contains the following leftover portions from my previous lecture notes:

Pages 1-5 (from chapter B) covers non-linear boundary conditions at the water-air interface.

Pages 6-27 contain most of chapter S, that is matter on wave spectra, spectrum moments, wave-energy transport and short-term wave statistics. Pages 28-30 contain problem S4 (not included in OWOS) with hand-written solution.

Pages 31-36 (from chapter D) give examples of two wave generators without added mass. The first example might be considered as an introduction to subsection 5.2.3 of OWOS, while the

second example is an extension. The figure on page 37 is an illustration to equation (5.79) in the same subsection.

Pages 38-40, which give an OWC extension to matter -- equation (5.328) and figure 5.27 -- in subsection 5.9.1, might also be considered as part of introduction to chapter 7 of OWOS.

Pages 40-56 contain matter (from chapter D) on phase control and on experiments with point absorbers in a wave channel. This matter is an extension to sections 6.2 and 6.3 of OWOS.

Pages 57-59 present an alternative to the applied-pressure description introduced in section 7.1 of OWOS. This alternative is a description which is similar to (but avoids the approximating disadvantage of) the oscillating-body description of an OWC.

Pages 60-67 (from chapter P) give a derivation that generalises eq. (5.88) to the case where OWCs are included in the system, in addition to the oscillating bodies. Note that this derivation is different from (and thus an alternative to) the derivation used in subsection 5.5.4. Pages 60-67 might be considered as an extension to section 7.2 of OWOS. This extension provides, i.a., a proof of the stated relation (7.29).

The whole of chapter K is contained on pages 68-103, and problem K4 with solution on pages 104-105. The chapter treats the theory of absorption of waves by infinitely long arrays of evenly spaced groups of oscillating bodies and OWCs. The theory for two-dimensional systems (e.g. terminators like the original Salter Duck) follows as a particular case. Thus chapter K could perhaps be considered as an extension of section 5.8 and of subsection 6.4.3 or as an extension of section 7.2 in OWOS.

Pages 106-111 (last pages of chapter T) could be considered as an extension of section 6.3.

Pages 112-119 contain matter from my lecture notes 1979, included in a bound volume entitled "Hydrodynamisk teori for bølgjekraftverk" ("Hydrodynamic theory for wave power plants") by L.C. Iversen and me. It was published in 1980 by the University of Trondheim, Division of Experimental Physics, in 100 copies. This matter was not included in my 1993 lecture notes in English. When students from the Mechanical, Marine or Civil Engineering Faculties attended my postgraduate course, this matter was not included in my lectures. In 1979 only Physics students attended.

The content of pages 112-119 could be summarised as follows. Starting with the electric and magnetic field components (near field plus far field) from an oscillating electric dipole, the radiated power (A92) is derived. Based on the relation (A89) between the complex amplitudes of the dipole moment p and the corresponding electric current I, the dipole is a model of a "Hertz dipole", which is an infinitesimal antenna. This antenna's (electric) radiation resistance (A94) is derived, as well as the radiation resistance (A95a) for a finite antenna. Then the absorption cross section A_a for a Hertz dipole is derived. Finally, the interaction of light with an atom is considered, using classical (not quantum-mechanical) theory. The atom's damping coefficient d, resonance bandwidth G, natural (spectral) line-width ΔI , and (mechanical) radiation resistance R_r are derived.

Trondheim, May 2002

Johannes Falnes

Contents

Non-linear free-surface boundary conditions	1
Statistics and energy transport of real ocean waves	3
JONSWAP spectrum	9
Collection of wave data	11
Wave spectrum parameters	16
Wave energy transport	18
Short-term wave statistics	23
Problem S4. Significant wave heights	28
Wave generator without added mass	31
Surging wavemaker	32
Heaving wavemaker	34
Figure D8	37
Slender oscillating water column	38
Phase control	40
Model tests in the laboratory	44
Improved rigid-body description of OWC	57
Power applied by wave generation	60
[Kinetic energy, potential energy and their difference. Relation to reactive power]	62
Parallel rows of oscillating bodies and OWCs	68
Radiation damping matrices	72
Absorbed power	73
Infinitely long array	75
Radiation from the array	76
The array radiation damping matrix	78
Two-dimensional radiation damping matrix	81
Array of heaving axisymmetric arrays	82
Dynamic reflection by heaving slender bodies	84
Maximum absorbed power	88
Maximum power absorption with arrays	89
The case with only one oscillator per group	92
The case with two oscillators per group	97
Two rows of point absorbers	100
Problem K1. Radiation resistance of heaving point absorber	104
Optimum control for maximum power delivery	106
Stråling frå oscillerande elektrisk dipol (Radiation from oscillating electric dipole)	112
Dipolantenne (Dipole antenna)	114
Absorpsjonstverrsnitt for ein Hertz-dipol (Absorption cross section for a Hertz dipole)	116
Vekselverknad mellom lys og eit atom (Interaction between light and an atom)	117