PACKED BED CATALYSIS MODEL SOLUTION EXERCISE	٠	٠	٠	•		٠	0	÷	•	• •		
This exercise uses the finite difference grid and weight Matlab function developed in the previous Matlab exercises to solve a mathematical model for a packed bed catalytic reactor developed in class.	о Ф	•	•	•	•	•	0	•	•	• •	•	
	•	•	•	•		•	•	•	•	• •	•	•
Task 1: Scale the equations to dimensionless form	•	•	٠			•	٠		•	• •	٠	٠
From the lectures, we have the following system of equations to describe the mole fraction distributions of reactant A and product B in a packed bed:	•	•	•	•	•	•	•	•	•	• •	•	•
$-cD_L \frac{\partial^2 x_A}{\partial z^2} + cV_{z,A} \frac{\partial x_A}{\partial z} = -\frac{1-\varepsilon}{\varepsilon} \frac{3}{R_p} \left[\frac{2cD_{AB}}{\delta} \ln\left(\frac{1}{1-\frac{1}{2}x_A}\right) \right]$	•	•	•	•	•	•	•	•	•	• •		•
$-cD_L\frac{\partial^2 x_B}{\partial z^2} + cV_{z,A}\frac{\partial x_B}{\partial z} = +\frac{1-\varepsilon}{\varepsilon}\frac{3}{R_p}\left[\frac{cD_{AB}}{\delta}\ln\left(\frac{1}{1-\frac{1}{2}x_A}\right)\right]$									*	• •		
at $z = 0$, $x_A = 1$, $x_B = 0$	٠	٠	•	0	٠	٠	0	٠	٠	• •	٠	
at $z = L$, $\frac{\partial x_A}{\partial z} = 0$, $\frac{\partial x_B}{\partial z} = 0$	٠			٠	٠	٠	۰	•	٠	• •	٠	
Task 1a: Define a characteristic velocity and length scale for the system.	•	•	•	•		•		•	•	• •	•	•
Characteristic Length, can select L and R of the PBR,	Or		lie	rac	liu	5 (1)	, F f	the 1	Dart	iche	Ro	0
	•			•			0 ·	•	•	• •	Ŷ	•
							•		•	• •	•	•
Characteristic velocity, can select multiple, fiex. VZ,A, dij and mo As the system curves varies much with the Z-direc	rl	•	•	•	•	•	•	•	•	· ·	n steri	→) ²
Characteristic velocity, can select multiple, f.ex. VZ,A, di and mo As the system curves varies much with the Z-direc <u>We select L as the characteristic length</u> <u>Assuming the system is convection dominated system, the</u>	re 1io	n. /	/ :/. / :/.	eng	ЪЬ	n of n	`+h	re 1	ρΒĮ	· · ·		•
Characteristic velocity, can select multiple, fiex. Vz,A, di and mo As the system curves varies much with the Z-direc We select L as the characteristic length	re 1io	n. /	/ :/. / :/.	eng	ЪЬ	n of n	`+h	re 1	ρΒĮ	· · ·		•
Characteristic velocity, can select multiple, f.ex. Vz,A, di and mo As the system curves varies much with the Z-direc <u>We select L as the characteristic length</u> <u>Assuming the system is convection dominated system, the</u> <u>velocity is Vz,A</u>	re 1 ioi	n /	/ /. 00 d	eng C	<i>h</i> oi	of ce	for	e 1 r_c	ρΒĮ	· · ·		•
Characteristic velocity, can select multiple, fiex. VZ,A, di and mo As the system curves varies much with the Z-direc <u>We select L as the characteristic length</u> <u>Assuming the system is convection dominated system, the</u> <u>velocity is Vz,A</u> Task 1b: Define which dimensionless variables should be used.	re 1 ioi	n /	/ /. 00 d	eng C	<i>h</i> oi	of ce	for	e 1 r_c	ρΒĮ	· · ·		•
Characteristic velocity, can select multiple, fiex. VZ,A, di and mo As the system curves varies much with the Z-direc <u>We select L as the characteristic length</u> <u>Assuming the system is convection dominated system, the</u> <u>velocity is VZ,A</u> Task 10: Define which dimensionless variables should be used. We can easily create a dimensionless variable in	re 1 ioi	n /	/ /. 00 d	eng C	<i>h</i> oi	of ce	for	e 1 r_c	ρΒĮ	· · ·		•
Characteristic velocity, can select multiple, fiex. VZ,A, di and mo As the system curves varies much with the Z-direc <u>We select L as the characteristic length</u> <u>Assuming the system is convection dominated system, the</u> <u>velocity is VZ,A</u> Task 10: Define which dimensionless variables should be used. We can easily create a dimensionless variable in	re 1 ioi	n /	/ /. 00 d	eng C	<i>h</i> oi	of ce	for	e 1 r_c	ρΒĮ	· · ·		•
Characteristic velocity, can select multiple, fiex. VZ,A, di and mo As the system curves varies much with the Z-direc <u>We select L as the characteristic length</u> <u>Assuming the system is convection dominated system, the</u> <u>velocity is VZ,A</u> Task 10: Define which dimensionless variables should be used. We can easily create a dimensionless variable in	re 1 ioi	n /	/ /. 00 d	eng C	<i>h</i> oi	of ce	for	e 1 r_c	ρΒĮ	· · ·		•

Insurting	the result from 16, the equations become:	· · · · ·	
$-\frac{C D_L}{L^2} = \frac{\partial}{\partial t}$	$\frac{\partial \chi_{A}^{2}}{\partial \hat{z}^{2}} + \frac{C \sqrt{z}, A}{L} \cdot \frac{\partial \chi_{A}}{\partial \hat{z}} = -\frac{1-\varepsilon}{\varepsilon} \cdot \frac{3}{R_{p}} \left[\frac{2c D_{AB}}{\delta} \cdot \int_{n} \left(\frac{1}{1-\frac{1}{z}\chi_{A}} \right) \right]$	· · · · · ·	
$-\frac{L D_{L}}{L^2}$	$\frac{\partial \chi_{B}^{2}}{\partial \hat{z}^{2}} + \frac{C \sqrt{z} A}{L} \cdot \frac{\partial \chi_{B}}{\partial \hat{z}} = -\frac{1-\varepsilon}{\varepsilon} \cdot \frac{3}{R_{p}} \left[\frac{C D_{AB}}{\delta} \cdot \int_{\mathcal{H}} \left(\frac{1}{1-\frac{1}{z}\chi_{A}} \right) \right]$	· · · · · · ·	
We Want	the highest order derivative to not have a constant in front => Divide	by $-\frac{C \cdot D_{L}}{L^{2}}$	
· · · · · · · · ·	$\frac{\partial \chi_{A}^{2}}{\partial \hat{z}^{2}} - \frac{L \cdot V_{Z,A}}{D_{L}} \cdot \frac{\partial \chi_{A}}{\partial \hat{z}} = \frac{6 L^{2} D_{AB}}{R_{P} \delta \cdot D_{L}} \cdot \frac{1 \cdot \epsilon}{\epsilon} \cdot \int_{n} \left(\frac{1}{1 - \frac{1}{2} \chi_{A}} \right)$	· · · · · ·	
· · · · · ·	$\frac{\partial \chi_{B}^{2}}{\partial \hat{z}^{2}} - \frac{L \cdot V_{Z,A}}{D_{L}} \cdot \frac{\partial \chi_{B}}{\partial \hat{z}} = \frac{3 L^{2} D_{AB}}{R_{P} \delta \cdot D_{L}} \cdot \frac{1 \cdot \varepsilon}{\varepsilon} \cdot \int_{M} \left(\frac{1}{1 - \frac{1}{z} \chi_{A}} \right)$	· · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		
The bou	ndary conditions become:	· · · · · ·	
The bou	adary conditions become: at $Z=0$, $\hat{Z}=\frac{Z}{L}=\frac{Q}{L}=0$ =>X _A =1, X _B =0	· · · · · · ·	
The bour	$a \neq Z = 0, \ \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 = 3X_A = 1, \ X_B = 0$	
The bour	at $Z=0$, $\hat{Z}=\frac{Z}{L}=\frac{Q}{L}=0$ => $X_A=1$, $X_B=0$ at $Z=L$, $\hat{Z}=\frac{Z}{L}=\frac{L}{L}=1$ => $\frac{\partial X_A}{\partial Z}=\frac{1}{L}\cdot\frac{\partial X_A}{\partial \hat{Z}}=0$ => $\frac{\partial X_A}{\partial \hat{Z}}=0$	 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	
	$a \neq Z = 0, \ \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 = 3X_A = 1, \ X_B = 0$	
The bour The read	$a + Z = 0, \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 \qquad \Rightarrow X_A = 1, X_B = 0$ $a + Z = L, \hat{Z} = \frac{Z}{L} = \frac{L}{L} = 1 \qquad \Rightarrow \qquad \frac{\partial x_A}{\partial z} = \frac{1}{L} \cdot \frac{\partial x_A}{\partial \hat{z}} = 0 \Rightarrow \qquad \frac{\partial x_A}{\partial \hat{z}} = 0$ $\text{Similarily}, \frac{\partial x_B}{\partial z} = 0 \Rightarrow \qquad \frac{\partial x_B}{\partial \hat{z}} = 0$	
	$a + Z = 0, \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 \Rightarrow X_A = 1, X_B = 0$ $a + Z = L, \hat{Z} = \frac{Z}{L} = \frac{1}{L} = 1 \Rightarrow \frac{\partial x_A}{\partial z} = \frac{1}{L} \cdot \frac{\partial x_A}{\partial \hat{z}} = 0 \Rightarrow \frac{\partial x_A}{\partial \hat{z}} = 0$ $Simi arily , \frac{\partial x_B}{\partial z} = 0 \Rightarrow \frac{\partial x_B}{\partial \hat{z}} = 0$ $a + \hat{Z} = 0, X_A = 1, X_B = 0$	
	$a + Z = 0, \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 \qquad \Rightarrow X_A = 1, X_B = 0$ $a + Z = L, \hat{Z} = \frac{Z}{L} = \frac{L}{L} = 1 \qquad \Rightarrow \qquad \frac{\partial x_A}{\partial z} = \frac{1}{L} \cdot \frac{\partial x_A}{\partial \hat{z}} = 0 \Rightarrow \qquad \frac{\partial x_A}{\partial \hat{z}} = 0$ $\text{Similarily}, \frac{\partial x_B}{\partial z} = 0 \Rightarrow \qquad \frac{\partial x_B}{\partial \hat{z}} = 0$	
	$a + Z = 0, \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 \Rightarrow X_A = 1, X_B = 0$ $a + Z = L, \hat{Z} = \frac{Z}{L} = \frac{1}{L} = 1 \Rightarrow \frac{\partial x_A}{\partial z} = \frac{1}{L} \cdot \frac{\partial x_A}{\partial \hat{z}} = 0 \Rightarrow \frac{\partial x_A}{\partial \hat{z}} = 0$ $Simi arily , \frac{\partial x_B}{\partial z} = 0 \Rightarrow \frac{\partial x_B}{\partial \hat{z}} = 0$ $a + \hat{Z} = 0, X_A = 1, X_B = 0$	
	$a + Z = 0, \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 \Rightarrow X_A = 1, X_B = 0$ $a + Z = L, \hat{Z} = \frac{Z}{L} = \frac{1}{L} = 1 \Rightarrow \frac{\partial x_A}{\partial z} = \frac{1}{L} \cdot \frac{\partial x_A}{\partial \hat{z}} = 0 \Rightarrow \frac{\partial x_A}{\partial \hat{z}} = 0$ $Simi arily , \frac{\partial x_B}{\partial z} = 0 \Rightarrow \frac{\partial x_B}{\partial \hat{z}} = 0$ $a + \hat{Z} = 0, X_A = 1, X_B = 0$		
	$a + Z = 0, \hat{Z} = \frac{Z}{L} = \frac{0}{L} = 0 \Rightarrow X_A = 1, X_B = 0$ $a + Z = L, \hat{Z} = \frac{Z}{L} = \frac{1}{L} = 1 \Rightarrow \frac{\partial x_A}{\partial z} = \frac{1}{L} \cdot \frac{\partial x_A}{\partial \hat{z}} = 0 \Rightarrow \frac{\partial x_A}{\partial \hat{z}} = 0$ $Simi arily , \frac{\partial x_B}{\partial z} = 0 \Rightarrow \frac{\partial x_B}{\partial \hat{z}} = 0$ $a + \hat{Z} = 0, X_A = 1, X_B = 0$		

Task 1d: Identify the principle dimensionless coefficients in the dimensionless model. How many are there? What do they mean? Based on the system of equations defined above, do you need to solve both equations?

		•
•	The coefficients are: $\alpha = \frac{L \cdot V_{Z,A}}{D_L}, \beta = \frac{6L^2 D_{AB}}{R_p \delta \cdot D_L} \cdot \frac{1 \cdot \epsilon}{\epsilon}$ $\gamma_{\epsilon} \alpha \frac{R_p \delta}{D_{AB}}$	•
•	· There are 2 dimensionless coefficients	•
٠	Maguia	٠
•	• reading $X: \frac{D_L}{L}$ can be viewed as a diffusion velocity in the length direction, and $V_{Z,A}$ as the "average" velocity of the bulk liquid.	•
•	then ∞ can be interpreted as the ratio between diffusion in the Z-direction and convection, meaning that for large ∞ , the mass flux through the reactor is convection contant and for small ∞ , its diffusion controlled.	rolle
•	and for small \propto , it's diffusion controlled.	
•	$B: \frac{R_p\delta}{D_{AB}} \propto \Sigma_F$, the recidence time of the film	•
•	$\frac{L^2}{D_L} \propto T_L$, the recidence time of the reactor	0
•	$\frac{1-\varepsilon}{\varepsilon} = \frac{\text{``area'' available for convection}}{\text{``area'' occupied by catalyst particles}} \approx \text{Packing porometer}$	•
0	$\beta \propto \frac{\gamma_{L}}{\gamma_{F}}$ ratio of recidence time in the reactor vs. film	•
•	=> Large values of B implies that the recidence time of the reactor	•
•	is force compared to the recidence time in the film. This means that	•
	is large compared to the recidence time in the film. This means that the reaction is limited by the rate of mass transfer in the bulk	
	through the reactor (diffusion through film appears to be" instant), for low value	es.
	of B, the reaction is limited by the diffusion through the stagnant fill	
•	surrounding the catalyst particles	•
0		
•	. As we have a binory system => XB=1-XA, and no source terms inside the reactor except for	•
•	the reaction, we only need to solve one of them. As the equation for XA is independent.	•
•	of XB, we choose that one	•

Task 2: Write a Matlab script to solve the model

Write a Matlab script that uses the Finite Difference grid and weight function you wrote in the last exercise to provide the discretized coordinate grid and weights as a basis to transform the non-linear differential equations into a set of non-linear algebraic equations. Then use the Matlab function "fsolve" to solve the system. Once you have finished Task 1, ask Brian or the teaching assistants for numerical values for your dimensionless coefficients. These should be the only numerical inputs needed for the model beside the number, N, of grid points which you should set yourself.

The final result should be a plot of x_A and x_B as a function of z.

Let
$$\alpha = \frac{1}{D_{c}} \cdot \frac{V_{2,A}}{D_{c}}$$
, $\beta = \frac{61^{2} D_{AB}}{R_{P} 5 D_{c}} \cdot \frac{1 \cdot \epsilon}{\epsilon}$
and $\int (X_{A}) = \ln \left(\frac{1}{1 - \frac{1}{2} \times A}\right)$
Then we can rewrite the equation for x_{A} :
 $\frac{\partial^{2} x_{A}}{\partial \hat{z}} - \alpha \frac{\partial x_{A}}{\partial \hat{z}} = f(x_{A})$
This must be discretized to solve numerically:
 $A \cdot \overline{x}_{A}^{*} - \beta \cdot B \cdot \overline{x}_{A}^{*} = \alpha \cdot \int (\overline{x}_{A})$
Where A is the matrix containing the discretization rule for 2nd order derivative,
and B is the matrix containing the discretization rule for the 1st order derivative in exercise 5.
Solve needs the answer to the equation to be zero:
 $A \cdot \overline{x}_{A}^{*} - \beta \cdot B \cdot \overline{x}_{A}^{*} - \alpha \cdot \int (\overline{x}_{A}) - 0$
However, we need to take care of the boundaries, Inserting boundary conditions:
 $\hat{z} = 0$, $x_{A} = 1 \Rightarrow \overline{x}_{A}(1) = 1 \Rightarrow \overline{x}_{A}(1) = 1 = 0$
 $\hat{z} = 1$, $\frac{\partial x_{A}}{\partial \hat{z}} = 0 \Rightarrow (B \cdot \overline{x}_{A})(N) = 0$
The equations using $\alpha = 10$ and $\beta = 1000$, which was the values provided during
exercise hour.

de bits: Functions utilized:	٠	*	٠	• •	٠	٠		•	٠		٠	٠
	٠	٠	٠	• •	٠	٠	۰	٠	٠	• •	٠	٠
Functions utilized:	٠	٠	٠	• •	٠	٠		٠	٠	• •	٠	٠
	٠	٠	•	• •	٠	٠	٠		٠	• •	*	•
% Functions used in the problem	٠	٠		• •	٠	٠				• •	٠	
Creating a function for the $f(xA)$ defined on my submission	٠	٠			٠						٠	
unction toReturn = f(x) toReturn = log(1/(1-0.5*x));				• •							*	
nd												
<pre>Creating the equation system to be solved unction wantToBeZero = sysEquations(xA, dxA_matrix, d2xA2_matrix, param1, param2, numberOfNodes)</pre>	•	٠		• •	٠	۰	0		٠			
%Creating empty array to optimize performance	•		٠	• •		٠	٠		•		٠	٠
<pre>wantToBeZero = zeros(numberOfNodes, 1); % Computing the differentials values beforehand using the grid</pre>				• •	٠	٠		٠				
d2x_dz2 = d2xA2_matrix*xA; dxA_dz = dxA_matrix*xA;	•	•	•		•	•	•	•	•	• •	•	•
%% Boundary conditions	—											
% At z=0 wantToBeZero(1) = xA(1)-1;												
%% General solution for the middle nodes:												
<pre>for i = 2:(numberOfNodes-1) wantToBeZero(i) = d2xA_dz2(i) - param1*dxA_dz(i) - param2*f(xA(i))</pre>);	•	•	• •	•	•	٠	•	•	• •	•	•
end % At z=1		٠	٠	• •	٠		0	•	٠	• •	٠	٠
<pre>wantToBeZero(numberOfNodes) = dxA_dz(numberOfNodes); nd</pre>	*	٠	•	• •	٠	٠	•		٠	• •	•	•
	٠	٠	•	• •	•	•	٠	•		• •	•	•
T. I little enclosed from tx5!	٠	٠	٠	• •	٠			•		• •	•	٠
-initedifferencegrid from ex5:	٠	٠	•	• •	•	٠	•		•	• •	+	•
function [x, w, A, B] = FiniteDifferenceGrid (N)			•	• •		٠	٠					•
% The distance between nodes will be used multiple times.	٠	٠	٠	• •	٠		0	•		• •	٠	٠
dx = $1/(N-1)$;				• •							*	
<pre>% a) Creating equally spaced vector x = linspace(0,1,N);</pre>	٠	٠	٠	• •				٠	٠	• •	٠	٠
%b) Creating the weight array			٠			•	٠				+	
<pre>w = dx * ones(1, N); % Changing the first and last elements:</pre>	•				•							
w(1) = dx/2; w(end) = dx/2;												
% c) Creating the matrix for the 1st derivative	•				•							
A = zeros(N,N); A(1:N+1:end) = -1;	•	٠										
A(N+1:N+1:end) = 1; % Fixing the end node:												
A(end, end) = 1; A(end, end-1) = -1;												
% Multiplying by $1/dx$: A = $1/dx * A$;												
	•	•	•	• •	•	•	٠	•	*	• •	•	•
<pre>% d) Creating the matrix for the 2nd derivative B = zeros(N,N);</pre>	•	•	٠	• •	٠	٠	۰	٠	٠	• •	۰	٠
B(1:N+1:end) = -2; B(2:N+1:end) = 1;	٠	*	•	• •	*	٠	۰	•	*	• •	•	٠
B(N+1:N+1:end) = 1; % Fix the boundaries	•	•	•	• •	•	•	٠	•	•	• •		•
B(1,1) = 1; B(1,2) = -2;	•		•	• •	٠	•	•	•	•	• •		•
B(1,3) = 1;	٠	*	•	• •	٠	٠	٠				*	٠
B(end, end) = 1; B(end, end-1) = -2;	٠	٠		• •	٠		٠			• •		
B(end, end-2) = 1; % Multiply with 1/dx ²			٠	• •			٠			• •	٠	٠
B = 1/dx ² * B;												
	•				٠							
			٠	• •								
				• •	•							
			•		Ŧ	-					-	
					*		٠	•	٠		٠	٠
	٠	۰	•	• •	٠	٠		•		• •		•
	٠	٠	•	• •	٠	٠	•		٠	• •	•	•
	٠	٠	٠	• •	٠		۰	•	٠	• •	٠	٠
						•						

Solving the equations: % Task 2 % Number of nodes in the grid N = 50;% Collecting the grid used in th previous exercise (the nodes will be along % the z-axis) [z_hat, w, A, B] = FiniteDifferenceGrid (N); % The dimensionless parameters alpha = 10;beta = 1000; % Need initial guesses for fsolve, choosing values in the middle of range: xA0 = 0.5*ones(N,1); % Calling fsolve to find xA: xA = fsolve(@(xA) sysEquations(xA, A, B, alpha, beta, N), xA0); % Calculating xB from the fact that we have a binary mixture xB = 1-xA;Plotting the result: % Plotting the result % Creating a title-string: titletext = sprintf('Mole fractions for \alpha = %d and \beta = %d\n', alpha, beta); Properties of the plot figProps = struct('Color', [1 1 1], 'OuterPosition', [170, 170, 1000, 700]);
fontProps = struct('FontName', 'Calibri', 'FontSize', 18, 'FontWeight', 'bold'); % Initializing the plot fig = figure(1); ax = axes; % Plotting the results plot(z_hat, xA, 'Color', 'r', 'LineWidth', 2, 'Marker', 'o', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'none', 'DisplayName', 'x_A'); hold on; plot(z_hat, xB, 'Color', 'b', 'LineWidth', 2, 'Marker', 'o', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'none', 'DisplayName', 'x_B'); % Tidying up set(fig, figProps); set(ax, 'FontSize', fontProps.FontSize); set(xlabel('z' = z/L", 'interpreter', 'tex'), fontProps); set(ylabel('Molar fractions, x_i'), fontProps); set(title(['Mole fractions for \alpha = ', num2str(alpha), ' and \beta = ', num2str(beta)],'interpreter', 'tex'), fontProps); xlim([0 1]); box("on");
grid("on"); set(legend(), 'FontName', fontProps.FontName) %Saving the figure
saveas(fig, 'Ex6_2_plot', 'jpg') The resulting plot.

z' = z/L

Decreasing N seems to yield close to the same results, how be at least 40 for the curve to look smooth However, in task with values, I discovered that N must be a lob higher when increase F.ex ≈ 300 for $\alpha = 500$, if not Xa will initially increase to	3, siho	when the providence of the pro	n p	layin	g.	1.	•	•	• • • •
	• •	•		•	•	•	•	•	•
	• •	٠	٠	0	٠	٠			
The resulting plot makes sence, as at the inlet, where $Z=0$,	XA	=) .,	ano	l	•	•	•	•	•
at the outlet, $Z'=1$, X_A has its lowest value (~0)		•	•	•	•	•	•	•	•
	• •	٠	٠	٠	•	•	٠	•	•
Task 3: Evaluate the parametric behavior of the model	• •		•	•	•	•	•		•
Choose 4 potential values for each of your dimensionless equation coefficients of your model. For each	• •	•	•	•	•	•	•	•	•
dimensionless equation coefficient, plot the axial (z-direction) profiles of x_A and x_B on the same plot (this means there will be 8 lines on the same plot). Use different line types, markers, and/or colors to distinguish			٠	0	٠	٠	•	٠	
the different curves. You should produce 1 plot for each dimensionless coefficient you have identified in Task 1.			•	•	•	•	•	•	•
Analyze your plots, try to relate the behavior you see in the profiles to the mathematical form of the equations and the parameters that constitute the dimensionless equation coefficients.	• •	•	•	•	•	•	•	•	•

Keeping & constant, while varying B: All parameters are visible on the plot

As ex the rea																				
	ciden																			
This			• •	• •		• •			• •				• •	•	••••	•		• •	•	• •
For clo v															- Line	lor _i i	and	they		· · ·
	• •	٠	inci	• •	٠	• •	٠	•	• •		۰	۰	• •	٠	Срр	lars	to re	ach	•	• •
, a	"Stead	ly st	abe" o	い Z	Inch	ecses		•	• •		•	•	• •	•	• •	•		• •	0	• •
Incre	asing	ß	aive	s H		Cart	•													
almo	st in	mea stant	ning Comp	that pared	the to	diff the	usio Conn	n t ectii	hrow on f	sh t or l	the starge	stagi en	nant ougk	par Vali	ticle nes	fili fili	т <i>с</i> рј 3	pl ar s		
almo This, Whi	st in in t ch is	mea start urn Whi	ning comp incre g the	that pared pases	the to the	diff the Co	Conu Conu Nver	n t ectii sior	hrow on f of	or li A	the starge	en en	nant pugh point	par Valu Of	ticle nes the	fill of 1 rea	n opj 3. ctorj	pl ar s		
almo This, Whi	st in t	mea start urn Whi	ning comp incre g the	that pared pases	the to the	diff the Co	Conu Conu Nver	n t ectii sior	hrow on f of	or li A	the starge	en en	nant pugh point	par Valu Of	ticle nes the	fill of 1 rea	n opj 3. ctorj	pl ar s		
almo This, Whi	st in in t ch is	mea start urn Whi	ning comp incre g the	that pared pases	the to the	diff the Co	Conu Conu nver	n t ectii sior	hrow on f of	or li A	the starge	en en	nant pugh point	par Valu Of	ticle nes the	fil, of 1 rea	n opj 3. ctorj	pl ar s		
almo This, White incre	st in in t ch is easing	mea start whi y, B.	ning comp incre g the	that bared so se s Slog	the to the zes	diff the co for	Conu conu nver the	n t ectii sion cn	hroug on f of rves	sh t or l of	the star	en	nant Dugt Point XE	par Valu of in	ticle nes the creas	fill of 1 rea	m apj 3. ctor, Witi	pears , h	; to	be .
almo This, Whit incre	st in in t ch is easing	mea start whi y, B.	ning Comp incre y the	that bared so se s Slog	the to the zes	diff the co for	Conu conu nver the	n t ectii sion cn	hroug on f of rves	sh t or l of	the star	en	nant Dugt Point XE	par Valu of in	ticle nes the creas	fill of 1 rea	m apj 3. ctor, Witi	pears , h	; to	be .
almo This, Whit incre	st in in t ch is easing	mea start whi y, B.	ning Comp incre y the	that bared so se s Slog	the to the zes	diff the co for	Conu conu nver the	n t ectii sion cn	hroug on f of rves	sh t or l of	the star	en	nant Dugt Point XE	par Valu of	ticle nes the creas	fill of 1 rea ses	m apj 3. ctor, Witi	pears , , , , , , , , , , , , , , , , , , ,	; to	be .
almo This, Whit incre	st in in t ch is easing	mea start whi y, B.	ning Comp incre y the	that bared so se s Slog	the to the ses	diff the co for	Conu conu nver the	n t ectil stor cn	hroug on f of rves	or l A of	he i orge at a Xa	en	nant Dugt Point XE	par Valu of in	ticle nes the creas	fill of 1 rea	m app 3. ctor, Wit	pears , , , , , , , , , , , , , , , , , , ,		be .

Molar fractions x_A and x_B , while varying α , and keeping $\beta = 1000$ x_A , $\alpha = 10$ x_{B} , $\alpha = 10$ 0.9 -x_A, α = 100 x_{B} , $\alpha = 100$ 0.8 -x_A, α = 500 0.7 $x_{B}, \alpha = 500$ x_A , $\alpha = 1000$ Molar fractions, x_i 0.6 $\mathbf{x}_{\mathrm{B}}^{}\text{, }\alpha=\mathbf{1000}$ 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.5 0.9 z' = z/LAs stated in problem 1d), X can be interpreted as the ratio between the bulk velocity and the diffusion velocity through the reactor For small values of α , the mass transfer of A and B is diffusion controlled. Meaning that the flow rate is small. This gives a large recidence time in the reactor, allowing for more for A to diffuse to the catalyst surface, which increases the conversion. This is why the Xn curve quickly reaches O for small values of X. Increasing a will in turn decrease the recidence time of the reactor, decreasing the reaction rate. As shown in the plot, this allows for A to penetrake further into the reactor, while also decreasing the total conversion through the reactor (except for $\alpha = 10 \rightarrow \alpha = 100$, where $x_{a} = 0$ at z' = 1 in both cases)