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Abstract. We establish a rate of convergence for a semidiscrete operator splitting method
applied to Hamilton–Jacobi equations with source terms. The method is based on sequentially solving
a Hamilton–Jacobi equation and an ordinary differential equation. The Hamilton–Jacobi equation
is solved exactly while the ordinary differential equation is solved exactly or by an explicit Euler
method. We prove that the L∞ error associated with the operator splitting method is bounded by
O(∆t), where ∆t is the splitting (or time) step. This error bound is an improvement over the existing
O(

√
∆t) bound due to Souganidis [Nonlinear Anal., 9 (1985), pp. 217–257]. In the one-dimensional

case, we present a fully discrete splitting method based on an unconditionally stable front tracking
method for homogeneous Hamilton–Jacobi equations. It is proved that this fully discrete splitting
method possesses a linear convergence rate. Moreover, numerical results are presented to illustrate
the theoretical convergence results.
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1. Introduction. The purpose of this paper is to study the error associated
with an operator splitting procedure for nonhomogeneous Hamilton–Jacobi equations
of the form

ut + H(t, x, u,Du) = G(t, x, u) in QT = R
N × (0, T ),

u(x, 0) = u0(x) in R
N ,

(1.1)

where u = u(x, t) is the scalar function that is sought, u0 = u0(x) is a given ini-
tial function, H is a given Hamiltonian, and D denotes the gradient with respect to
x = (x1, . . . , xN ). Hamilton–Jacobi equations arise in a variety of applications, rang-
ing from image processing, via mathematical finance, to the description of evolving
interfaces (front propagation problems). In general, problems such as (1.1) do not
possess classical solutions. In fact, solutions of (1.1) generically develop discontinu-
ous derivatives in finite time even with a smooth initial condition. However, under
quite general conditions they possess unique viscosity solutions [6].

It is well known that (homogeneous) Hamilton–Jacobi equations are closely re-
lated to (homogeneous) conservation laws. In the one-dimensional case, the notion of
viscosity solutions of Hamilton–Jacobi equations is equivalent to the notion of entropy
solutions (in the sense of Kružkov [32]) of scalar conservation laws; see [5, 24, 26, 30, 36]
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for details. In the multidimensional case (d > 1), this one-to-one correspondence no
longer exists. Instead the gradient p = Du satisfies (at least formally) a nonstrictly
hyperbolic system of conservation laws; see [24, 27, 30, 36] for details. Exploiting this
“correspondence” between Hamilton–Jacobi equations and conservation laws, many
numerical methods have been developed to accurately capture solutions of Hamilton–
Jacobi equations with discontinuous gradients: see [8, 37] for finite difference schemes
of upwind type (see also [31]), [1, 29] for finite volume schemes, [39, 40] for ENO
schemes, [35, 33] for central schemes, [4, 20] for finite element methods, [24] for re-
laxation schemes, and [13, 14, 26, 27, 49] for front tracking methods. Using operator
splitting, it is also possible to use “homogeneous” Hamilton–Jacobi solvers as building
blocks in numerical methods for nonhomogeneous problems. In the present context,
operator splitting means “splitting off” or isolating the effect of the source term G.
Operator splitting is particularly important when seeking to extend front tracking
methods, which are based on solving Riemann problems for homogeneous equations,
to problems involving source terms (see the discussion below).

Operator splitting for Hamilton–Jacobi equations, or more generally fully non-
linear second order partial differential equations [6], have been used by Souganidis
[43], Barles and Souganidis [3], Sun [45], and Barles [2]. Among these, the paper by
Souganidis [43] is the most relevant one for the present work. In that paper, general
operator splitting formulas are analyzed and shown to converge to the unique viscos-
ity solution of the governing Hamilton–Jacobi equation as the splitting step tends to
zero. The generality in [43] allows for dimensional splitting as well as “splitting of”
the source term as we do in the present paper.

In Barles and Souganidis [3], the authors consider fully nonlinear second order
elliptic or parabolic partial differential equations and propose an abstract convergence
theory for general (monotone, stable, and consistent) approximation schemes. This
theory is then applied to splitting methods as well as many other types of numerical
methods. In Barles [2], the author studies, among other things, splitting methods
for nonlinear degenerate elliptic and parabolic equations arising in option pricing
models. In Sun [45], the author studies a dimensional splitting method for a class
of second order Hamilton–Jacobi–Bellman equations related to stochastic optimal
control problems.

We now summarize the operator splitting procedure analyzed in this paper and
state briefly the obtained theoretical result. To ease the presentation, let us for the
moment consider the simplified nonhomogeneous Hamilton–Jacobi equation

ut + H(Du) = G(u), u(x, 0) = u0(x), x ∈ R
N , t ∈ (0, T ).(1.2)

A presentation of the splitting procedure and the corresponding theoretical result in
the general case (1.1) can be found in section 3. Let v(x, t) = S(t)v0(x) denote the
unique viscosity solution of the homogeneous Hamilton–Jacobi equation

vt + H(Dv) = 0, v(x, 0) = v0(x), x ∈ R
N , t > 0,(1.3)

where S(t) is the so-called solution operator associated with (1.3) at time t. Next, let
E(t) denote the explicit Euler operator, i.e., v(x, t) = E(t)v0(x) is defined by

v(x, t) = v0(x) + tG(v0(x)).

Our operator splitting method then takes the form

u(x, i∆t) ≈ [S(∆t)E(∆t)
]i
u0(x),(1.4)

where ∆t > 0 is the splitting (or time) step and i = 0, . . . , n with n∆t = T .
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In this paper, we prove that this splitting approximation converges as ∆t → 0
to the unique viscosity solution of (1.2). More precisely, we prove that the L∞ error
associated with the time splitting (1.4) is of order ∆t:

max
i=1,...,n

∥∥∥u(·, i∆t) − [S(∆t)E(∆t)
]i
u0

∥∥∥
L∞

≤ K∆t(1.5)

for some constant K > 0 depending on the data of the problem but not ∆t.
In passing, we mention that the proof of (1.5) is inspired by an idea used in

Langseth, Tveito, and Winther [34]. In that paper, the authors proved a linear L1

convergence rate for operator splitting applied to one-dimensional scalar conservation
laws with source terms. Having said this, we stress that our method of proof uses
“pure” viscosity solution techniques and do not rely on the equivalence between the
notions of viscosity [7] and entropy [32] solutions, which exists (only) in the one-
dimensional homogeneous case.

As an easy by-product of our analysis, we also obtain an error estimate of the
form (1.5) for a variant of (1.4) in which the Euler operator E(t) is replaced by the
exact solution operator associated with the ordinary differential equation

ut = G(t, x, u), v(x, 0) = v0(x), x ∈ R
N , t > 0.(1.6)

This error estimate is an improvement of an earlier estimate by Souganidis in [43].
In [43], an L∞ error estimate of order

√
∆t is obtained for a more general operator

splitting procedure, which also includes source splitting. This low convergence rate
reflects, of course, the lack of regularity of the viscosity solution and is the “usual”
convergence rate obtained for (finite difference and viscous) approximate solutions of
Hamilton–Jacobi equations; see [31, 36, 8].

In applications, the exact solution operator S(t) must be replaced by a numerical
method. In this paper, we consider the one-dimensional case and replace S(t) by
the unconditionally stable front tracking method described in Holden, Holden, and
Høegh-Krohn [16] and Karlsen and Risebro [26]. We refer to Karlsen and Risebro [27]
for extensions of the method to multidimensional Hamilton–Jacobi equations. Front
tracking methods for Hamilton–Jacobi equations have also been developed by Glimm
et al. [13, 14], Karlsen and Risebro [26, 27], and Vanderwoude [49]. Indeed one of
the main points of the present work is the following simple one: Since front tracking
methods are fast and accurate numerical methods for homogeneous Hamilton–Jacobi
equations, we do not wish to complicate these methods by a direct inclusion of the
source term, which would imply that one has to track curved fronts as well as solving
nonhomogeneous Riemann problems. The tracking of curved fronts is more time
consuming and difficult to program than the tracking of fronts whose paths are straight
lines. In addition, solutions of nonhomogeneous Riemann problems are much more
difficult to obtain than solutions of homogeneous Riemann problems. Note that for
front tracking methods, a direct inclusion of the source term would not improve the
accuracy of the scheme. Furthermore, as we can conclude from the (theoretical) results
obtained in this paper, splitting off the source term does not deteriorate the accuracy
either! In this context we also mention that for Hamilton–Jacobi equations in several
space dimensions, front tracking as defined in [16, 26] and dimensional splitting give
a family of numerical methods which are unconditionally stable in the sense that the
there is no CFL condition associated with the methods; see [27]. However, for these
methods error analysis is not available and we have therefore chosen not to discuss
fully discrete splitting methods for multidimensional equations in this paper. Having
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said this, we do not hesitate to say that splitting off the source term also works very
well in practice in several space dimensions. We would like to mention that the main
results obtained in this paper also hold for weakly coupled systems of Hamilton–Jacobi
equations. The details are presented in [23].

Although operator splitting methods have to some extent been studied and used
as computation tools for Hamilton–Jacobi (and related) equations, we feel that these
methods have not reached the same degree of popularity as they have for hyperbolic
conservation laws. In fact, the first order dimensional splitting method was first
introduced by Godunov [15] as a method for solving multidimensional conservation
laws. Later this method was modified by Strang [44] to achieve formal second order
accuracy. Rigorous convergence results (within the Kružkov framework of entropy
solutions [32]) for dimensional splitting methods appeared two decades later with the
paper by Crandall and Majda [9]; see also Holden and Risebro [18]. More recently, L1

error estimates of order
√

∆t were obtained independently by Teng [48] and Karlsen
[25].

Splitting methods for scalar conservation laws with source terms have been an-
alyzed by Tang and Teng [47], Langseth, Tveito, and Winther [34], and Tang [46].
We refer to Holden and Risebro [19] for conservation laws with a stochastic source
term. It is worthwhile mentioning that Tang [46] deals with stiff source terms. More
precisely, his work shows that for some classes of dissipative stiff source terms, it is
possible to derive an error estimate which is independent of the “stiffness parameter.”
We pose as an interesting open research problem whether it is possible to obtain a
similar result for operator splitting of Hamilton–Jacobi equations with stiff source
terms.

Operator splitting methods for conservation laws with parabolic (diffusive) terms
have been analyzed by Karlsen and Risebro [28] and Evje and Karlsen [12]; see also
the lecture notes [11] (and the references therein) for a thorough discussion of viscous
splitting methods and their applications. Finally, splitting methods for conservation
laws with dispersive terms have been used very recently by Holden, Karlsen, and
Risebro [17].

The rest of this paper is organized as follows. In section 2, we collect some
useful results from the theory of viscosity solutions for Hamilton–Jacobi equations.
In section 3, we provide a precise description of the operator splitting and state the
main convergence results. In section 4, we give detailed proofs of the results stated
in section 3. In section 5, we present and analyze a fully discrete operator splitting
method for one-dimensional equations. Furthermore, we present numerical examples
illustrating the theoretical results.

2. Preliminaries. We start by stating the definition of viscosity solutions as
well as some results about existence, uniqueness, and regularity properties of such
solutions. These results will be needed in the sections that follow. Precise statements
and proofs (or references to proofs) of these results can be found in [42]; see also
[43, 21, 22].

Let us introduce some notation. If U is a set, and f : U → R is a bounded
measurable function on U , then ‖f‖ := ess supx∈U |f(x)|. Furthermore let BUC(U),
Lip(U), and Lipb(U) denote the spaces of bounded uniformly continuous functions,
Lipschitz functions, and bounded Lipschitz functions on U , respectively. Finally, if
f ∈ Lip(U) we denote the Lipschitz constant of f by ‖Df‖. Throughout this paper, we
let C and γ denote generic constants. We shall mostly use γ in exponential form, i.e,
eγt. The reason for having two generic constants is that we wish to avoid expressions
like “CeCt.”
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For F ∈ C([0, T ]×R
N×R×R

N ), we consider throughout this section the following
general equation:

ut + F (t, x, u,Du) = 0 in QT ,(2.1)

with initial condition

u(x, 0) = u0(x) in R
N ,(2.2)

where u0 ∈ BUC(RN ). Note that (1.1) is a special case of (2.1) and (2.2).
Definition 2.1 (viscosity solution). Let F ∈ C([0, T ] × R

N × R × R
N ).

(1) A function u ∈ C(QT ) is a viscosity subsolution of (2.1) if for every φ ∈
C1(QT ), if u− φ attains a local maximum at (x0, t0) ∈ QT , then

φt(x0, t0) + F (t0, x0, u(x0, t0), Dφ(x0, t0)) ≤ 0.

(2) A function u ∈ C(QT ) is a viscosity supersolution of (2.1) if for every
φ ∈ C1(QT ), if u− φ attains a local minimum at (x0, t0) ∈ QT , then

φt(x0, t0) + F (t0, x0, u(x0, t0), Dφ(x0, t0)) ≥ 0.

(3) A function u ∈ C(QT ) is a viscosity solution of (2.1) if it is both a viscosity
sub- and supersolution of (2.1).

(4) A function u ∈ C(Q̄T ) is a viscosity solution of the initial value problem
(2.1) and (2.2) if u is a viscosity solution of (2.1) and u(x, 0) = u0(x) in R

N .
In order to have existence and uniqueness of solution to (2.1)–(2.2), we need

further conditions on F . In this paper we assume the following standard conditions
on F ; see also Souganidis [43, 41].

For each R > 0, F ∈ C([0, T ] × R
N × R × R

N ) is uniformly continuous on
[0, T ] × R

N × [−R,R] ×BN (0, R), where BN (0, R) := {x ∈ R
N : |x| ≤ R}.(F1)

supQ̄T
|F (t, x, 0, 0)| < ∞.(F2)

There is a constant L > 0 such that for (t, x) ∈ Q̄T , p ∈ R
N , r, s ∈ R,

|F (t, x, r, p) − F (t, x, s, p)| ≤ L|r − s|.(F3)

For each R > 0 there is a constant CR > 0 such that for |r| ≤ R,
x, y, p ∈ R

N , t ∈ [0, T ], |F (t, x, r, p) − F (t, y, r, p)| ≤ CR(1 + |p|)|x− y|.(F4)

Condition (F4) is to hold with the roles of x and t interchanged.(F5)

For each R > 0 there is a constant MR > 0 such that for |r|, |p|, |q| ≤ R,
(x, t) ∈ Q̄T , |F (t, x, r, p) − F (t, x, r, q)| ≤ MR|p− q|.(F6)

Under conditions (F1)–(F4), there exists a unique viscosity solution u ∈ Lipb(R
N )

to the initial value problem (2.1)–(2.2). Furthermore, if v ∈ Lipb(R
N ) is another

viscosity solution with initial value v0, then there exists a constant γ such that

‖u(·, t) − v(·, t)‖ ≤ e−γt‖u0 − v0‖.(2.3)

Moreover, the following inequalities hold:

‖u(·, t)‖ ≤ eγt (‖u0‖ + Ct) ,(2.4)

‖Du(·, t)‖ ≤ eγt (‖Du0‖ + Ct) ,(2.5)

‖u(·, t) − u0‖ ≤ t c (‖u0‖, ‖Du0‖) ,(2.6)

‖u(·, t) − u(·, s)‖ ≤ |t− s| c
(
‖u‖, supτ∈[0,T ] ‖Du(·, τ)‖

)
(2.7)

for some constants γ and C and some positive function c ∈ C(R2).
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Finally, we will need the following stability result.
Proposition 2.1. Let F be as above, and let K be a nonnegative constant.

Assume that u ∈ Lipb(Q̄T ) is the viscosity solution of (2.1), and v ∈ Lipb(Q̄T ) is a
viscosity solution of

|vt + F (t, x, v,Dv)| ≤ K in QT .(2.8)

Let L be the Lipschitz constant of F with respect to the third variable. Then for
0 ≤ s ≤ t ≤ T ,

e−Lt‖u(·, t) − v(·, t)‖ ≤ e−Ls‖u(·, s) − v(·, s)‖ + Ke−Ls(t− s).

This is essentially Theorem V.2 (iii) in [7]; see also [22].

3. Statement of the results. We will study the convergence rate of operator
splitting applied to the Hamilton–Jacobi equation (1.1), where u0 ∈ Lipb(R

N ) and
H, G satisfy conditions (F1)–(F6) with F replaced by H and G, respectively. These
conditions correspond to the conditions Souganidis used for his more general splitting
in [43]. See also [21, 22] for the precise statements.

First we will state an error bound for the splitting procedure when the ordinary
differential equation is approximated by the explicit Euler method. To define the
operator splitting, let E(t, s) : Lipb(R

N ) → Lipb(R
N ) denote the Euler operator

defined by

E(t, s)v0(x) = v0(x) + (t− s)G(s, x, v0(x))(3.1)

for 0 ≤ s ≤ t ≤ T and v0 ∈ Lipb(R
N ). Furthermore, let S(t, s) : Lipb(R

N ) →
Lipb(R

N ) be the solution operator of the Hamilton–Jacobi equation

vt + H(t, x, v,Dv) = 0 in R
N × (s, T ),

v(x, s) = v0(x) in R
N ,

(3.2)

where v0 ∈ Lipb(R
N ). Note that S is well-defined on the time interval [s, T ], since

(3.2) is essentially a special case of (1.1). More precisely, there exists a unique viscosity
solution v ∈ Lipb(R

N × [s, T ′]) for any T ′ > 0.
The operator splitting solution {v(x, ti)}ni=1, where ti = i∆t and tn ≤ T , is

defined by

v(x, ti) = S(ti, ti−1)E(ti, ti−1)v(·, ti−1)(x),

v(x, 0) = v0(x).
(3.3)

Note that this approximate solution is defined only at discrete t-values. The first
result in this paper states that the operator splitting solution, when (3.2) is solved
exactly, converges linearly in ∆t to the viscosity solution of (1.1).

Theorem 3.1. Let u(x, t) be the viscosity solution of (1.1) on the time interval
[0, T ] and v(x, ti) be the operator splitting solution (3.3). There exists a constant
C > 0, depending only on T , ‖u0‖, ‖Du0‖, ‖v0‖, ‖Dv0‖, H, and G, such that for
i = 1, . . . , n,

‖u(·, ti) − v(·, ti)‖ ≤ C (‖u0 − v0‖ + ∆t) .

We will prove this theorem in the next section.
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Our second theorem gives a convergence rate for operator splitting when the
explicit Euler operator E is replaced by an exact solution operator Ē. More precisely,
let Ē(t, s) : Lipb(R

N ) → Lipb(R
N ) be the exact solution operator of the ordinary

differential equation

vt = G(t, x, v) in R
N × (s, T ),

v(x, s) = v0(x) in R
N ,

(3.4)

where v0 ∈ Lipb(R
N ). Note that Ē is well-defined on the time interval [s, T ]. In

fact, the Lipschitz assumptions on G are sufficient for (3.4) to have a unique solution
v ∈ C1([s, T ′];Lipb(RN )) for any T ′ > 0.

Let us define the following operator splitting solution {v̄(x, ti)}ni=1, where ti = i∆t
and tn ≤ T , by

v̄(x, ti) = S(ti, ti−1)Ē(ti, ti−1)v̄(·, ti−1)(x),

v̄(x, 0) = v0(x).
(3.5)

The following result is a consequence of Theorem 3.1.
Corollary 3.1. Let u(x, t) be the viscosity solution of (1.1) on the time interval

[0, T ] and v̄(x, ti) be the operator splitting solution (3.5). There exists a constant
C > 0, depending only on T , ‖u0‖, ‖Du0‖, ‖v0‖, ‖Dv0‖, H, and G, such that for
i = 1, . . . , n,

‖u(·, ti) − v̄(·, ti)‖ ≤ C (‖u0 − v0‖ + ∆t) .

We also prove the corollary in the next section.
Remark 3.2. Corollary 3.1 improves Theorem 4.1(b) in [43] for the splitting

defined in (3.5). Note that the generality in [43] allows for a G function also depending
on the gradient. The convergence rate O(

√
∆t) is obtained for this more general

operator splitting.

4. Proofs of Theorem 3.1 and Corollary 3.1. In this section, we provide
proofs of Theorem 3.1 and Corollary 3.1, starting with the proof of Theorem 3.1. For
orientation, let us mention that a longer preprint version of this paper (containing
more detailed proofs) is available [22] (see also [21]).

An important step in the proof of Theorem 3.1 is to introduce a suitable compar-
ison function.

(a) Introducing a comparison function.
Before we can introduce the comparison function, we need an auxiliary result.

For 0 ≤ s ≤ t ≤ T , let w(·, t) = S(t, s)w0 denote the viscosity solution of the
Hamilton–Jacobi equation (3.2) with initial condition w0. For a given function ψ ∈
C1(RN × [s, T ]), we introduce the function

q(x, t) := w(x, t) + ψ(x, t).

Assuming that w is C1, it follows that q is a C1 solution of the following initial value
problem:

qt + H(t, x, q − ψ,Dq −Dψ) = ψt in R
N × (s, T ),

q(x, s) = w0(x) + ψ(x, s) in R
N .

(4.1)

Moreover, this is still true if w and q are only required to be viscosity solutions of
(3.2) and (4.1), respectively.
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Lemma 4.1. Let w be a viscosity solution of (3.2) and ψ ∈ C1(RN × [s, T ]); then
q := w + ψ is a viscosity solution of (4.1).

Proof. Assume φ ∈ C1(RN × (s, T )) and that q − φ has a local maximum at
(x0, t0) ∈ R

N × (s, T ). This means that w− (φ−ψ) has a local maximum at (x0, t0).
Since (φ − ψ) is a C1 test function and w is by assumption a viscosity solution of
(3.2), the definition of a viscosity subsolution yields

(φt − ψt)(x0, t0) + H(t0, x0, (q − ψ)(x0, t0), (Dφ−Dψ)(x0, t0)) ≤ 0,

where we replaced w(x0, t0) by (q − ψ)(x0, t0). The inequality holds for any test
function φ and for any local maximum of q−φ. Therefore q is a viscosity subsolution
of (4.1). Similarly one can show that q is a viscosity supersolution of (4.1).

Let j be such that 1 ≤ j ≤ n. Recall that to compute the operator splitting
solution v at time tj = j∆t, we do j steps. In each step we first apply the Euler
operator E for a time interval of length ∆t. Then we use the resulting function as
an initial condition for problem (3.2) which is also solved for a time interval of length
∆t. The main step in the proof of Theorem 3.1 is to estimate the error between u
and v for one single time interval of length ∆t. Hence we are interested in estimating

‖u(·, ti) − S(ti, ti−1)E(ti, ti−1)v(·, ti−1)‖, i = 1, . . . , n,

where v(x, 0) = v0(x).
Now fix i = 1, . . . , n, and define the function ζ : R

N × [ti−1, ti] → R as follows:

ζ(x, t) := S(t, ti−1)E(ti, ti−1)v(·, ti−1)(x).

Observe that

ζ(x, ti) = v(x, ti).

To estimate the difference between u(·, ti) and v(·, ti), we need to introduce the com-
parison function qδ : R

N × [ti−1, ti] → R defined by

qδ(x, t) = ζ(x, t) + ψδ(x, t),(4.2)

where ψδ : R
N × [ti−1, ti] → R is defined by

ψδ(x, t) = −(ti − t)

∫
RN

ηδ(z)G(ti−1, x− z, v(x− z, ti−1)) dz.(4.3)

Here ηδ(x) := 1
δN

η(x
δ ), where η is the standard mollifier satisfying

η ∈ C∞
0 (RN × [0, T ]), η(x) = 0 when |x| > 1,

∫
RN

η(x) dx = 1.

The introduction of the function qδ is inspired by the comparison function used in
[34]. For each x ∈ R

N , we see that qδ(x, ti) = v(x, ti) and we will later show that

qδ(x, ti−1) → v(x, ti−1) as δ → 0.

The difference

u(·, ti) − v(·, ti) = u(·, ti) − qδ(·, ti)
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will be estimated by deriving a bound on the difference

u(·, t) − qδ(·, t) ∀t ∈ [ti−1, ti].

To this end, observe that qδ is a viscosity solution to

qδt + H(t, x, qδ − ψδ, Dqδ −Dψδ) = ψδ
t in R

N × (ti−1, ti),(4.4)

qδ(x, ti−1) = ζ(x, ti−1) + ψδ(x, ti−1) in R
N .(4.5)

This is a consequence of Lemma 4.1 since ψδ ∈ C∞(RN × [ti−1, ti]). Now we proceed
by deriving a priori estimates for u, v, ψδ, and qδ that are independent of ∆t.

(b) A priori estimates for u, v, ψδ, and qδ.
We start by analyzing S and E. Let w ∈ Lipb(R

N ). Assume that

max

{
sup

0≤s≤t≤T
‖E(t, s)w‖, sup

0≤s≤t≤T
‖S(t, s)w‖

}
< ∞.(4.6)

For 0 ≤ s ≤ t ≤ T , let w̄(x, t−s) = S(t, s)w(x). This function is a viscosity solution of
(3.2) on [0, T−s] when H(t, x, r, p) is replaced by H(τ+s, x, r, p). The initial condition
is w̄(x, 0) = w(x). Applying (2.4)–(2.6) to w̄ and then using S(t, τ +s)w(x) = w̄(x, τ),
we get the following estimates:

‖S(t, s)w‖ ≤ eγ(t−s)(‖w‖ + C(t− s)),(4.7)

‖D{S(t, s)w}‖ ≤ eγ(t−s) (‖Dw‖ + C(t− s)) ,(4.8)

‖S(t, s)w − w‖ ≤ (t− s)c(‖w‖, ‖Dw‖),(4.9)

for some constants γ and C, and some positive function c ∈ C(R2).
Let us turn to E. The following estimates are consequences of the definition (3.1)

of E and the properties of G and w:

‖E(t, s)w‖ ≤ (1 + γ(t− s)) ‖w‖ + C(t− s),(4.10)

‖D{E(t, s)w}‖ ≤ (1 + γ(t− s)) ‖Dw‖ + C(t− s),(4.11)

‖E(t, s)w − w‖ ≤ (t− s)(C + γ‖w‖).(4.12)

Now we see that assumption (4.6) holds. Just replace t− s by T in expressions (4.7)
and (4.10).

Lemma 4.2. We have that max1≤i≤n ‖v(·, ti)‖ is bounded independently of ∆t.
Moreover, there are constants γ and C such that for every 1 ≤ i ≤ n,

‖v(·, ti)‖ ≤ eγti(‖v0‖ + tiC),(4.13)

‖Dv(·, ti)‖ ≤ eγti (‖Dv0‖ + tiC) .(4.14)

Proof. Assume that v is bounded; then successive use of expressions (4.7) and
(4.10) yields (4.13), and similarly (4.14) follows from (4.8) and (4.11). In (4.13),
replace ti by T and we see that the assumption holds.

From the definition (4.3) of ψδ, we easily see that the following lemma holds.
Lemma 4.3. There is a constant C such that for every 1 ≤ i ≤ n and t ∈ [ti−1, ti],

‖ψδ(·, t)‖ ≤ (ti − t) (C + γ ‖v(·, ti−1)‖) ,(4.15)

‖Dψδ(·, t)‖ ≤ (ti − t) (C + γ ‖Dv(·, ti−1)‖) .(4.16)
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Now we can prove a corresponding result for qδ.

Lemma 4.4. There are constants γ and C such that for every 1 ≤ i ≤ n and
t ∈ [ti−1, ti],

‖qδ(·, t)‖ ≤ eγ∆t (‖v(·, ti−1)‖ + C∆t) ,(4.17)

‖Dqδ(·, t)‖ ≤ eγ∆t (‖Dv(·, ti−1)‖ + C∆t) ,(4.18)

‖qδ(·, t) − v(·, ti−1)‖ ≤ C∆t.(4.19)

Proof. We give only the proof of (c), since the other statements are easy conse-
quences of expressions (4.7), (4.8), (4.10), (4.11), and Lemma 4.3. Note that by the
definition (4.2) of qδ,

‖qδ(·, t) − v(·, ti−1)‖ ≤ ‖S(t, ti−1)E(ti, ti−1)v(·, ti−1) − E(ti, ti−1)v(·, ti−1)‖
+ ‖E(ti, ti−1)v(·, ti−1) − v(·, ti−1)‖ + ‖ψδ‖.

By Lemmas 4.3 and 4.2 we can find a constant independent of t, i and ∆t such that

‖ψδ‖ ≤ C∆t.

Similarly we use (4.12) and Lemma 4.2 to show that

‖E(ti, ti−1)v(·, ti−1) − v(·, ti−1)‖ ≤ C∆t,

where the constant is independent of i and ∆t. By estimate (4.9) we get

‖S(t, ti−1)E(ti, ti−1)v(·, ti−1) − E(ti, ti−1)v(·, ti−1)‖ ≤ C∆t.

Here we used that c(‖E(ti, ti−1)v(·, ti−1)‖, ‖D{E(ti, ti−1)v(·, ti−1)}‖) ≤ C by (4.10),
(4.11), and Lemma 4.2 for a constant C independent of i, n,∆t. Now (4.19) fol-
lows.

As a consequence of these results, we get the following bounds:

max
1≤i≤n

‖v(·, ti)‖, sup
[ti−1,ti]

‖ψδ(·, t)‖, sup
[ti−1,ti]

‖qδ(·, t)‖, sup
[0,T ]

‖u(·, t)‖ ≤ C,

max
1≤i≤n

‖Dv(·, ti)‖, sup
[ti−1,ti]

‖Dψδ(·, t)‖, sup
[ti−1,ti]

‖Dqδ(·, t)‖, sup
[0,T ]

‖Du(·, t)‖ ≤ C
(4.20)

for some constant C independent of i, n, and ∆t. This enables us to pick global
Lipschitz constants for H and G that are independent of ∆t; see also [21, 22]. We are
now in a position to prove Theorem 3.1.

(c) The proof of Theorem 3.1.

We prove Theorem 3.1 by applying Proposition 2.1 to u and qδ. Let us start by
deriving an inequality of the form (2.8) from (4.4) satisfied by the comparison function
qδ.

Let φ be a C1 function and assume that qδ − φ has a local maximum point in
(t, x). Then by the definition of viscosity subsolution and (4.4) we get

φt(x, t) + H(t, x, qδ(x, t) − ψδ(x, t), Dφ(x, t) −Dψδ(x, t)) ≤ ψδ
t (x, t).(4.21)
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Now we estimate ψδ
t (x, t) and H(t, x, qδ(x, t)−ψδ(x, t), Dφ(x, t)−Dψδ(x, t)) as follows:

|ψδ
t (x, t) −G(ti−1, x, q

δ(x, t))|

=

∣∣∣∣
∫

RN

ηδ(z)G(ti−1, x− z, v(x− z, ti−1))dz −G(ti−1, x, q
δ(x, t))

∣∣∣∣
≤
∫

RN

ηδ(z)|G(ti−1, x− z, v(x− z, ti−1)) −G(ti−1, x− z, qδ(x− z, t))|dz

+

∫
RN

ηδ(z)|G(ti−1, x− z, qδ(x− z, t)) −G(ti−1, x, q
δ(x− z, t))|dz

+

∫
RN

ηδ(z)|G(ti−1, x, q
δ(x− z, t)) −G(ti−1, x, q

δ(x, t))|dz
≤ C(∆t + δ).

Here we used the Lipschitz continuity of G and Lemmas 4.2 and 4.4. Using this
estimate and the Lipschitz continuity of G in t, we see that

ψδ
t (x, t) ≤ G(t, x, qδ(x, t)) + |G(ti−1, x, q

δ(x, t)) −G(t, x, qδ(x, t))|
+ |ψδ

t(x, t) −G(ti−1, x, q
δ(x, t))|

≤ G(t, x, qδ(x, t)) + C(∆t + δ).

(4.22)

We get the following estimate for H:

H(t, x, qδ(x, t) − ψδ(x, t), Dφ(x, t) −Dψδ(x, t))

≥ H(t, x, qδ(x, t), Dφ(x, t)) − C|ψδ(x, t)| − C|Dψδ(x, t)|
≥ H(t, x, qδ(x, t), Dφ(x, t)) − C∆t,

(4.23)

where we have used the Lipschitz continuity of H and Lemmas 4.2 and 4.3. Substi-
tuting (4.22) and (4.23) into (4.21), we get

φt(x, t) + H(t, x, qδ(x, t), Dφ(x, t)) −G(t, x, qδ(x, t)) ≤ C(∆t + δ).

In a similar way we can show that if φ̄ is C1 and qδ − φ̄ has a local minimum in (x, t),
then

φ̄t(x, t) + H(t, x, qδ(x, t), Dφ̄(x, t)) −G(t, x, qδ(x, t)) ≥ −C(∆t + δ).

This means that qδ satisfies

|qδt (x, t) + H(t, x, qδ(x, t), Dqδ(x, t)) −G(t, x, qδ(x, t))| ≤ C(∆t + δ)

in the viscosity sense.

Now we can apply Proposition 2.1 to u and qδ. Let τ ∈ [ti−1, ti] and let L be the
Lipschitz constant of G with respect to v. Then

eL(ti−1−τ)‖u(·, τ) − qδ(·, τ)‖ ≤ ‖u(·, ti−1) − qδ(·, ti−1)‖ + C(∆t + δ)∆t.(4.24)
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Next, observe that

|v(x, tj) − qδ(x, tj)| = |v(x, tj) − E(tj+1, tj)v(·, tj)(x) − ψδ(x, tj)|
= |∆tG(tj , x, v(x, tj)) + ψδ(x, tj)|
≤ ∆t

∫
RN

ηδ(z)
∣∣∣G(tj , x, v(x, tj))

−G(tj , x− z, v(x− z, tj))
∣∣∣ dz

≤ ∆t δC‖Dv(·, tj)‖ + ∆t δC,

(4.25)

where the last estimate follows from the triangle inequality and the Lipschitz conti-
nuity of G and v(·, tj). Since Dv(·, tj) is bounded uniformly in j and ∆t, we have
that ∥∥v(·, tj) − qδ(·, tj)

∥∥ ≤ C∆tδ

for some constant C. By (4.24), (4.25), and Lemma 4.2, we get

‖u(·, ti) − v(·, ti)‖ =
∥∥u(·, ti) − qδ(·, ti)

∥∥
≤ eL∆t ‖u(·, ti−1) − v(·, ti−1)‖ + C∆t(∆t + δ).

(4.26)

Since i = 1, . . . , n was arbitrary, successive use of (4.26) gives

‖u(·, tj) − v(·, tj)‖ ≤ eLtj‖u0 − v0‖ + C(∆t + δ)tj

≤ C(‖u0 − v0‖ + ∆t + δ), for j = 1, . . . , n,
(4.27)

where C does not depend on ∆t. Now we are done since sending δ → 0 in inequality
(4.27) produces the desired result.

(d) The proof of Corollary 3.1.
We end this section by giving the proof of Corollary 3.1. To this end, we need

Theorem 3.1 and the following estimate:

‖v(x, ti) − v̄(x, ti)‖ ≤ C∆t, i = 1, . . . , n,(4.28)

where C is a constant depending on G, H, T , ‖u0‖, ‖Du0‖, ‖v0‖, and ‖Dv0‖ but not
∆t. Equipped with (4.28), we get, for every i = 1, . . . , n,

‖u(·, ti) − v̄(·, ti)‖ ≤ ‖u(·, ti) − v(·, ti)‖ + ‖v(·, ti) − v̄(·, ti)‖
≤ C(‖u0 − v0‖ + ∆t),

and we can conclude that Corollary 3.1 holds.
It remains to show (4.28). First note that

∥∥Ē(tj , t)v̄(·, tj)
∥∥ and ‖v̄(·, tj)‖ can

be bounded independently of ∆t by arguments similar to those used in the proof of
Lemma 4.2. This means that we can find a Lipschitz constant for G(t, x, ·) that is
independent of ∆t (and x, t). Using the same arguments as when estimating the local
truncation error for the Euler method we find that∣∣E(ti, ti−1)v(x, ti−1) − Ē(ti, ti−1)v̄(x, ti−1)

∣∣ ≤ eγ∆t |v(x, ti−1) − v̄(x, ti−1)| + C∆t2

for constant γ and C that are independent of ∆t. Now using this and (2.3), we find
that

‖v(·, ti) − v̄(·, ti)‖ =
∥∥S(ti, ti−1)E(ti, ti−1)v(·, ti−1) − S(ti, ti−1)Ē(ti, ti−1)v̄(·, ti−1)

∥∥
≤ eγ∆t

∥∥E(ti, ti−1)v(·, ti−1) − Ē(ti, ti−1)v̄(·, ti−1)
∥∥

≤ eγ∆t
(
‖v(·, ti−1) − v̄(·, ti−1)‖ + C∆t2

)
.(4.29)
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Since v̄(x, 0) = v0(x), repeated use of inequality (4.29) gives (4.28). This completes
the proof.

5. A fully discrete splitting method for one-dimensional equations. In
this section we describe a fully discrete operator splitting method that actually pos-
sesses a linear convergence rate. There are not many numerical methods that are
likely to produce linear convergence, since numerical methods for Hamilton–Jacobi
equations are usually based on numerical methods for conservation laws. Most meth-
ods for conservation laws (even “higher order” methods) have an L1 convergence rate
of 1/2 (or less). Roughly speaking, this translates to a L∞ convergence rate for the
Hamilton–Jacobi equations of 1/2. Therefore the linear error contribution O(∆t)
(see Theorem 3.1) coming from the temporal splitting is swamped up by the method-
dependent error, unless one uses a method that possesses a convergence rate of at least
1 for the Hamilton–Jacobi equation (3.2). The only methods likely to achieve this are
translations of front tracking methods for conservation laws. Since these methods are
first order (or higher [38]) only in the one-dimensional case, this section is entirely
devoted to one-dimensional equations.

The front tracking method we shall use here was first proposed by Dafermos [10]
and later shown to be a viable method for conservation laws by Holden, Holden, and
Høegh-Krohn [16]. An extension of this method to Hamilton–Jacobi equations was
studied in [26].

Without modification it applies to the initial value problem for the scalar conser-
vation law

pt + H(p)x = 0,

which is equivalent (see the discussion in section 1) to the Hamilton–Jacobi equation

ut + H (ux) = 0, u(x, 0) = u0(x).(5.1)

The Riemann problem for this is the case where

u0(x) = u0(0) +

{
plx for x < 0,

prx for x ≥ 0,
(5.2)

where pl and pr are constants. We now briefly describe the solution of (5.2). Let
H� (p; pl, pr) denote the lower convex envelope of H between pl and pr, i.e.,

H� (p; pl, pr) = sup
{
G(p)

∣∣ G′′ ≥ 0 and G(p) ≤ H(p) for p between pl and pr

}
.

(5.3)

Similarly, let H� (p; pl, pr) denote the upper concave envelope of H between pl and
pr. Also let

H̃ (p; pl, pr) =

{
H� (p; pl, pr) if pl ≤ pr,

H� (p; pl, pr) if pl > pr.
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Note that H̃ ′(p) is monotone between pl and pr; hence we can define its inverse and
set

p(x, t) =



pl for x < tmin

{
H̃ ′ (pl) , H̃

′ (pr)
}

,(
H̃ ′
)−1(

x
t

)
for tmin

{
H̃ ′ (pl) , H̃

′ (pr)
}
≤ x < tmax

{
H̃ ′ (pl) , H̃

′ (pr)
}
,

pr for x ≥ tmax
{
H̃ ′ (pl) , H̃

′ (pr)
}

.

(5.4)

Then the viscosity solution of the Riemann problem (5.2) is given by (see [26])

u(x, t) = u0(0) + xp(x, t) − tH(p(x, t)).(5.5)

Note that in the case where H is convex, this formula can be derived from the Hopf–
Lax formula for the solution to (5.1).

Note that the above construction (5.4) and (5.5) requires only that H is Lipschitz
continuous, not differentiable. Exploiting this, let δ be a small positive number and
set

Hδ(p) = H(iδ) + (p− iδ)
H((i + 1)δ) −H(iδ)

δ
for iδ ≤ p < (i + 1)δ.(5.6)

If H is Lipschitz continuous, then Hδ is piecewise linear and Lipschitz continuous.
Furthermore, also H̃δ will be piecewise linear and ((H̃δ)′)−1 will be piecewise constant.
Now set uδ to be the viscosity solution of the Riemann problem for the equation

uδ
t + Hδ

(
uδ
x

)
= 0.

From (5.5) we then see that uδ will be piecewise linear. The discontinuities in uδ
x will

move with constant speed in the (x, t) plane.
This construction can be extended to more general initial values. Assume that

uδ
0(x) is a continuous piecewise linear function such that

lim
δ→0

∥∥uδ
0 − u0

∥∥ = 0.(5.7)

Then one can solve the initial Riemann problems located at the discontinuities of uδ
0x

according to (5.5). At some t1 > 0, two of these discontinuities will interact, thereby
defining a new Riemann problem at the interaction point. This can now be solved
and the process repeated. Note that this amounts to solving the initial value problem
for the conservation law

pδt + Hδ
(
pδ
)
x

= 0, pδ(x, 0) = uδ
0x(x).

In [16] it was shown that this yields a piecewise constant function pδ(x, t), which is
constant on a finite number of polygons in the (x, t) plane. Let uδ(x, t) denote the
result of applying (5.5) at each interaction of discontinuities. From [26], we have the
following lemma.

Lemma 5.1. The piecewise linear function uδ(x, t) is the viscosity solution of

uδ
t + Hδ

(
uδ
x

)
= 0, uδ(x, 0) = uδ

0(x).(5.8)

Now we can state our main result.
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Theorem 5.1. Let u(x, t) be the viscosity solution of

ut + H (ux) = G(x, t, u), u(x, 0) = u0(x).(5.9)

Let Sδ be the solution operator for (5.8), and let

vδ(x, t) = Sδ (ti, ti−1)E (ti, ti−1) vδ(·, ti−1) for t ∈ (ti−1, ti],(5.10)

with

vδ(x, 0) = u0(j∆x) + (x− j∆x)
u0((j + 1)∆x) − u0(j∆x)

∆x
for x ∈ [j∆x, (j + 1)∆x].

Then there is a constant K, depending only on ‖u0‖, ‖u0,x‖, H, G and T , such that

∥∥u(·, t) − vδ(·, t)∥∥ ≤ K (δ + ∆t + ∆x) ∀t ∈ (0, T ).(5.11)

Proof. Let wδ denote the viscosity solution of

wδ
t + Hδ

(
wδ

x

)
= G

(
t, x, wδ

)
, wδ(x, 0) = u0(x).(5.12)

Then Theorem 3.1 and the fact that wδ is Lipschitz continuous in time ensures the
existence of a suitable constant K such that∥∥wδ(·, t) − vδ(·, t)∥∥ ≤ K

(∥∥vδ(·, 0) − u0

∥∥+ ∆t
)
.(5.13)

By the definition of vδ(x, 0) and since u0 ∈ Lipb(R),∥∥vδ(·, 0) − u0

∥∥ ≤ K∆x.(5.14)

Also, from Proposition 1.4 in [42], we find that∥∥u(·, t) − wδ(·, t)∥∥ ≤ K sup
|p|≤L

∣∣H(p) −Hδ(p)
∣∣ ≤ Kδ,(5.15)

since we assume that H is locally Lipschitz. The result now follows from (5.13) and
(5.15).

Remark 5.2. If H and u0 are twice continuously differentiable, then the estimates
(5.14) and (5.15) can be replaced by∥∥vδ(·, 0) − u0

∥∥ ≤ K∆x2 and
∥∥u(·, t) − wδ(·, t)∥∥ ≤ Kδ2,

respectively. Thus the final error estimate (5.11) is found to be∥∥u(·, t) − vδ(·, t)∥∥ ≤ K
(
δ2 + ∆x2 + ∆t

)
.(5.16)

Therefore, if H and u0 are C2, then δ and ∆x can be chosen much larger than ∆t
without loss of accuracy.

Example 5.1. We now illustrate the above result with a concrete example and
test the operator splitting method (5.10) on the initial value problem

ut +
1

3
(ux)

3
= u, u(x, 0) =

{
sin(πx) for |x| ≤ 1,

0 otherwise.
(5.17)
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Fig. 1. Left: u(x, 1/2) with ∆t = 0.25, right: u(x, 1/2) with ∆t = 0.025.

Table 1
Convergence of operator splitting applied to (5.17).

100 × relative L∞ error
#steps ∆x = 0.04 ∆x = 0.02 ∆x = 0.01

1 41.2 38.4 39.9
2 22.8 23.2 23.2
4 11.3 14.5 11.8
8 6.2 7.4 5.9
16 3.3 3.0 2.9
32 1.6 1.8 1.4

The approximate solution operators are front tracking for the Hamilton–Jacobi equa-
tion

ut +
1

3
(ux)

3
= 0

and Euler’s method for the ordinary differential equation ut = u. Figure 1 shows
the approximate solution found using ∆x = 0.02 and δ = 2∆x, as well as the up-
wind approximation (5.18) with the same ∆x. To the left we see the approximation
u(x, 1/2) obtained by two splitting steps, i.e., ∆t = 0.25, and to the right we have
used ∆t = 0.025. To check the convergence rate (5.11), we compared the splitting
approximations with a difference approximation on a fine grid. We used the upwind
stencil

ui+1
j = (1 + ∆t)ui

j −
∆t

3

(
ui
j − ui

j−1

∆x

)3

(5.18)

with (hopefully) self-explanatory notation. For the reference solution we used ∆x =
1/250. In Table 1, we list the percentage relative L∞ error for three difference se-
quences of approximations: ∆x = 0.04, ∆x = 0.02, and ∆x = 0.01. In all cases
δ = 2∆x. We compared the approximations at t = 1/2. In the left column are the
number of splitting steps (∆t = 1/2#steps) and in the other columns we show the
errors. From this table we see that the numerical convergence rate is linear in all
three cases, confirming (5.11).
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Fig. 2. Approximate solutions of (5.19) at t = 1 with ∆t = 1/Nstep and Nstep = 1, 2, 4, 8.

Example 5.2. As another example where we test the convergence rate (5.16), we
compute approximate solutions of the initial value problem

ut +
1

2
(ux)

2
= u, u(x, 0) = sin(πx).(5.19)

As a reference solution, we have used the Engquist–Osher (or generalized upwind)
scheme

ui
j = ui

j(1 + ∆t) − 1

2


min

(
ui
j+1 − ui

j

∆x
, 0

)2

+ max

(
ui
j − ui

j−1

∆x
, 0

)2



with ∆x = 1/2000 (special millennium value). We compared the approximations at
t = 1. In Figure 2 we show the approximate solutions with 1, 2, 4, and 8 steps as well
as the reference solution at t = 1. Also, instead of the splitting described above, one
can use the Strang splitting

u(·, i∆t) ≈ [E(∆t/2)S(∆t)E(∆t/2)]
i
u0.

This gives formal second order convergence, and one would expect it to be better than
the Godunov splitting in practice. To take advantage of (5.16), we set

∆t = 1/#steps, ∆x =
√

∆t/25, and δ =
√

∆t/10

as parameters for the front tracking scheme. In Table 2 we list the results. From this
we see that in both cases the convergence rate is linear, but Strang splitting gives a
much smaller error.

Acknowledgment. We thank an anonymous referee for drawing our attention
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Table 2
Convergence of Godunov and Strang splitting.

100 × relative L∞ error
#steps Godunov Strang

1 18.80 3.32
2 7.46 1.73
4 4.04 0.93
8 1.67 0.48
16 0.80 0.21
32 0.48 0.10
64 0.19 0.05
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with several independent variables, Z̆. Vyčisl. Mat. i Mat. Fiz., 6 (1966), pp. 884–894.
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