ERRATA list relating to the book

“Ocean Waves and Oscillating Systems”, ISBN 0-521-78211-2.

Misprints, corrections (pp. 1-3) and comments etc. (pp. 4-11).
[New insertions in this 2013 revision are marked with * at the start and with
¢ at the end.]

List of contents, page vii: The title (heading) of Section 5.9 should not be
more than "Motion Response”.

Preface, page x, line 3: Between “ - - of the present book.” and “I am also
in - - -7, insert the following sentence: “He and Torkel Bjarte-Larssorn, a
course participant from 1999, used the computer code WAMIT to work
out Figures 5.8 and 5.9.”

Page 9, third line above Figure 2.3:  “The stored energy is u2/2 and”
should be  “The stored energy is mu2/2 and”.

Page 11, Table 2.1: + Ze™™! should be + & et

Page 11, third line from below: u=3%= shouldbe u=1=.
Page 18, Bq. (2.77): Fu*+ Fa*+ should be Fa* 4 F*4+
Page 20, line 7:  Swi|@*/2 should be Swy?|al?/2 .

Page 32: Two places in Eq. (2.168), w should be replaced by wg.

Page 35, first line below Eq. (2.192) could preferably be:  “If this is not
true, we may conveniently subtract the singular part of H(w). Let”

Page 35, line 4 from below: “casual” should be “causal”
Page 53, Figure 3.3: Ry should (two places) be R,
Page 63, line 9:  “kinetic” should be “kinematic”

Page 67, fourth line below Eq. (4.64): To be more correct, “Eq. (4.62)
and” could preferably be replaced by
“Eq. (4.62) — assuming w is real — and”

Page 76, Eq. (4.120):  |7j;[> + |f|*+ should be || + A +

Page 76, second line from below:  “(cf. Problem 4.8) that” should be
“{cf. Problem 4.7) that”

Page 78, Eq. (4.137): (976 Ws™lm®) TH? should be “(976 Ws™ m~3) TH?”,

Page 79, last line before Eq. (4.148):  “with Eq. (4.146) gives” should be
“with Eq. {4.147) gives”

Page 80: Three places in Eqs. (4.152)&:(4.153),
the lower integration limit A should be corrected to —h.

Page 83, Eq. (4.168): 32 x(10* N = 3.2 tons) should be 32x10° N (= 3.2 tons)

Page 83, last line before Eq. (4.170): “Eq. (4.118) as” should be
“Bq. (4.169) as”

Page 85, first line after Eq.(4.185): “conjugate. Hence” may be replaced by
“conjugate; cf. Eq. {2.139). Hence”

Page 103, line 13:  “in Eq. (4.274),” should be “in Eq. (4.273),”



wt — w? 5
Page 107, Eq. (4.324): cos 7 should be  cos(wt — w*f/g)

Page 110: Observe that there is no minus sign in line 3 from bottom:

The line reads: Z;,(0) = £-Z,(0)

Page 110, bottom line; and also page 111, line 2:  m,, should be m.,.
Page 111, lines 16-18: Three places T  should be 7.
Page 112, Problem 4.8, line 3:  Ae™** ghould be Ae~ ik
Page 115, Problem 4.12, two places on line 8 “cos " should be “cosh”
Page 117, Problem 4.14, line 9: 7, = should be 7, =
Page 117, Problem 4.15, line 4: 7= should be 7=
Page 120: The line above Eq. (5.9) should read:
“amplitudes U, G, %; and é(z,y, z). Thus”

A

Page 123, Eq. (5.27): F,; = shouldbe F,;=

Pages 131 and 132, in Egs. (5.77), (5.80), (5.81) and {5.86), a minus sign is
missing on the right-hand side, thus: = should be =-

Pages 133 and 135: On the graph of Figure 5.6 and on the upper right graph
of Figure 5.7, the symbol £ is used to indicate non-dimensionalised
radiation resistance. It would have been better if, instead, the symbol
¢ had been used, because this is the symbol used in the two figure
captions, and also in the main text on pages 125, 133, 134, 190, 191
and 192. (Alternatively, the symbol € in the captions and in the main
text could have been changed to &.}

Page 138, lines 8 and 12 of Section 5.3: Replace “introduced; See” by
“introduced; see” and “by Eqs. (5.28) and (5.11)" by
“by Eq. (5.28) and by Eq. {5.8), (5.9) or (5.11)".

Page 142, In line 4 of the caption to Figure 5.11:
Replace ks/(pga®) by ks/(xpga®).
Page 148, Eq. (5.146): F, should be F, and ¢ should be o

Page 166: In the last term (the summation term) of Eq. (5.247):
Replace ¢ by ¢’ and j by ¢. Then Eq. (5.247) could preferably read:

3
Ferj = Fe,q s pgﬁﬁgw 5(}3 + pV&OQ -+ Z mqqf&gqf
g'=1

Also in Fq. (5.248), F., could preferably be replaced by Foj=F.,

Page 169, Figure 5.19: Below the indicated horizontal still-water surface,
a few horizontal dashed lines (as e.g. in Figure 5.18) are missing in
the vertical-section upper part of the Figure 5.19.

Page 181: The title (heading) of Section 5.9 should be Motion Response.
Correspondingly, the page header on pages 181, 183 and 185 should
only be: 5.9 MOTION RESPONSE

Page 184, Eq. (56.323): Sy/(iw) should be Sy/w
Page 186: Eq (5.332) should read:  Yj(w) = wH;(w).
Page 192, line 1:  “the resistance” should be “the radiation resistance”.



Page 194, Problem 5.15(b), line 4: “heave velocity is given” should be
“heave velocity is given as”.

Page 203, first line below Eq. (6.21): “where Z, ;{w) is a load” should be
“where Z,(w) is a load”.

Page 207, line 7 below figure caption: £, p > 0 should be W,p >0

Page 207, line 8 below figure caption:
“a principle®” which” should be “a principle®®¢7 which”

Page 208: On Figure 6.8, the minus sign should be a plus sign. Accordingly,
in the third line of the figure caption, “Deducting from” should be replaced
by “Adding to”.

Page 209, last line: “and X;{w} = ImZ;(w), respectively.” should be
“and iX;(w) = ilmZ;(w), respectively.”

*Page 210, in the integral of Eq. (6.48): dt should be dr &

Page 211, lines 5-6: Replace
“The following paragraphs, as an example, give - - -” by
“The following paragraph, as an example, gives - - -”

Page 211, lines 20, 21, 22 and 27 (four places): E, p should be W,p
Page 214, second line below Eq. (6.62): 1=U+4& shouldbe ti=U+4d
*Page 215, in Eq. (6.72): = }(FTa"+ shouldbe = 1(FT4"+ &

Page 229: Eq. (7.28) should be: Py = 1pVipt + 351 Vips = 1Guilpil?
Page 242: The first line of Eq. (7.99) should read:
2P, = ' (Za+ Hp) + pT(Y*p* — HIG")
Page 245, Eq. (7.123): ¢ should be ¢
Page 250, line 3:  H" = -H should be H=H,, = -HZ

Page 254, first line below Eq. (7.189): “vectors ¢, and ¢,” should be
“vectors @, and @,”

Page 256, fourth line above Eq. (7.200): “heave mode 2 (i.e.,” should be
“heave mode (i.e.,”

Page 260, three last lines: Four places, & should be &

Page 272, left column: Between lines 27 and 28 insert:
intrinsic mechanical impedance, 184, 203, 204
intrinsic mechanical resistance, 205

Page 273, right column: Line 12 from below should read:
matrix singularity, 172, 174, 175, 181, 196, 213, 218, 221

Page 275, right column, line 6 from below: “chanel” should be “channel”

3



Comments, additional information, etc.

Page 26: Comment to the first line after Eq. (2.128): Eq. (2.147) proves
this statement of commutativity.

Page 57: In the text of Problem 3.8, on the third line, “Eqs. (3.42) - (3.45)”
could be changed to “Eqgs. (3.42) - {3.46)” provided the following is added

at the end of the expression on the second line: =1 — |1 ~ 2R, 4/ F.|*

Page 59: Concerning derivation of Eq. (4.12): From the equation
V{0¢/0t + v*/2 + pror/p+ 92) = 0 (4.11)

it. follows that d¢/8t +v2/2+ pror /p+ gz = C(t) is independent of the spatial
coordinates z, ¥ and z. However, without loss of generality, we may assume
that C(t) is a constant independent of time, because our mathematical auxil-
iary function, the velocity potential, may be redefined by ¢' = ¢~ | ‘e (t)dt.
As the difference between ¢ and ¢ does not depend on the spatial co-
ordinates, but only of the time, the physical quantity, the fluid velocity,
v = V¢ = V¢ is unambiguous. Hence, Eq. (4.12), which results when we
replace C(t) by the constant C, is sufficiently general.

Page 62, second line below Fig. 4.5:
“depends on t” might preferably be replaced by “depends on z, y and ¢,”.

Page 73, last line of Eq. (4.120) may preferably be extended to read:
2 2
= {l — (“g’—:) ] kh+ % = (2w/g)vy = (2k/g)vpvg {4.111)

Comment 1: Thus, the somewhat complicated mathematical function D(kh)
has been more simply expressed by the physical quantities v, and vy, the
group and phase velocities.

Comment 2! See also the last paragraph before Subsection 5.5.6 (p.159).

Comment 3: Note that the fraction [pg?D(kh)/4w|, appearing in several
equations, e.g. on pages 77-78, may alternatively be written as (pg/2)v,.

Page 74, line 91 After “(see Problem 4.12}.” may be inserted/added
“This maximum occurs for w?h/g =1..

*Page 75 (Subsection 4.4.1. Potential Energy).
An alternative, and more general, derivation is the following:

Let us consider the surface density Ep.(t) of potential energy, which
is associated with the elevation n of the open-air-to-water interface S, at
z =0, as well as with the elevation n of the OWC-air-to-water interface S
at z = 2, where a dynamic air pressure py, is applied (see Fig. 4.5, p. 62).

Let AS denote an infinitesimally small surface element of the air-water
interface, and let us consider an envisaged water column of height 7, hori-
zontal cross section AS and volume 1, AS . When its height n,, is increased,
from below, by an infinitesimal amount dny, under the influence of the grav-
ity force pgneAS and the dynamic air-pressure force prAS, the potential
energy is increased by an infinitesimal amount (pgny + pr)dme AS. Thus, by
replacing ny by ¢ as a dummy integration variable, and then integrating from
¢ = 0 (corresponding to zero potential energy) to { = mz, we find that the
instantaneous potential energy per unit surface of the air-water interface is

Bror(D)s = (09/2) (me(D)? + pi(£) e (D).
(Note that we here, as a reference, have chosen the potential energy to be zero
when 1, = 0 and p = 0.) The time-average of the above time-dependent
expression,



Epls, = [Bpar(tl]s, = (pg/2) (m:(2))? + pu(t) me(2),

agrees with equation (4.118) for the special case when the dynamic air pres-
sure, above the water, is assumed to be zero. Note that n(t), as well as
[Epot(t)]s,, may depend on the horizontal coordinates (z, %) too. However,
inside any OWC chamber # k, say, (see Fig. 4.5), pi(t) does not vary with
the horizontal coordinates. Moreover, also £,}g,, which by definition is inde-
pendent of time, may depend on the horizontal coordinates (z, ¥); equations
(4.119) and (4.120) show examples.

For cases when 7y, and pj, vary sinusoidally with angular frequency w, we
may, in terms of complex amplitudes, write

Eplsi = (pg/4) [fie|* + (1/2) Re{pr it} = (pg ffly -+ Br 5} + 57, ) /4,
in analogy with equation (2.78), page 18. For the case of zero dynamic
air pressure, only the first term remains, which term is in agreement with
equation (4.119). [ADDITIONAL COMMENT: The first term in the above
two displayed expressions for I, if multiplied by AS, may be interpreted
as the potential energy of a vertical water-column ”body” of cross section
AS and stiffness pgAS. This is easily seen if we compare with equations
(2.3), (2.74) and (2.86). For a semi-submerged column-shaped real body, the
corresponding stiffness is called buoyancy stiffness or hydrostatic stiffness;
see page 183 and Fig 5.27 of Subsection 5.9.1.]

Next, we wish to express E, in terms of the velocity potential. Using
equations (4.37) and (4.40), we find

e = (L/iw)[0¢/0z]s, and Py = —iwple — (9/w?)(06/02)]s,.

Thus, we may express the time-average potential-energy surface density (which
is a real quantity), in terms of the (complex) velocity potential, as

Epls, = —(pg/4)[(84/02) (84" /02)]s, + (p/ 1) (86"/02) + 6" (3/52)]s,.

On the interface Sp between the water and open air, where zero dy-
namic air pressure is assurmed, the simpler boundary condition (4.43) replaces
(4.37). There the surface density of potential energy may be expressed in
various ways as )

Bylsy = Bylso = (oa/4) il? = (po/4")((03/02) (96" /02)]s, =

= (pw?[49)[6" dls, = (p/4)[6 (80" [02)]s, = (p/4)[9* (9/2)]5,-
This, real and non-negative, expression is being applied in Subsection 5.5.4.,
equation (5.192), page 157. It may be noted that the above last expression
for Ejpls, 1s valid for Ep|s, provided |s, and |s, arc replaced by |g, and g,
respectively. (However, the opposite procedure — to replace | S, by |s, in the
explicitly shown expressions for Ey|s, — is not permissible, unless § = 0). ¢

Pages 83-87, comments related to Section 4.5: As 8, w and f have SI units
rad, rad/s and Hz, equations on e.g. page 86 reveal that S, s and s, have
ST units m®/Hz, m?/(rad Hz), and (m/rad)?s, respectively. According to Eq.
(4.197) then the function A(w, ) has SI unit ms(rad)=2, which also agrees
with Eq. (4.178). An analogous, but different, discrete-frequency quantity
Aj; used by some other authors [see e.g. equations 2.22, 2.23 and 2.38 in
Faltinsen’s book Sea Loads on Ships and Offshore Structures] has ST unit m.



Page 117, Problem 4.15: The text on lines 4-7 {“Derive an expression for -
- - nowhere an accumulation of energy.”) may be replaced by
“For the superposition of these two plane waves, derive an expression for the
intensity

I'=p(t)s(t)
which, by definition, is a time-independent vector. Further, referring to
Subsection 4.4.4 (pp. 77-78), show that the wave-power-level vector may be
expressed as

T = (pg/2)ve) [&: (A + | B cos B) + & B|?sin 8] + 3 (=, y)

where the spatially dependent vector §(z,¥) is solenoidal. Find an expres-
sion for 5(z,y), and show explicitly that V-3 = 0, which has the physical
significance that there is nowhere, in the water, accumulation of any perma-
nent wave energy (active energy — but possibly only of reactive energy —).”

*Page 175: Comment to the last paragraph of Subsection 5.7.2:

Let us, for convenience, adopt notation 6y = (8p1 doz do3 -+ Soen)” for
any particular non-zero complex-velocity-amplitude column vector i1, for
which the corresponding far-field radiated wave vanishes. It follows from
equations (5.261) to (5.267) — writing subscript ,0 as ;0 (1 =1,2,3,--- ,6N)
—, that such a case may exist with, for instance, a combined surge-and-pitch
oscillation of an axisymmetric body, provided
o1l + psiis ~ e(kz)(kr)%e™# (a1 01 + a5,085) cos 6 = 0,
that is, @iy /4s = d0,1/805 = —asp/a10 = —hso/h1o = —fs0/f1,0. A similar
interrelationship holds for a combined sway-and-roll oscillation. Moreover,
yaw oscillation of an axisymmetric body does not produce any wave in an
ideal fluid.

Hence, a single immersed axisymmetric body, which has a complex ve-
locity amplitude represented by the the six-dimensional column vector
0o = (—[f5,0/f10005 — [fa0/f20]004 O o4 Sos5 boe)”
does not produce any far-field radiated wave. Here dp 4, do5 and do 6 are three
arbitrary complex quantities of dimension angular velocity (ST unit rad/s).

For two axisymmetric bodies, which are concentric about a vertical axis,
the condition for cancellation of the cos# varying part of the far-field radi-
ated wave is
ay,0ft1 + a5 ofis + ar,6lis + a11,011 = 0 = @10 6,1+ as,0 60,5+ @7,0 00,7+ €11,0 80,11,
from which we may eliminate 8o 11, in terms of 8y 1, do5 and 8o 7, thus
do11 = — (a1 80,1 + as,0 005 + a7000.7)/011,0-
Similarly, the sway-and-roll generated sin € varying part of the far-field radi-
ated wave is cancelled if '
do,10 = — (2,0 00,2 + 24,0 do,4 -+ a8,0 60,8) /C10,0-
Moreover, the isotropic part of the far-field radiated wave is cancelled, pro-
vided do9 = — (a3,0/a9,0) o3 Finally, any finite yaw components &g and
60,12 of the two concentric axisymmetric bodies do not contribute to any
wave generation. Thus, we have a far-field-radiation-cancelling, finite (non-
zero), 12-dimensional velocity vector 8y that may be expressed by 9 arbitrary,
mutually independent, complex quantities, which we have here chosen to be
50,1, 50,2, 30,3, 50,4, 80,5, 50,6, 50,7, do,8 and o, 12

Observe that the number of arbitrary, mutually independent, complex
quantities, on which dy is composed, equals (6N —r), the difference between
dimensionality 6V and rank 7 of the radiation resistance matrix R. &



Page 185 In order to insert an additional comment, the second line after
Eq. (5.327) could be replaced by:  “cylinder is relatively high (I/a > 1).
For the floating, truncated, vertical cylinder discussed in Subsection 5.2.4 (cf.
Figure 5.7), condition [/a > 1 is not satisfied, and the added mass appears
to exceed the value given by Eq. (5.327) by a factor in the range between
1.4 and 1.7. ¥ ! > a, we have m,, > ma3 and the angular”.

Page 201, inequalities (6.13):

When deriving inequality (6.14), Budal®"%® considered a tall cylindrical body
with relatively small water-plane area. Then, with optimum phase (3 = 0},
the heave amplitude |§3] may be significantly larger than the wave ampli-
tude |A|. Inequalities (6.13) are based on this assumption. However, for a
wave-interacting low cylindrical body with relatively large water-plane area,
the heave amplitude should not exceed the wave amplitude. Moreover, the
excitation force amplitude is bounded by the body’s buoyancy force at equi-
librium in still water. In this case, inequalities (6.13) are to be replaced by

Iﬂﬂ{ < OJ|A|, lﬁ'e,lil < ng/Z,
as suggested by Rod Rainey [Rainey, 2003, private communication]. This

alternative to inequalities (6.13) leads, however, to the same fundamental
result, Budal’s upper bound (6.14).

Page 205: The last line of Eq. (6.30) could alternatively be written as:
2 [*lFew)? o)
= — - d
7 /[; { 8R,(w) sm(w)} N

Corregponding changes in Eqs, (6.33) and (6.35) would make comparison
with Eq. (6.25) more direct and easy.

*Page 215: The following comments concern mainly the first ten lines on
Page 215:

(In relation to the parenthesis on lines 3 to 4, the above comments to
Page 175 may be useful.)

With reference to equation (6.57) and inequality (6.59), we may note that
the real, non-negative quantity F.(8) = 6'Rd&/2, which appears in the last
term of equation (6.64), is the radiated power corresponding to a complex-
velocity-amplitude column vector 8. When the radiation resistance matrix
R is non-singular, equation (6.62) has a unique solution for U as given by
equation (6.66), and P,.(8) can vanish only if § = 0.

However, if the radiation resistance matrix R is singular, and thus its
determinant is zero, |R| = 0, then the algebraic equation (6.62) may have in-
finitely many solutions for U, and, moreover, certain finite (non-zero) values
& = 4y, say, may be found, for which F,(§g) = 0. Then also P.(Céy} = 0,
where C is an arbitrary complex scalar (and dimensionless) factor. This
means that oscillations corresponding to a complex-velocity-amplitude col-
umn vector &g, even if it may produce a near-field oscillation in the water,
it does not produce any radiated far-field wave. (An example is discussed in
more detail in the above Comment to page 175.) If a solution U = Uy, say, of
equation (6.62), produces an optimum radiated far-field wave for maximum
absorbed power, then also a solution U = Uy + 8¢ = Uy, say, produces the
same optimum radiated far-field wave, and hence, also the same maximum
absorbed power, as the solution U = U, does. Thus, even if the solution
of equation (6.62) is ambiguous when R is singular, the maximum power
Purrax, as given by equation (6.65), is unambiguous.



Concerning solution of the optimum condition (6.62) and derivation of the
maximum absorbed power Puaxy and discussion of the case when the radi-
ation resistance matrix R is singular; see further comments below in Com-
ments to page 244. Note that, since the real matrix R is symmetrical, it is a
special case of the complex, but hermitian, matrix A. O

*Page 244: Comment to the derivation of Eq. (7.107) for the maximum ab-
sorbed power Pprax, and a discussion of the case when the radiation damping
matrix A is singular:

For convenience, we rewrite Eq. (7.106) as
4P = 4P(0) = RT0" + ko — 20T AD.

When writing © as © = U + 9, where U is an optimum oscillation ampli-
tude vector, which is a solution of the algebraic equation (7.109) — that is,
2AU = i —, we may rewrite this as 4P = 4P(0) =4P(U + 6) =
= RTU*+RTU+RT8" + &6 - 2UTAU - 20TAU — 2UTAS — 26T AS.
Here, each of the eight terms, which we may label as #1, #2, ..., #8 (running
from left to right}, is a scalar, according to the rules for matrix multiplica-
tion. Hence, we may, for convenience, transpose any term, without changing
its value.

For instance, we may write term #5 — which is necessarily real, according
to equations (7.103)-(7.105) — as
—2UTAU = —2UTATU* = 2UTATU = —2UTAU. In the third step, we
utilised the fact that matrix A is hermitian; see eq. (7.104). In the second,
complex-conjugation, step, we utilised the fact that term #5 is real.

Further, term #2 may be written as
/U = UTik" = 2UTA"U" = 2UATU = 2UTAU = &TU* = Uk, where
we, in the second step, applied the algebraic equation (7.109). In the first
and third steps, we again applied matrix transposition, and in the fourth
step, we used eq. (7.104). Having now demonstrated that term #2 is real,
we finally applied complex conjugation in the two last steps.

We see from this that terms #1 and #2 have equal values, and that term
#95 has the same value with opposite sign. Thus, terms #2 and #5 cancel
each other. Moreover, by utilising eq. (7.109) or its adjoint (i.e. transpose
& complex conjugate), it can be shown that terms #3 and #6, as well as
terms #4 and #7, cancel each other. Thus, we are left only with terms #1
and #8, that is 4P = 4P(9) = 4P(U + 8) = #TU* — 26T A4.

As the radiation damping matrix A is, in general, positive semidefinite
— gee eq. (7.105) —, that is §'Ad > 0 for arbitrary vectors 6, it follows
that the maximum absorbed wave power is
Prax = P(U) = &TU*/4 = k'U/4 = UTAU/2,
which proves equation (7.107). In correspondence with equation (7.96), we
may write
Pryax = FPeopr/2 = P,opr, where
P.orr = rIU /4 + ALY /4, is the optimum excitation power, and
B opr = UTAU/2, is the optimum radiated power.

In special cases where the radiation damping matrix A is positive definite,
its determinant |Al is positive, |Al > 0, and then equation (7.109) has an
unambiguous solution for the optimum oscillation amplitude vector
Uopr = U. Then equation (7.111) for the maximum absorbed power Puax,
is applicable.



However, in general, we can only say that A is positive semidefinite, thus
|A] > 0. This means that we may encounter cases where the determinant
vanishes, |A| = 0. (See, e.g., page 258 of Subsection 7.2.8.) In such cases,
equation (7.109) has infinitely many possible solutions, for instance two dif-
ferent values U; and Uy, say. Observe, however, that Pyax = P{U), as well
as I, opr and B, ppr, is unambiguous, because

P(U,) — P(Uy) = &1 (Uy ~ Up) /4 = (AUWU, - Uy)/2 =

= U'ANU;~U,)/2 = UTA(Uy—Uy)/2 = Ut (&~ &) /4 = 0, where we have
used equation (7.109) twice (or three times, if you like!) and — the complex
conjugate of — equation {7.104) once.

ADDITIONAL REMARKS, which also concern the above Comments to
Page 175 and Page 215 (noting that the real symmetrical matrix R is a
special case of the complex hermitian matrix A):

An alternative, more general, but also more abstract, derivation of the above
results follows. We consider equation (7.109), AU =V = £/2, as an oper-
ation, where the elements U in the domain, C¥, of the linear operator A,
are mapped into elements V in the range, Ra, of the same operator. Here
the domain C” is the N dimensional complex space, where N, as given by
equation (7.66), is the dimensionality of U, as well as of A. Moreover, the
range Ra is an r dimensional complex space, where r is the rank of matrix
A. To say it in short: all elements U € CV are mapped into corresponding
elements V € Ra.

When the matrix A is singular, its determinant is zero, |A| = 0, and
then it is possible to find a finite (non-zero) column vector § = &, say,
for which Ady = 0. [The above vector (Us — Uj) is an example of such a
finite vector do.] Then, of course, the corresponding radiated power vanishes,
P.(80) = 8l Ady/2 = 0.

As the above Comments to Page 175 exemplify, many different possibili-
ties may exist for choosing such g vectors. They all belong to what is called
the null space, Na, of operator A, thus 8y € Ma. (The null space Ma is a
subspace of A’s domain CV.) As equation (7.109) is not self-contradictory,
the column vector £ = 2V belongs to the range Ra of the linear opera-
tor A, that is, K € Ra. From the theory of linear operators [see , e.g.,
page 288 in M.C. Pease, Methods of Matrix Algebra, Academic Press, 1965,
or page 171 in Ivar Stakgold, Boundary Value Problems in Mathematical
Physics, Vol. 1, Macmillan, 1967], it is well-known that the null space of a
linear operator is the orthogonal complement to the range of the associated
adjoint operator. Because the radiation damping matrix A is hermitian,
it is a self-adjoint operator. Hence, all vectors of the null space M are
orthogonal to all vectors in the range Ra. Thus, vectors 8, and & are or-
thogonal, that is 81& = 261A0 = 0. Here we may choose column vector
¥ as any column vector belonging to A’s domain CV, such as, e.g., one of
the above column vectors U, 8, (U + §), (Uy — U;) or ;. It follows that
Pruax = P(U} = P(U+ §;) 1s unambiguous, in spite of the fact that the op-
timum amplitude vector U is ambiguous when the radiation damping matrix
A is singular.

In the above Comments to Page 175, an example of (N; =) 2 concentric
axisymmetric bodies was considered. With A = R having a dimensionality
of 6N; = 12 and a rank of r = 3 [cf. the last three paragraphs of Subsection
5.7.2 (pages 174-175}], the null space N is a (6NV; — r =) 9 dimensional
subspace of the (6N; =) 12 dimensional complex space C'?, while the range
Rr is the complementary (r =) 3 dimensional subspace of C'2. The three



dimensions of this subspace Ry correspond to the three possible far-field ra-
diation patierns, the isotropic pattern and the cos§ and the sin 8 varying pat-
terns.

*Pages 247-250 (Subsection 7.2.5): Radiation parameters in matrix nota-

tion:
Using notation as on the right-hand side of equation (7.113) for the radiated
wave’s velocity potential, it may be convenient to write equation (7.136) as

§=8,+85, whereS, =328 and S,=3M 5, .

Then we may rewrite equation (7.134) in matrix notation as

7Z=17 —wzw,of/ Y TdS“—zw,of/ L pld

which is an extension of the radiation impedance matrix equations (5.168)
and (5.169}. For convenience, we have also used equation (7.139) to introduce

ZT in the above expression. To obtain the most right-hand expression we
utilised the fact that boundary condition (7.116) has a real right-hand side.

Moreover, in the last term of equations (7.137) and (7.138), as well as in
several expressions on the next few pages, we may simply replace

Dk ffsk by ffs,,'

Thus, e.g., equation {7.138) may be simplified to

_—zwp//a” TdS—Zw'O/fcpucpudS

The radiation admittance as given by equatlon (7.142), may in matrix
notation be rewritten as

T g 699;0 a‘l"p o // 9¢}, 8(‘%
Y=Y = zwp/f ((,op B, ) dS = —iwp Py~ w2 5 ) B —d5
Sp

where use has been made also of equations (7.144) and (7.149).
Concerning the radiation coupling matrix
H=H,,=-H,
— cf. equations (7.84) and (7.160) — equation (7.155} may be rewritten in
matrix notation as

u:D — prf 6(’0,“ {Iog dS - _pr/ acpu (Pg

and equation (7.157} as

g 9PN\ Opy /f « 9 9¢p\ dpy
Hyy =wp f / (903’ w? 8z) Oz a5 we T 282 ) Br 45,
5p

where we, to obtam the most right-hand expressions, utilised the two bound-
ary conditions (7.116) and (7.120) [or (7.144)], respectively. &
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Page 263, Bibliography, entry # 7:

‘The review prepared by the ECOR (Engineering Committee on Oceanic Re-
sources) Working Group on Wave Energy Conversion, has been published as
a book by Elsevier 2003 under the title “Wave Energy Conversion” (ISBN
0-08-044212-9).
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