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Abstract. We derive error estimates for approximate (viscosity) solutions of

Bellman equations associated to controlled jump-diffusion processes, which are

fully nonlinear integro-partial differential equations. Two main results are ob-
tained: (i) error bounds for a class of monotone approximation schemes, which

under some assumptions includes finite difference schemes, and (ii) bounds on

the error induced when the original Lévy measure is replaced by a finite mea-
sure with compact support, an approximation process that is commonly used

when designing numerial schemes for integro-partial differential equations. Our
proofs use and extend techniques introduced by Krylov and Barles-Jakobsen.

1. Introduction

We are interested in deriving error estimates for numerical schemes for fully
nonlinear degenerate elliptic integro-partial differential equation of Bellman type.
These nonlocal equations take the form

(1.1) H(x, u(x), Du(x), D2u(x), u(·)) = 0 in RN ,
where, for any (x, r, p,X) ∈ RN×R×RN×SN and any sufficiently regular function
u, the nonlinear functional (Hamiltonian) H = H(x, r, p,X, u(·)) is defined by

H(x, r, p,X, u(·))

= sup
θ∈Θ

{
− 1

2
tr [aθ(x)X]− bθ(x) · p− J θu(x) + cθ(x)r − fθ(x)

}
,

(1.2)

where aθ(x) = σθ(x)σθ(x)>, while the integral operator J θ is defined by

(1.3) J θu(x) =
∫
E

[
u(x+ ηθ(x, z))− u(x)− 1|z|<1η

θ(x, z)Du(x)
]
ν(dz).

Here SN is the set of symmetric N ×N matrices, and Θ is a closed subset of Eu-
clidean space. The coefficients σθ, bθ, ηθ, cϑ, fϑ take values in RN×P ,RN ,RN ,R,R
and are assumed to be sufficently regular (typically Lipschitz continuous in x).

In (1.3), ν(dz) is a given Radon measure on E = RM \ {0}, the so-called Lévy
measure which typically possesses a singularity at the origin. The term (1.3) de-
generates whenever the jump amplitude ηθ is zero on {|z| > 0}.

Because of the degeneracy in the integral operator and the second order dif-
ferential operator (the diffusion matrix aθ(x) is mearly nonnegative definite) we
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call equation (1.1) degenerate elliptic. Such equations may not possess smooth
solutions (not even in the linear case), and the appropriate notion of solutions
is that of viscosity solutions. The theory of viscosity solutions for (pure) partial
differential equations is highly developed [22, 28], and there has been an inter-
est in recent years to apply this theory to integro-partial differential equations
[1, 2, 3, 4, 5, 7, 12, 13, 14, 29, 34, 35, 42, 43, 44, 45, 46, 48, 49]. Of particular
relevance to the present paper are the works [34, 35].

Nonlocal integro-partial differential equations such as (1.1) arise when one at-
tempts to solve stochastic optimal control problems with the dynamic programming
approach, see [28] for the case of no jumps. Examples include various types of port-
folio optimization problems in which the risky assets follow jump-diffusion (Lévy)
processes possessing discontinuous sample paths, see for example [12, 13, 14, 43]
and the references cited therein. The value function of such a control problem is
belived to be the unique viscosity solution of a Bellman equation of the form (1.1).
So far rigorous proofs exist only in particular cases [30]. When Θ is a singleton
the equation (1.1) reduces to a linear integro-partial differential equation. Such
equations are relevant in the pricing theory of financial derivatives, see [20].

The standard model for the price evolution of stocks (and other risky assets) is
the geometric Brownian motion, which assumes that the stock returns are normally
distributed. However, it turns out that the normal distribution poorly fits the stock
returns, at least on sufficiently small time scales. Indeed, the returns distributions
are, for example, leptokurtic and have longer and fatter tails than the normal
distribution. To improve upon the shortcomings of the standard model, many
jump-diffusion models have been suggested in the literature over the years, see,
e.g., [20, 47] for the most popular models. The empirical fact that Lévy processes
with discontinuous sample paths tend to better model, e.g., stock prices is one main
reason for the (renewed) interest in stochastic optimal control of jump-diffusion
processes and option pricing in markets based on such processes.

We are interested in approximation schemes for nonlocal equations such as (1.1)
and their convergence properties. The approximation schemes that we have in
mind are typically those based on the finite difference method and the the so-called
control or semi-Lagrangian schemes. We refer to [39] for a general introduction to
finite difference (Markov chain) schemes for stochastic control problems, see also
[16, 25, 28]. For control schemes we refer to [41, 19]. We will not consider control
schemes in this paper, but our framework can be applied also to such schemes.

There are few works on numerical schemes for fully nonlinear degenerate integro-
partial differential equations, but see the discussion about jump-diffusion processes
in [39]. Furthermore, in [26, 27] a finite difference (Markov chain) scheme along
the lines of [39] is proposed and shown to converge to the unique viscosity solution
for a singular stochastic optimal control problem of investment-consumption type,
with the underlying risky asset being based on an exponential second order singular
Lévy model. The construction and analysis of numerical schemes for linear integro-
partial differential equations arising as pricing equations in financial markets of
jump-diffusion type is currently an active field of research, see the recent papers
[17, 18, 20, 21, 24, 40], where one can pay particular attention to the paper [21]
inasmuch as it contains error bounds for linear equations with constant coefficients.

Although there is a well-established theory for proving convergence of approx-
imate (viscosity) solutions to second order equations [10, 22, 28], see also [39] for
probabilistic proofs, the question of error estimates is much more difficult and re-
mained open until the recent works by Krylov [36, 37, 38] and Barles and Jakobsen
[8, 9, 31] on finite difference schemes and more generally on monotone approxima-
tion schemes for (convex) Bellman equations associated with controlled diffusions.
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Herein we use these recent advances for second order partial differential equations
to derive error estimates for integro-partial differential equations.

In this paper we are interested in deriving error estimates for monotone ap-
proximation schemes for the integro-partial differential equation (1.1). We write a
general monotone approximation scheme abstractly as

(1.4) S(h, x, uh(x), [uh]x) = 0, x ∈ Rn,

where h = (h1, h2) ∈ Rn × Rm denotes the discretization parameters; h1 > 0 is
the x-mesh size (approximation of derivatives), while h2 > 0 is the z-mesh size
(approximation of the integral), uh : RN → R is the solution of the scheme (1.4),
and [uh]x is a function defined at x in terms of (possibly all) values of uh. Roughly
speaking, we assume that (1.4) is a consistent, monotone (S is nondecreasing in
the uh(x) - slot and nonincreasing in the [uh]x - slot), and uniformly continuous
approximation of (1.1) (precise conditions will be given in the next section).

Our first main result is an explicit estimate for the pointwise difference between
the unique viscosity solution u of (1.1) and the solution uh of the scheme (1.4).
To prove the error estimate we use the classical idea of considering a sequence
of smooth approximate solutions uε of (1.1); if such a sequence exists and one
has a bound on the derivatives of uε and ‖u− uε‖L∞(RN ), then the consistency
condition and comparison properties of the scheme allow us to plug uε into S to
get an estimate for ‖uε − uh‖L∞(RN ). These results immediately imply an estimate
of ‖u− uh‖L∞(RN ) depending on h and ε. Optimizing with respect to ε we obtain
the desired rate of convergence. However, it is not easy to implement this strategy,
as it is well explained in [8, 9, 36, 37, 38]. Following an idea of Krylov, which he
refers to as the method of “shaking the coefficients”, we introduce the auxiliary
equation

(1.5) max
|e|≤ε

[
H(x+ e, uε, Duε, D2uε, uε(·))

]
= 0 in RN .

Taking into account the convexity of H, we then regularize via convolution the
unique viscosity solution uε of (1.5) to obtain a sequence of subsolutions uε of
(1.1). With this and the consistency/comparison principle for the scheme, we can
produce an upper estimate for u − uh. To obtain the lower estimate, we follow
Barles and Jakobsen [8]: We exchange the role of the problem and of the scheme,
and introduce the auxiliary scheme

(1.6) max
|e|≤ε

[S(h, x+ e, uεh(x), [uεh]x)] = 0,

and then proceed in a similar way as for the upper bound. However to conclude here
it is neccesary to introduce a strong assumption on the scheme (1.6), see Assumption
(D) Section 3. In the pure PDE case such an assumption is satisfied for (1) finite
difference methods with state independent diffusion coefficients [8], (2) control type
schemes with general diffusion coefficients [8], and (3) finite difference schemes when
the diffusion coefficients are state dependent with specific (but still rather general)
structure [38]. Herein we check assumption (D) only in case (1), while we consider
case (3) in a follow-up paper [15] (with partially different methods).

Having established an error estimate for a general class of approximation schemes
of the form (1.4), an application is presented next, in which we apply it to a
finite difference scheme based on upwind (one-sided) differencing of the first order
derivatives, central differencing of the second order derivatives, and an integration
rule to approximate the integro operator. In this application we assume that σθ does
not depend on x (case (1) above) and that the Lévy measure ν(dz) is bounded and
compactly supported. The existence and uniqueness of a solution to the numerical
scheme follow from standard fixed point considerations.
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In the general case in which the Lévy measure can be unbounded as well as have
unbounded support, we do not directly discretize the integral operator as it stands
in (1.1). In particular, due to the second order singularity of the Lévy measure, we
follow [6, 26, 27, 21] and replace (1.1) by an approximate equation in which this
singularity has been replaced by an additional diffusion term, accounting for the
infinite activity of the Lévy process at the origin. To be more precise, for r > 0
small and R > 0 large we introduce a truncated domain {z : r < |z| < R} and a
truncated Lévy measure νr,R(dz):

νr,R(dz) = 1r<|z|<Rν(dz),

where 1 denotes the characteristic function and the truncated domain not only
accounts for the unboundedness at the origin of the Lévy measure, but also the
unboundedness of the domain E. The approximate equation then reads

(1.7) Hr,R(x, u(x), Du(x), D2u(x), u(·)) = 0 in RN ,

where the approximate Hamiltonian Hr,R is obtained by replacing aθ and J θ in
(1.2) by aθ + aθr,R and J θr,R, respectively. The additional diffusion coefficient aθr,R
is supposed to be chosen such that it is a model for the infinite activity of the
original Lévy process at origin (we suggest several choices of aθr,R), while J θr,R is
the integral operator obtained by replacing the Lévy measure ν(dz) in (1.3) by the
truncated measure νr,R(dz). As the measure νr,R(dz) is bounded and compactly
supported, the integro-partial differential equation (1.7) can be discretized by the
finite difference scheme introduced earlier.

To control the error induced by truncating the Lévy measure and by introducing
the additional diffusion coefficient, we need to have an estimate on the difference
between the viscosity solution u of the original equation (1.1) and the viscosity
solution ur,R of the perturbed equation (1.7). Such an estimate follows from the
recent continuous dependence result proved in [34]. However, it turns out that in
some cases we can have better results by using the same approximation method we
used to prove the error bounds for the numerical schemes, and this is the approach
we take in this paper. A key feature of our results is that they reveal how the choice
of aθr,R influences the accuracy of our approximations.

Finally, let us mention that by combining the methods in this paper with those
in [31], we can treat time dependent problems. Moreover, we can include certain
x-dependence in σθ by using the recent methods of Krylov [38], or a completely
general x - dependence in σθ (at the expence of lower convergene rates) following
the arguments of [9]. The details will be presented in future work.

This paper is organized as follows: In Section 2 we introduce some notations to be
used throughout this paper, list various conditions regarding the coefficients of the
equation (1.1), and recall the definition of viscosity solutions as well as some well-
posedness/regularity results for integro-partial differential equations. In Section 3
we provide precise conditions on the approximation scheme (1.4) along with the
statement and proof of the main error estimate. In Section 4 we present a finite
difference scheme for (1.1) and we verify the conditions needed to apply the error
estimate from Section 3, under the assumption the Lévy measure is bounded and
compactly supported. In Section 5 we derive bounds on the error induced when a
general Lévy measure is replaced by a finite measure with compact support. Finally,
in Section 6 we prove some technical results used elsewhere in the text.

2. Preliminaries

In this section we will explain our notation, list the main assumptions, define
what we mean by a (viscosity) solution of (1.1), and state some well-posedness
results for such solutions.
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For O ⊂ Rn we denote by USC(O), LSC(O), C(O), C0,1(O), Cn(O), C∞(O)
respectively the spaces of upper semicontinuous functions, lower semicontinuous
functions, continuous functions, bounded Lipschitz continuous functions, n times
continuously differentiable functions, and infinitely differentiable functions on O.
The subscipt “b” will denote bounded functions and the subscript “pol ” will denote
polynomial growth at infinity. For example if f : O → R belongs to Cpol (O), then
there is a m ∈ N such that

|f(x)| ≤ C(1 + |x|m), for all x ∈ O.
We will use the following norms

|f |0 = sup
x∈RN

|f(x)|, [f ]1 = |Df |0, and |f |1 = |f |0 + [f ]1.

In general we will denote by Dif , for i ∈ N, the vector of the ith order partial
derivatives of f . For r > 0 and x ∈ Rn we define B(x, r) = {y ∈ O : |y − x| < r}.
Moreover, for 0 < κ < 1 we define

(2.1) Eκ =
{
z ∈ Rm : 0 < |z| < κ

}
, and Eκ = E − Eκ.

We let 1O(z) denote the characteristic function of the set O, and finally, for ε > 0
we define a sequence of mollifiers (ρε)ε as

(2.2) ρε(x) =
1
εN

ρ
(x
ε

)
,

where ρ is a positive C∞(RN ) function with unit mass and support in B(0, 1).
In this paper we will use the following assumpions (cf. equation (1.1):

(A.1) ν is a positive radon measure on E such that∫
E1

|z|2 ν(dz) +
∫
E1
e`|z| ν(dz) <∞

for some given ` > 0, where E1 and E1 are defined above.

(A.2) There exists m > 0 such that for any θ ∈ Θ

|σθ|1 + |bθ|1 + |cθ|1 + |fθ|1 ≤ m,

|ηθ(·, z)|1 ≤ m
(
|z|1E1(z) + e`|z|1E1(z)

)
,

where 1E1 ,1E1 are characteristic functions defined above.

(A.3’) There exists λ > 0 such that, for all x ∈ R and for all θ ∈ Θ,

cθ(x) ≥ λ.
Under assumption (A.1) the measure ν may have a singularity at z = 0. Further-
more, under (A.1), the integro-term in (1.1), and hence also the equation itself, is
well-defined in the class of C2

pol functions. This follows from the exponential decay
at infinity of ν and the fact that the singularity at z = 0 is integrable for any C2

function u (to see this do a second order Taylor expansion). It is well known that
under the above assumptions the solutions to (1.1) need not be smooth, so that a
concept of weak solutions needs to be employed. It turns out that a good concept
of weak solutions is that of viscosity solutions.

Definition 2.1. A function u ∈ USC(RN ) (u ∈ LSC(RN )) is a viscosity subsolu-
tion (supersolution) of (1.1) if for every x ∈ RN and φ ∈ C2

pol (RN ) such that x is
a global maximum (minimum) for u− φ,

H(x, u(x), Dφ(x), D2φ(x), φ(·)) ≤ 0 (≥ 0).
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Next we want to give an equivalent definition of viscosity solutions. To do that,
we split the integral term J θu into two parts:

(2.3) J θ(u, φ)(x) = J θκφ(x) + J θ,κ(u,Dφ(x))(x),

where 0 < κ < 1, Eκ and Eκ are defined in (2.1), and

J θκφ(x) =
∫
Eκ

[
φ(x+ ηθ(x, z))− φ(x)− ηθ(x, z)Dφ(x)

]
ν(dz),

J θ,κ(u, p)(x) =
∫
Eκ

[
u(x+ ηθ(x, z))− u(x, t)− 1|z|<1η

θ(x, z)p
]
ν(dz).

It is easy to see that J θκφ is well-defined when φ ∈ C2(Rn) and that J θ,κ(u, p) is
well-defined for p ∈ Rn when u ∈ LSCpol (Rn)∪USCpol (Rn). In addition, it is easy
to establish the following result (see for example [44]):

Lemma 2.1. If (A.1) and (A.2) hold, and φ ∈ C2(RN ), then

lim
κ→0
J θκ (φ)(x) = 0

uniformly in x ∈ RN and θ ∈ Θ.

We can rewrite (1.1) as

(2.4) Hκ(x, u(x), Du(x), D2u(x), u(·), u(·)) = 0.

where

Hκ(x, φ, p,X, φ(·), v(·))

= sup
θ∈Θ

{
− 1

2
tr [σθσθ

>
X]− bθ(x)p− J θκφ(x)− J θ,κ(v, p)(x) + cθ(x)φ− fθ(x)

}
.

Now we state an equivalent definition of viscosity solutions (see for example [44]).

Lemma 2.2 (Alternative definition). Assume (A.1), (A.2), and (A.3’) hold. A
function u ∈ USCpol (RN ) (u ∈ LSCpol (RN )) is a viscosity subsolution (supersol-
ution) of (1.1) if and only if for every x ∈ RN and φ ∈ C2(RN ) such that x is a
global maximizer (minimizer) for u− φ,

Hκ(x, u(x), Dφ(x), D2φ(x), u(·), φ(·)) ≤ 0 (≥ 0) for every κ ∈ (0, 1).

With the use of this equivalent definition and the maximum principle for semicon-
inuous functions adapted to integro-PDEs in [35], it is standard to prove existence,
uniqueness, and regularity results, see, e.g., [4, 7, 35, 34, 44]. Here we state such
results without proofs.

Theorem 2.3. Assume (A.1), (A.2), and (A.3’) hold.
(i) There exists a unique viscosity solution u ∈ Cb(RN ) of equation (1.1) which

is Hölder continuous, i.e., there is a δ ∈ (0, 1] such that

|u(x)− u(y)| ≤ C|x− y|δ for all x, y ∈ RN .

(ii) There exists a constant λ0 depending only on N , supθ[σθ]1, supθ[bθ]1, and

sup
θ

∫
E

[ηθ(·, z)]21ν(dz) such that if λ ≥ λ0, then the viscosity solution u of (1.1) is

Lipschitz continuous (δ = 1 above).
(iii) Let u,−v ∈ USCb(RN ). If u and v are respectively viscosity sub- and

supersolutions of (1.1), then u ≤ v in RN .

In the remaining part of this paper we always make the following assumption:
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(A.3) For all x ∈ R and for all θ ∈ Θ,

cθ(x) ≥ λ0,

where λ0 is defined in Theorem 2.3 (ii).

Hence, in this paper the viscosity solutions to (1.1) are always Lipschitz continu-
ous. However, the results in this paper extend easily to the general case (any λ > 0
and Hölder continuous solutions) by approximation - we refer to [8] where this is
explained in the pure diffusion case.

3. An abstract framework for obtaining error bounds

In this section we develop an abstract framework for deriving error bounds for
approximate solutions to integro-partial differential equations like (1.1). We begin
by stating and explaining a set of conditions that have to be imposed on the general
approximation scheme (1.4). Then we state and prove the the main error bound.

We impose the following conditions on our approximation scheme (1.4):

(C.1) (Monotonicity of the scheme) There exists λ̄ > 0 such that, for every h ≥ 0,
x ∈ RN , ζ ∈ R, µ ≥ 0, and bounded function u, v such that u ≤ v in RN ,
then

S(h, x, ζ + µ, [u+ µ]x) ≥ S(h, x, ζ, [v]x) + λ̄µ.

(C.2) (Regularity) For every h > 0 and φ ∈ Cb(RN ), x 7→ S(h, x, φ(x), [φ]x) is
bounded, continuous on RN and ζ 7→ S(h, x, ζ, [φ]x) is uniformly continu-
ous for bounded ζ, uniformly with respect to x ∈ RN .

(C.3) (Consistency) There exist n ∈ N, Ki, K̄i, ki, k̄i ≥ 0, i = 1, . . . , n, such that
for every v ∈ Cn(RN ), h ≥ 0, and x ∈ RN

|H(x, v,Dv,D2v, v(·))− S(h, x, v(x), [v]x)| ≤
n∑
i=1

|Div|0
(
Kih

ki
1 + K̄ih

k̄i
2

)
.

(C.4) (Convexity) Let (ρε)ε>0 be the mollifiers defined in Section 2. For every
v ∈ C0,1(RN ), there exists a constant k > 0 such that for every x and h∫

RN
S(h, x, v(x− e), [v(· − e)]x)ρε(e) de ≥ S(h, x, (v ∗ ρε)(x), [v ∗ ρ]x)− kε.

(C.5) (Commutation with translations) For any h > 0 small enough, 0 ≤ ε ≤ 1,
y ∈ RN , ζ ∈ R, v ∈ Cb(RN ) and |e| ≤ ε, we have

S(h, y, ζ, [v]y−e) = S(h, y, ζ, [v(· − e)]y).

Assumption (C.4) is natural here because (1.1) is convex. By Jensen’s inequality,
it holds for any scheme (1.4) which is convex in (uh(x), [uh]x) [8].

Definition 3.1. A function u ∈ Cb(RN ) is a subsolution (supersolution) of the
scheme (1.4) if

S(h, x, u(x), [u]x) ≤ 0 (≥ 0) in RN .

From assumptions (C.1) and (C.2) we can derive a comparison result for the
scheme (1.4) (see [8]) implying uniqueness in the Cb(RN ) class of solutions.

Lemma 3.1. Assume (C.1) and (C.2) hold and let u, v ∈ Cb(RN ). If u and v are
sub- and supersolutions of (1.4) respectively, then u ≤ v in RN .
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Before we state the final assumption on the scheme, we will try to explain why it
appears. To this end, we outline first the proof of an upper bound on the error. We
use the regularization procedure discussed in the introduction. Following a clever
idea by Krylov [37], we introduce the intermediate equation (1.5), which has the
same structure as equation (1.1) (consider (θ, e) as the new control parameters),
and the following existence, uniqueness, and convergence results hold:

Lemma 3.2. Assume (A.1) - (A.3) hold and let 0 ≤ ε ≤ 1. Then there exists a
unique viscosity solution uε ∈ C0,1(RN ) to (1.5) satisfying

|uε|1 ≤ C and |uε − u|0 ≤ Cε,
where the constant C is independent of ε.

The existence, uniqueness, and regularity part of this lemma follows directly
from Theorem 2.3, while the error estimate follows from Theorem 6.2 in Section 6.

We mollify uε and prove that uε := uε ∗ ρε is a viscosity subsolution of (1.1):

Lemma 3.3. Assume (A.1) - (A.3) hold. Then the function uε defined above is a
viscosity subsolution of (1.1).

This result follows from Theorem 6.4 (cf. Section 6), see also the proof below
for similar arguments. Using the properties of uε and a classical argument using
consistency and monotonicity of the scheme, followed by a minimization over ε,
then leads to the upper bound on u− uh (see the proof of Theorem 3.4 below).

To conclude we also need a lower bound on u − uh. To get this bound, the
idea is to reverse the roles of u and uh [8, 36]. So we introduce the intermediate
scheme (1.6). Now it turns out that assumptions (A.1) - (A.3) and (C.1) - (C.5) are
not strong enough to ensure existence, uniqueness, and convergence results for uεh
similar to Lemma 3.2. Instead we will simply impose the existence of such results
as a condition on the approximation scheme (1.6):

(D) For h > 0 small enough and 0 ≤ ε ≤ 1, the scheme (1.6) has a solution
uεh ∈ C0,1(RN ). Moreover there is a constant C, independent of h and ε,
such that

|uεh|1 ≤ C and |u0
h − uεh| ≤ Cε,

where u0
h is the solution of (1.4).

This assumption has to be checked every time a particular scheme is studied.
We will do so for a class of finite difference schemes in Section 4. If the second order
coefficient σ in (1.1) is independent of x, this assumption probably holds for most
schemes of interest satisfying (C.1) - (C.5), and this is the case we will consider in
Section 4. The case when σ depends on x is much harder and will be considered
in a future work. For pure diffusions there are results for so-called control schemes
[8] and for a class of finite difference schemes [38]. We also mention [9] (see also
[37]) where assumption (D) is avoided altogether, and results are obtained for any
consistent, stable, and monotone scheme (again in the pure diffusion case).

Now we state the main error estimate for the abstract scheme (1.4).

Theorem 3.4. Assume (A.1) - (A.3) and (C.1) - (C.3) hold. Let u be the viscosity
solution of (1.1) and uh the solution of the scheme (1.4).

(a) Then the following upper bound on the error holds:

u− uh ≤ C(hδ1 + hδ̄2) in RN ,
where

δ = min
i:Ki>0

ki
i

and δ̄ = min
i:K̄i>0

k̄i
i
,
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and Ki, K̄i, ki, k̄i are defined in (C.3).
(b) If in addition (C.4), (C.5), and (D) hold, then the following lower bound on

the error holds:
−C(hδ1 + hδ̄2) ≤ u− uh in RN .

Remark 3.5. For (D) to hold, we need that λ̄ > λ̄0 for some λ̄0 > 0. This is similar
to the situation for equation (1.1), see assumption (A.3) in Section 2. Warning: If
either λ < λ0 or λ̄ < λ̄0, and λ

λ 0
6= λ̄

λ̄0
, then we will get different exponents in the

upper and lower bounds on the error! We refer to [8] where this point is explained
in the pure diffusion case.

The proof is an extension of the proof given in [8] (see also [36]).

Proof. We start by proving the the upper bound on u− uh.
As we have seen above, by Lemmas 3.2 and 3.3 uε = ρε ∗ uε is a subsolution

of (1.1). By Lemma 3.2 and properties of mollifiers it follows that uε ∈ C∞(RN ),
|uε|0,1 ≤ C, and |Diuε|0 ≤ Cε1−i. By (C.3) we then have

H(x, uε, Duε, D2uε, uε(·))− S(h, x, uε(x), [uε]x)

≥ −
n∑
i=1

|Diuε|0
(
Kih

ki
1 + K̄ih

k̄i
2

)
≥ −C

n∑
i=1

ε1−i
(
Kih

ki
1 + K̄ih

k̄i
2

)
=: C(h1, h2, ε),

for all x ∈ RN , and Lemma 3.3 now yields

S(h, x, uε(x), [uε]x) ≤ C(h1, h2, ε) in RN .

From (C.1) it follows that uε−C(h1, h2, ε)/λ̄ is a subsolution of (1.6), and therefore
by the comparison principle for the scheme (Lemma 3.1) we get

uε − uh ≤ C(h1, h2, ε)/λ̄ in RN .

From Lemma 3.2 and properties of mollifiers we have |u− uε|0 ≤ Cε. We conclude
that

u− uh ≤ C(h1, h2, ε)/λ̄+ Cε in RN ,

and the upper bound follows after a minimization over ε.

The proof of the lower bound on u − uh is derived similarly: the key idea is to
interchange the role of the scheme and the equation.

Let uεh ∈ C0,1(RN ) be the solution of the scheme (1.6) given by assumption (D).
Apply the change of variable y = x+ e, and observe that by (C.5) we have

S(h, y, uεh(y − e), [uεh(· − e)]y) ≤ 0 in RN for all |e| ≤ ε.(3.1)

As before, we consider

uεh ∗ ρε(x) =
∫

RN
uεh(x− e)ρε(e)de.

Multiply (3.1) by ρε(e), integrate with respect to e, and use (C.4) to see that

0 ≥
∫

RN
S(h, y, uεh(y − e), [uεh(· − e)]x)ρε(e)de

≥ S(h, y, (uεh ∗ ρε)(y), [uεh ∗ ρε]y)− kε.(3.2)
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From assumption (D) and properties of mollifiers uεh∗ρε ∈ C∞(RN ), |uεh∗ρε|0,1 ≤ C,
and |Diuεh ∗ ρε|0 ≤ Cε1−i. Then (C.3) yields

S(h, x, (uεh ∗ ρε)(x), [uεh ∗ ρε]x)

−H(x, uεh ∗ ρε, D(uεh ∗ ρε), D2(uεh ∗ ρε), (uεh ∗ ρε)(·))

≥ −
n∑
i=1

|Diuεh ∗ ρε|0
(
Kih

ki
1 + K̄ih

k̄i
2

)
≥ −C

∑
i=1

ε1−i
(
Kih

ki
1 + K̄ih

k̄i
2

)
=: C̄(h1, h2, ε),

so by (3.2) we see that

H(x, uεh ∗ ρε, D(uεh ∗ ρε), D2(uεh ∗ ρε), (uεh ∗ ρε)(·) ≤ Cε+ C̄(h1, h2, ε) in RN .

Assumption (A.3) now implies that uεh ∗ ρε− (Cε+ C̄(h1, h2, ε))/λ is a subsolution
of (1.1), and the comparison principle (Theorem 2.3 (iii)) yields

uεh ∗ ρε − u ≤ (Cε+ C̄(h1, h2, ε))/λ in RN .

From (D) and properties of mollifiers we see that

|uh − uεh ∗ ρε|0 ≤ Cε in RN ,

so we have

uh − u = uh − uεh ∗ ρε + uεh ∗ ρε − u ≤ C(ε+ C̄(h1, h2, ε)) in RN .

Minimizing with respect to ε then leads to the desired result. �

In the next section we apply Theorem 3.4 to a particular finite difference scheme
for (1.1), under the assumptions that σ is independent of x and the Lévy measure
ν(dz) is finite and compactly supported. How to deal with general Lévy measures
is the topic of Section 5. We deal with more general σ’s in [15].

4. Finite difference schemes

In this section we apply the abstract result from Section 3 to a class of monotone
finite difference schemes. To simplify matters we assume that the second order
coefficient σ is independent of x. The general case is much harder and will be
addressed elsewhere (with partially different methods). Note that the equation
still can be degenerate and that in general solutions are no more than Lipschitz
continuous under our assumptions. We also assume ν(dz) is a bounded measure
with compact support in E (in which case we may relax slightly the assumptions
on the jump vector η). The general case can always be reduced to this case by
applying the truncation procedures discussed in Section 5.

We use the following assumptions in this section:

(A.1’) ν is a positive Radon measure on E such that∫
E

e`|z| ν(dz) <∞ and
∫
E\B(0,R)

ν(dz) = 0

for some given ` > 0 and R > 0.

(A.2’) There exists m > 0 such that for any θ ∈ Θ

|σθ|1 + |bθ|1 + |cθ|1 + |fθ|1 ≤ m and |ηθ(·, z)|1 ≤ me`|z|.
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Since ν(dz) is a bounded measure, we may rewrite (1.1) in the form

(4.1) sup
θ∈Θ

{
− tr

[1
2
aθD2u(x)

]
− b̄θ(x)Du(x) + cθ(x)u(x)− Iu(x)− fθ(x)

}
= 0,

where

b̄θ(x) = bθ(x)−
∫
E1

ηθ(x, z) ν(dz), Iu(x) =
∫
E

(
u(x+ ηθ(x, z))− u(x)

)
ν(dz).

Observe that by (A.1’) and (A.2’) there holds b̄θ ∈ C0,1(RN ).
Let us now discuss how to discretize the integro-partial differential equation

(4.1). We begin with the integral part of this equation. Note that any reasonable

approximation of the integral
∫
E

f(z) ν(dz) has the form
∑
α∈P f(Zα)ωα, where

α = (α1, . . . , αM ) ∈ P ⊂ ZM is a multiindex and {Zα}α and {ωα}α denote respec-
tively the nodes and weights specific to each integration method.

To simplify matters we take Zα = h2α, α ∈ P, and consider the following
quadrature rule:

Qh2 [f ] :=
∑
α∈P

f(h2α)ωα ≈
∫
E

f(z) ν(dz).(4.2)

By (A.1’) we may assume that P ⊂ ZM is bounded. Note that if ωα ≥ 0 for
every α ∈ P, then this approximation is obviously monotone. We assume that the
following error bound holds for some n̄ ∈ N:

Eh2 [φ] :=
∣∣∣ ∫
E

φ(z) ν(dz)−Qh2 [φ]
∣∣∣ ≤ Ch2

n̄|Dn̄φ|0,(4.3)

for every sufficiently smooth function φ. This bound is satisfied by most commonly
used quadrature rules, in particular it is satisfied for all compound rules based on
simple rules that are exact for polynomials of degree n̄. This class includes the
Newton-Cotes and Gauss rules as well as multidimensional product rules based on
these rules. We discuss the Newton-Cotes rules in Subsection 4.2. For a general
reference on numerical integration we refer to [23].

By discretizing all integrals in (4.1) using the quadrature rule Qh2 at every point
x ∈ RN , we get the following intermediate approximation of (4.1):

sup
θ∈Θ

{
− tr

[1
2
aθD2u(x)

]
− b̄θ,h2(x)Du(x)

+ cθ(x)u(x)−Qh2 [u(x+ ηθ(x, ·))− u(x)]− fθ(x)
}

= 0,
(4.4)

where we have set b̄θ,h2(x) := bθ(x) − Qh2 [ηθ(x, ·)1B(0,1)]. By assumptions (A.1’)
and (A.2’), |Qh2 [ηθ]|1 and |b̄θ,h2 |1 are bounded independently of h2 and θ.

Next we discretize the differential equation part of (4.4). For this purpose we use
a straightforward monotone finite difference scheme. This scheme is studied in the
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book [39]. To define the scheme, we need the following finite difference operators:

∆±xiw(x) = ± 1
h1

[w(x± eih1)− w(x)],

∆2
x1
w(x) =

1
h2

1

[w(x+ eih1)− 2w(x) + w(x− eih1)],

∆+
xixjw(x) =

1
2h2

1

[2w(x) + w(x+ eih1 + ejh1) + w(x− eih1 − ejh1)]

− 1
2h2

1

[w(x+ eih1) + w(x− eih1) + w(x+ ejh1) + w(x− ejh1)],

∆−xixjw(x) =
1

2h2
1

[w(x+ eih1) + w(x− eih1) + w(x+ ejh1) + w(x− ejh1)]

− 1
2h2

1

[2w(x) + w(x+ eih1 − ejh1) + w(x− eih1 + ejh1)].

Using the notation z+ := max(z, 0) and z− := (−z)+ (so that z = z+ − z− and
|z| = z+ + z−) for any real number z, we can then write the full scheme as

Ĥ(h2, x, uh(x),∆±xiuh(x),∆2
xiuh(x),∆±xi,xjuh(x), uh(·)) = 0,(4.5)

where

Ĥ(h2, x, r, p
±
i , Aii, A

±
ij , u(·))

:= sup
θ∈Θ

{
N∑
i=1

[
− aθii

2
Aii +

N∑
j=1

j 6=i

(
−

(aθij)
+

2
A+
ij +

(aθij)
−

2
A−ij

)

− (b̄θ,h2
i )+(x)p+

i + (b̄θ,h2
i )−(x)p−i

]
−Qh2 [u(x+ ηθ(x, z))− u(x)] + cθ(x)r − fθ(x)

}
.

Now we assume that (A.1’), (A.2’), and (A.3) holds, and h1, h2 < 1. In addition,
we use the following assumptions:

(B.1) aθ := σθσθ
> is a constant matrix.

(B.2) aθii −
N∑
j=1

j 6=i

|aθij | ≥ 0, θ ∈ Θ, i = 1, . . . , N and ωα ≥ 0, α ∈ P.

(B.3)
N∑
i=1

[
aθii −

N∑
j=1

j 6=i

|aθij |+ |b̄
θ,h2
i |0 +

∑
α∈P

ωα

]
≤ 1, θ ∈ Θ, h2 < 1.

(B.4) |Dn̄
z η

θ(x, ·)1B(0,R)|0 ≤ C, x ∈ RN , θ ∈ Θ, where n̄, R are defined in (4.3),
(A.1’) respectively.

Assumption (B.1) is used to simplify the proof of condition (D) in Section 3 for
the scheme (4.5). The general case is much more involved and will be considered
elsewhere. Assumption (B.2) implies that the scheme is monotone and contains
the standard requirement that a should be diagonally dominant. Assumption (B.3)
will always hold after a proper rescaling of the equation. Finally, the regularity
assumption (B.4) is necessary if we want to use the error bound (4.3) when the
quadrature rule (4.2) is applied to ηθ and u(x + ηθ). This assumption can be
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dropped if we replace ηθ in (1.1) by a smooth approximation and then keep proper
track of the error that we make in the process. However, since this additional step
complicates the presentation, we skip it and employ instead condition (B.4).

Theorem 4.1. Assume that (A.1’), (A.2’), (A.3), (B.1) - (B.4), and (4.3) hold.
Assume also that λ > λ̄0 (cf. Remark 3.5) and that h1, h2 < 1 are sufficiently small.
Let u be the viscosity solution of (4.1) and uh be the solution of the finite difference
scheme (4.5). Then

|u− uh|0 ≤ C(h1/2
1 + h2).

Before proving this theorem we will give several remarks and an example.

4.1. Remarks. The result Ch1/2
1 for the pure differential part is consistent with

previous results by Krylov and Barles-Jakobsen [36, 37, 8]. We refer to [31] where
the rate 1/2 is derived in the pure PDE case. Note that by increasing the order
of the quadrature rule (i.e., increasing n̄) one does not improve the corresponding
order in the error bound; the result is always Ch2. This fact and the reduction
of rate observed in this result is a consequence of the lack of regularity of u (the
viscosity solution u is here merely Lipschitz continuous). In fact when the Lévy
measure is bounded and the solution is Lipschitz continuous, we can always take
n̄ = 1 in (4.3) for any monotone quadrature formula that integrates constants
exactly (this includes most commonly used quadrature rules). To illustrate this
claim, let us check it for the Riemann sum approximation, i.e., (4.2) with weights
ωα = ν(h2α+ [0, h2]M ). Indeed, we have∑

α∈P
f(h2α)ωα −

∫
E

f(z) ν(dz)

=
∑
α∈P

∫
h2α+[0,h2]M

(f(h2α)− f(z)) ν(dz)

=
∑
α∈P

∫
h2α+[0,h2]M

∫ 1

0

Df((1− t)h2α+ tz)(z − h2α) dt ν(dz),

which implies the following error bound (cf. (4.3)):

Eh2 [f ] ≤ h2

∫
E

|Df(z)| ν(dz) ≤ |ν(E)||Df |0 h2.

Combining this with Theorem 4.1 yields

Corollary 4.2. Suppose all the assumptions in Theorem 4.1 hold with n̄ = 1 and
that the quadrature rule in (4.5) is based on a simple quadrature rule that integrates
constants exactly. Then

|u− uh|0 ≤ C(h1/2
1 + h2).

4.2. The Newton-Cotes formulas. We now discuss the Newton-Cotes formulas,
see, e.g., [23]. These formulas are the simplest one-dimensional quadrature formulas
and include the trapezoidal and Simpson’s rules. The simple Newton-Cotes formu-
las are obtained by (i) dividing the interval of integration [a, b] into n̄ equally sized
subintervals, yielding n̄+ 1 equidistributed nodes when the endpoints are included,
(ii) interpolating the integrand using Lagrange interpolation and the nodes from
(i), and (iii) integrating the Lagrange interpolant (which is a polynomial). This
leads to the formula

(4.6) QsNC,n̄[f ; a, b] :=
b− a
n̄

n̄∑
i=0

f(zi)ωi ≈
∫ b

a

f(z) ν(dz),
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where the subscript “sNC” stands for “simple Newton-Cotes” and

ωi = (−1)n̄−i
n̄

b− a

∫ n̄

0

t(t− 1) . . . (t− n̄)
(t− i)i!(n̄− i)!

ν(dφ(t)) where φ(t) = a+ (b− a)t.

When ν(dz) = dz the first few rules are

QsNC,1[f ; a, b] = h
f0 + f1

2
(trapezoidal rule),

QsNC,2[f ; a, b] =
h

6
(f0 + 4f1 + f2) (Simpson’s rule),

QsNC,3[f ; a, b] =
3h
8

(f0 + 3f1 + 3f2 + f3),

where h = (b− a)/n̄ and fi = f(a+ hi), i = 0, . . . , n̄.
For n̄ ≤ 8 the simple Newton-Cotes formulas are monotone. In practice it is the

compound formulas QNC,n̄[f ; a, b] that are used, that is, we subdivide [a, b] into Ns
equally sized intervals and apply the simple quadrature rule on each interval:

(4.7) QNC,n̄[f ; a, b] :=
Ns−1∑
i=0

QsNC,n̄[f ; yi, yi+1] ≈
∫ b

a

f(z) ν(dz),

where yi = a+ i b−aNs . In the compound rules there are Nsn̄+ 1 nodes and the step
size is h = b−a

Nsn̄
. If the integrand f is sufficiently smooth, the error can be bounded

as follows:

ENC,n̄[f ] :=
∣∣∣ ∫ b

a

f(z)dz −QNC,n̄[f ]
∣∣∣ ≤


Cn̄h

n̄|Dn̄f |0, for n̄ odd,

Cn̄h
n̄+1|Dn̄+1f |0, for n̄ even,

where Cn̄ is a constant. An immediate consequence of Theorem 4.1 is

Corollary 4.3. Suppose all the assumptions in Theorem 4.1 hold, and let M = 1
(so z ∈ R), n̄ ≤ 8, and QNC,n̄ be the quadrature rule in (4.5). Then

|u− uh|0 ≤ C(h1/2
1 + h2).

Remark 4.4. In higher dimensions (M > 1) we can apply one-dimensional Newton-
Cotes rules dimension-by-dimension. If the grid is a subset of h2ZM , then the
corresponding approximation error for these product rules is of the same order in
h2 as in the one-dimensional case. Moreover, Corollary 4.3 holds.

4.3. Proof of Theorem 4.1. Theorem 4.1 will be a consequence of Theorem 3.4
once we have verified conditions (C.1) - (C.5) and (D). To this end, we will rewrite
the scheme (4.5) as a discrete dynamic programming principle.
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For x ∈ RN and θ ∈ Θ, define the following “transition probabilities”:

pθ(x, x) = 1−
N∑
i=1

[
aθii −

N∑
j=1

j 6=i

|aθij | − h1|b̄θ,h2
i (x)|

]
− h2

1

∑
α∈P
α 6=0

ωα(x),

pθ(x, x± eih1) =
aθii
2
−

N∑
j=1

j 6=i

|aθij |
2

+ h1(b̄θ,h2
i )±(x), i = 1, . . . , N,

pθ(x, x+ eih1 ± ejh1) =
(aθij)

±

2
, i, j = 1, . . . , N, i 6= j,

pθ(x, x− eih1 ± ejh1) =
(aθij)

∓

2
, i, j = 1, . . . , N, i 6= j,

pθ(x, x+ ηθ(x, αh2)) = h2
1ωα, α ∈ P, α 6= 0,

and pθ(x, y) = 0 for every other y.
If 0 < h1 < 1 then (B.1) - (B.3) implies for all x, y, and θ that

0 ≤ pθ(x, y) ≤ 1 and
∑

z∈h1ZN∪ηθ(x,h2P)

pθ(x, x+ z) = 1.

Tedious but straightforward computations will reveal that we can rewrite the
scheme (4.5) in the form

uh(x)

= sup
θ∈Θ

 1
1 + cθ(x)h2

1

 ∑
z∈h1ZN∪ηθ(x,h2P)

pθ(x, x+ z)uh(x+ z) + h2
1f
θ(x)

 .

(4.8)

We use this expression to define the functional S in (1.4). For each triplet (x, r, φ) ∈
(RN ,R, Cb(RN )), we define S by

S(h, x, r, [φ]x)

:= sup
θ∈Θ

− 1
h2

1

 ∑
z∈h1ZN∪ηθ(x,h2P)

pθ(x, x+ z)[φ]x(z)− r

+ cθ(x)r − fθ(x)

 ,

(4.9)

where we have set [φ]x(z) := φ(x+z). It is easy to see that (1.4), with S as defined
in (4.9), is equivalent to (4.8).

By our assumptions and definitions of transition probabilities pθ(x, y), this scheme
is obviously monotone. It is convex since it is defined by taking the supremum of a
familiy of linear expressions. Moreover, if φ is a smooth function, then an argument
based on Taylor expansions yields

|H(x, v,Dv,D2v, v(·))− S(h, x, v(x), [v]x)|

≤ C sup
θ∈Θ

(
|D2v|0h1 + |D4v|0h2

1 + |Eh2 [v(·+ ηθ)− v]|0 + [v]1|Eh2 [ηθ]|0
)

≤ C sup
θ∈Θ

(
|D2v|0h1 + |D4v|0h2

1

+
(
|Dn̄

z v(·+ ηθ)1B(0,R)|0 + [v]1|Dn̄
z η

θ1B(0,R)|0
)
hn̄
)
.

(4.10)

Summarizing, we have proved
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Lemma 4.5. Suppose the hypotheses of Theorem 4.1 hold. Then the scheme (4.5)
satisfies conditions (C.1) - (C.5), where (C.3) takes the form (4.10).

It remains to prove that condition (D) holds. From now on we make the as-
sumption that c(x) = λ for all x (the general case is similar but algebraically more
involved). Let Th be the operator defined by

Thv(x) :=
1

1 + λh2
1

sup
θ∈Θ

 ∑
z∈h1ZN∪ηθ(x,h2P)

pθ(x, x+ z)v(x+ z) + h2
1f
θ(x)

 .

This operator is a contraction on Cb(RN ), since

|Thu(x)− Thv(x)|

≤ 1
1 + λh2

1

sup
θ∈Θ

∑
z∈h1ZN∪ηθ(x,h2P)

pθ(x, x+ z)|u(x+ z)− v(x+ z)|

≤ 1
1 + λh2

1

|u− v|0.

Since (4.8) reads uh = Thuh, Banach’s fixed point theorem yields existence and
uniqueness of a solution uh ∈ Cb(RN ) to (4.8).

Now we proceed to show that this solution is Lipschitz continuous. Assume that
φ ∈ C0,1(RN ). For any x, y ∈ RN ,

Thφ(x)− Thφ(y)

=
1

1 + λh2
1

sup
θ∈Θ

{ ∑
z∈h1ZN∪ηθ(x,h2P)

[
pθ(x, x+ z)

(
φ(x+ z)− φ(y + z)

)
+
(
pθ(x, x+ z)− pθ(y, y + z)

)
φ(y + z)

]
+ h2

1

[
fθ(x)− fθ(y)

]
+
[ ∑
z∈h1ZN∪ηθ(x,h2P)

−
∑

z∈h1ZN∪ηθ(y,h2P)

]
pθ(y, y + z)φ(y + z)

}
.

Clearly, we have∑
z∈h1ZN∪ηθ(x,h2P)

pθ(x, x+ z)
(
φ(x+ z)− φ(y + z)

)
≤ [φ]1|x− y|.

Using (A.1’), (A.2’), (4.3), assuming h2 to be sufficiently small, and taking into
account the definitions of pθ(x, x+ z), b̄θ,h2 , we find∑

z∈h1ZN∪ηθ(x,h2P)

(
pθ(x, x+ z)− pθ(y, y + z)

)
φ(y + z)

= h2
1

N∑
i=1

[(
b̄θ,h2+
i (x)− b̄θ,h2+

i (y)
)

∆+
xiφ(y)−

(
b̄θ,h2−
i (x)− b̄θ,h2−

i (y)
)

∆−xiφ(y)
]

≤ h2
1[φ]12N([bθ]1 + [Qh2 [ηθ]]1) |x− y|

≤ h2
1[φ]12Nm

(
1 + 2

∫
E

e`|z| ν(dz)
)
|x− y| .
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Due to (A.1’), (A.2’), and (4.3), we also have[ ∑
z∈h1ZN∪ηθ(x,h2P)

−
∑

z∈h1ZN∪ηθ(y,h2P)

]
pθ(y, y + z)φ(y + z)

= h2
1

∑
α∈P

ωα

(
φ(y + ηθ(x, αh2))− φ(y + ηθ(y, αh2)

)
≤ h2

1[φ]1m 2
∫
E

e`|z| ν(dz) |x− y| .

Hence we conclude that

Thφ(x)− Thφ(y) ≤ 1
1 + λh2

1

[
(1 + λ̄0h

2
1)[φ]1 + h2

1 sup
θ∈Θ

[fθ]1
]
|x− y|,

where λ̄0 := m(2N + 1)
(
1 + 2

∫
E
e`|z|ν(dz)

)
. By interchanging x and y we have

now proved that

[Thφ]1 ≤
1 + λ̄0h

2
1

1 + λh2
1

[φ]1 +
h2

1

1 + λh2
1

sup
θ∈Θ

[fθ]1 =: A[φ]1 +B.

The constant λ̄0 coincides with the one mentioned in Remark 3.5 for this case. By
assumption λ > λ0 and hence A < 1. By the fixpoint theorem mentioned above,
for any φ ∈ C0,1(RN ) ⊂ Cb(RN ), |Tnh φ − uh|0 → 0 as n → ∞, where uh is the
unique in Cb(RN ) solution of (4.8). Furthermore

[uh]1 = lim
n→∞

[Thnφ]1 ≤ lim
n→∞

{
An[φ]1 +

n−1∑
i=0

AiB

}
=

B

1−A
=

1
λ− λ̄0

sup
θ∈Θ

[fθ]1.

We have proved:

Lemma 4.6. Suppose the hypotheses of Theorem 4.1 hold. Then there exists a
unique solution uh ∈ C0,1(RN ) to the scheme (4.5).

Next we consider the perturbed scheme (1.6), with S as defined in (4.9). Similarly
to what we did above, the perturbed scheme can be written as

uεh(x)

=
1

1 + λh2
1

sup
θ∈Θ
|e|≤ε

∑
z∈h1ZN∪ηθ(x+e,h2P)

{
pθe(x, x+ z)uεh(x+ z) + h2

1f
θ(x+ e)

}
,(4.11)

where the coefficients pθe(x, x+z) are obtained from pθ(x, x+z) by replacing (b̄)±(x)
with (b̄)±(x+e). Existence and uniqueness of a C0,1(RN ) solution to the perturbed
scheme follows from Lemma 4.6 once we redefine θ and Θ to (θ, e) and Θ×{|e| ≤ ε},
respectively, and rewrite (4.11) in the form (4.8) (or (4.5)). Note that the constant
λ̄0 remains the same.

It remains to prove that |uh − uεh|0 ≤ Cε. It is easy to see that uεh, the solution
of equation (4.11), is a subsolution of equation (4.8). By the comparison principle
(cf. Lemma 3.1), uεh ≤ uh. To get the other bound, let T εhu

ε
h denote the right-hand

side of (4.11). A computation similar to the one used above to prove the Lipschitz
continuity of uh then leads to

Thuh(x)− T εhuεh(x)

≤ 1
1 + λh2

1

{
|uh − uεh|0 + Ch2

1 sup
θ∈Θ
|e|≤ε

{
[uεh]1|b̄θ,h2 − b̄θ,h2(·+ e)|0

+ [uεh]1|Qh2 [|ηθ(·, z)− ηθ(·+ e, z)|]|0 + |fθ − fθ(·+ e)|0
}}

.
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By Lemma 4.6, |uεh|1 is bounded independently of ε and h, so by (A.1’) and (A.2’)
we have

uh(x)− uεh(x) = Thuh(x)− T εhuεh(x) ≤ 1
1 + λh2

1

[
|uh − uεh|0 + Cεh2

1

]
,

which immediately implies uh(x)−uεh(x) ≤ Cε. Summarizing our findings, we have
just proved

Lemma 4.7. Suppose the hypotheses of Theorem 4.1 hold. Then the scheme (4.5)
satisfies condition (D).

This completes the proof of Theorem 4.1.

5. General Lévy measures

The finite difference schemes for (1.1) in Section 4 were constructed under the
assumption that the Lévy measure was bounded and also compactly supported. In
this section we show how one can reduce problems with general unbounded and non-
compactly supported Lévy measures to this case. Once such a reduction process has
been carried out, we can use for example the finite difference schemes from Section
4. The reduction process is based on appropriate truncations (through two scales)
of the Lévy measure, and we provide precise estimates for the error induced by the
truncations. Hence, the desired “level of accuracy” related to the truncations can
be determined a priori before any numerical discretization is applied. We should
emphasize that in this section σ is not assumed to be independent of x!

To be more precise, let us introduce the “two-scales” truncated Lévy measure

νr,R(dz) := 1r<|z|<R ν(dz),

for some (small) r ∈ (0, 1) and for some (large) R ∈ (1,∞). Clearly, νr,R(dz) is a
bounded and compactly supported measure. For φ ∈ C∞(RN ), let us express the
integral operator J θ in (1.1) as follows:

(5.1) J θφ(x) = J θr φ(x) + J θr,Rφ(x) + J θ,Rφ(x),

where

J θr φ(x) :=
∫

0<|z|≤r

[
φ(x+ ηθ(x, z))− φ(x)− ηθ(x, z)Dφ(x)

]
ν(dz),

J θr,Rφ(x) :=
∫
E

[
u(x+ ηθ(x, z))− u(x)− 1|z|<1η

θ(x, z)Du(x)
]
νr,R(dz),

J θ,Rφ(x) :=
∫
|z|≥R

[
φ(x+ ηθ(x, z))− φ(x)

]
ν(dz).

We want to take a closer look at the decomposition (5.1). To this end, we divide
the remaining part of this section into two parts.

5.1. Treatment of the operators J θr and J θ,R. To reduce ν(dz) to a compactly
supported measure, we simply throw away the term J θ,Rφ(x) in (5.1), and observe
that by (A.1) and (A.2)

|J θ,Rφ(x)| ≤ 2|φ|0
∫
|z|≥R

ν(dz) ≤ C|φ|0e−`R.

Next we discuss how to reduce ν(dz) to a bounded measure. Roughly speaking,
the idea is to get rid of the singularity of the Lévy measure ν(dz) by suppressing
the “small jumps”, i.e., by throwing away the operator J θr in (5.1). It does not,
however, result in a good approximation if we completely suppress the small jumps.
Indeed, the small jumps are important in most of the Lévy models found in the
literature. Therefore, to account for the small jumps (and thus the infinite activity
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of the Lévy process), we follow [6] (see also [21, 26, 27]) and replace J θr φ in (5.1)
by a diffusion term:

J θr φ ≈ tr [aθrD
2φ],

where the diffusion matrix aθr needs to be specified.
There are (infinitely) many choices for the diffusion matrix aθr, some yielding

more accurate results than others. We quantify the accuracy of some choices of aθr
below. Define

ωθ(x, r) :=
1
2

∫
0<|z|≤r

ηθ(x, z)ηθ(x, z)> ν(dz),

and consider the three choices

aθ1,r(x) := ωθ(x, r),

aθ2,r := lim
ρ→∞

1
|B(0, ρ)|

∫
B(0,ρ)

ωθ(x, r)dx,

aθ3,r := 0.

Notice that aθ2 and aθ3 are independent of x. Also, aθ2,r is meaningful since ηθ is
bounded in x, cf. (A.2).

Lemma 5.1. Supppose (A.1) and (A.2) hold, and let φ ∈ C∞(RN ). Then the
following error estimates hold:

|J θr φ− tr [aθ1,rD
2φ]|0 ≤ |D3φ|0r sup

θ∈Θ
|ωθ(·, r)|0,

|J θr φ− tr [aθ2,rD
2φ]|0 ≤ |D2φ|0 sup

θ∈Θ
|ωθ(·, r)− aθ2,r|0 + |D3φ|0r sup

θ∈Θ
|ωθ(·, r)|0,

|J θr φ− tr [aθ3,rD
2φ]|0 ≤ |D2φ|0 sup

θ∈Θ
|ωθ(·, r)|0.

Proof. By Taylor expanding φ(x+ ηθ(x, z)) we find

J θr φ(x) =
1
2

tr
[
D2φ(x)

∫
0<|z|≤r

ηθ(x, z)ηθ(x, z)> ν(dz)
]

+
1
2

tr
[ ∫

0<|z|≤r

(
D2φ(ζx,z)−D2φ(x)

)
ηθ(x, z)ηθ(x, z)> ν(dz)

]
,

where ζx,z belongs to the straight line segment between x and x+ ηθ(x, z). Using
this, and conditions (A.1) and (A.2), one can verify the assertions of the lemma. �

We have here three “diffusion approximations” J θr φ ≈ tr [aθl,rD
2φ], l = 1, 2, 3.

According to Lemma 5.1, the first choice has the highest order of convergence as
r → 0. The second and third choices have the same order of convergence, but the
error is smaller for the second alternative when r is small.

5.2. Error estimates. In view of what we have said up to now, it seems that the
following problems may serve as “good” approximations to (1.1), at least when r
is small and R is large:

(5.2) Hi,r,R(x, u(x), Du(x), D2u(x), u(·)) = 0 in RN , i = 1, 2, 3,

where, for any (x, r, p,X) ∈ RN × R× RN × SN and any locally bounded function
u, the Hamiltonian Hi,r,R = Hi,r,R(x, r, p,X, u(·)) is defined by

Hi,r,R(x, r, p,X, u(·))

= sup
θ∈Θ

{
− 1

2
tr
[(
aθ(x) + aθi,r(x)

)
X
]

− bθ(x) · p− J θr,Ru(x) + cθ(x)r − fθ(x)
}
.

(5.3)



20 E.R. JAKOBSEN, K.H. KARLSEN, AND C. LA CHIOMA

We reiterate here that the measure νr,R(dz) is bounded and has compact support.
To get an explicit estimate of the truncation error, that is, the error committed

when replacing (1.1) by (5.2), we need stronger assumptions on the Lévy measure.
In particular, we need to be more precise about the behavior of the Lévy measure
near the origin:

(A.1”) Assumption (A.1) holds and in addition there is a density m : E → [0,∞),
such that ν(dz) = m(z)dz and

m(z) ≤ C 1
|z|N+α

for z ∈ E1.

We emphasize that the conditions in (A.1”) are satisfied by all Lévy processes
used in the literature to model financial markets, see [20]. If (A.1”) holds, in
addition to (A.2), then we can have explicit bounds on the modulus ωθ(x, r) in-
troduced in the previous subsection. Indeed, turning to polar coordinates ρ = |z|,
dz = CρN−1dρ, we obtain

|ωθ(x, r)| ≤ C
∫

0<|z|<r
|z|2 1
|z|N+α

dz = Cr2−α.

We are now in a position to derive an explicit estimate for the error committed
by replacing (1.1) by (5.2).

Theorem 5.2. Assume (A.1”), (A.2), (A.3) hold and let u ∈ C0,1(RN ) be the
solution of (1.1) and ui,r,R ∈ C0,1(RN ) be the viscosity solution of (5.2) for i =
1, 2, 3. Then for r > 0 small enough and R large enough we have

|u− u1,r,R|0 ≤ C1(r1−α/3 + e−`R),

|u− u2,r,R|0 ≤ C2(r1−α/2 + e−`R),

|u− u3,r,R|0 ≤ C3(r1−α/2 + e−`R),

for some constants C1, C2, C3 that are independent of r,R, and C2 ≤ C3.

Remark 5.3. The approximate problem (5.2) with i = 1 gives the smallest error, at
least asymptotically as r → 0 and R→∞. Estimates in the same spirit have been
obtained by Cont and Voltchkova [21] for linear parabolic equations with constant
coefficients. The approach of [21] is probabilistic and based on results in [6]. They
essentially get the rate r compared with our rate r1−α/3. We use a PDE appraoch
yielding estimates that hold for Lipschitz continuous viscosity solutions of fully
nonlinear degenerate integro-PDEs with variable coefficients.

Proof. We only prove the lower bound and only for the case i = 1. The other cases
and the upper bounds follow along the same lines. Moreover, since the arguments
resemble closely those used in the proof of Theorem 3.4, we are rather brief. To
simplify the notation we replace ui,r,R by ūi, i = 1, 2, 3, in the proof below.

The goal is to derive a lower bound on u − ū1. As in Section 2, we can find
smooth subsolutions ū1,ε of (5.2), where ū1,ε = ρε ∗ uε1 and uε1 is the C0,1(RN )
viscosity solution of

sup
θ∈Θ
|e|≤ε

{
− 1

2
tr
[(
aθ(x+ e) + aθ1,r(x+ e)

)
D2u

]
− bθ(x+ e)Du+ cθ(x+ e)u− fθ(x+ e)

−
∫
E

[
u(x+ ηθ(x+ e, z))− u− 1|z|<1η

θ(x+ e, z)Du
]
νr,R(dz)

}
= 0.
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Existence, uniqueness, and regularity properties of uε1 follow from Theorem 6.1,
and the fact that ū1,ε is a subsolution of (5.2) is a consequence of Theorem 6.4
(cf. Section 6). By properties of mollifiers it then follows that

ū1,ε ∈ C∞(RN ), |ū1,ε|0,1 ≤ C, |Diū1,ε|0 ≤ Cε1−i.

According to the calculations we did at the beginning of this section, we have

H(x, ū1,ε, Dū1,ε, D
2ū1,ε, ū1,ε(·))−H1,r,R(x, ū1,ε, Dū1,ε, D

2ū1,ε, ū1,ε(·))

≤ C
(
|ū1,ε|0e−`R + |D3ū1,ε|0r3−α)

≤ C
(
e−`R + ε−2r3−α) =: C(r,R, ε),

for all x ∈ RN . Since ū1,ε is a subsolution of (5.2), we get

H(x, ū1,ε(y), Dū1,ε, D
2ū1,ε, ū1,ε(·)) ≤ C(r,R, ε) in RN .

From this inequality and (A.3) we see that ū1,ε − C(r,R, ε)/λ is a subsolution of
(1.1), and by the comparison principle (Theorem 2.3) we have

ū1,ε − u ≤ C(r,R, ε)/λ in RN .
In view of Theorem 6.2, (A.1), and (A.2), it is easy to see that |ūε1 − ū1|0 ≤ Cε.

So by properties of mollifiers we have

|ū1 − ū1,ε|0 ≤ Cε.
Thus we conclude that

u− ū = u− ū1,ε + ū1,ε − ū ≥ −C(r,R, ε)/λ− Cε in RN ,
and the lower bound follows after a minimization over ε. �

6. Appendix: Some technical results.

In this appendix we state and prove some technical results that were used in the
proofs of Theorems 3.4 and 5.2. To obtain results that encompass both (1.1) and
(5.2), we consider an equation of the form

sup
θ∈Θ

{
− tr

[(
aθ1(x) + a2(x)

)
D2u

]
− bθ(x)Du− J θ1 u(x) + cθ(x)u− fθ(x)

}
= 0,

(6.1)

where

J θ1 u(x) :=
∫
E

[
u(x+ ηθ1(x, z))− u(x)− 1|z|<1η

θ
1(x, z)Du(x)

]
ν(dz),

aθ1(x) :=
1
2
σθ(x)σθ(x)>,

aθ2(x) :=
1
2

∫
E1

ηθ2(x, z)ηθ2(x, z)> ν(dz).

(6.2)

In this section we always assume that (A.1), (A.2), and (A.3’) hold: we mean that
the requirements on η in (A.2) are met by both η1 and η2. We start by giving an
existence, uniqueness and regularity result for this equation.

Theorem 6.1. Assume (A.1), (A.2), and (A.3’) hold.
(i) There exists a unique viscosity solution u ∈ Cb(RN ) of equation (6.2) which

is Hölder continuous, i.e., there is a δ ∈ (0, 1] such that

|u(x)− u(y)| ≤ C|x− y|δ for all x, y ∈ RN .
(ii) There exists a constant λ0 depending only on N , supθ[σθ]1, supθ[bθ]1,

sup
θ

∫
E

[ηθ1(·, z)]21ν(dz), and supθ
∫
E

[ηθ2(·, z)]21ν(dz) such that if λ ≥ λ0, then the

viscosity solution u of (6.2) is Lipschitz continuous (δ = 1 above).
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(iii) Let u,−v ∈ USCb(RN ). If u and v are respectively viscosity sub- and
supersolutions of (6.2), then u ≤ v in RN .

We will not prove this result. The proof is similar to the proof of Theorem 2.3,
the only difference is the term aθ2 wich can be handled as shown in the proof of the
next Theorem.

Theorem 6.2. Let u, v ∈ C0,1(RN ) be viscosity solutions of (6.1) corresponding to
the set of coefficients {σθ, cθ, bθ, fθ, ηθ1 , ηθ2} and {σθ, cθ, bθ, fθ, η̄θ1 , η̄θ2}, respectively.
Suppose assumptions (A.1), (A.2), and (A.3’) hold for both sets of coefficients
with constants m and m, respectively, and λ = λ. Then there exists a constant
C̃ = C̃(m,m) such that the following continuous dependence estimate holds:

λ|u− v|0

≤ C̃ sup
θ∈Θ

{
|σθ − σθ|+

∣∣∣ ∫
E1

(
|ηθ1(·, z)− η̄θ1(·, z)|2 + |ηθ2(·, z)− η̄θ2(·, z)|2

)
ν(dz)

∣∣∣1/2
0

}

+ sup
θ∈Θ

{(
[u]1 ∧ [v]1

)[∣∣∣ ∫
E1
|ηθ1(·, z)− η̄θ1(·, z)| ν(dz)

∣∣∣
0

+ |bθ − bθ|0
]

+
(
|u|0 ∧ |v|0

)
|cθ − cθ|0 + |fθ − fθ|0

}
.

Proof. When η1, η2 ≡ 0 (the pure diffusion case) this result is proved in [32], see
also [33]. Otherwise, the proof is similar to the one given in [34]. To avoid too
much repetition of [32, 33, 34], we assume that σ = σ (and thus a1 = ā1), b = b,
c = c, and f = f , so that in the proof below we concentrate only on the integral
part of the continuous dependence estimate.

We begin by introducing the functions

φ(x, y) = α|x− y|2 + ε(|x|2 + |y|2), ψ(x, y) = u(x)− v(y)− φ(x, y).

Note that ψ is continuous and tends to −∞ as |x|+|y| → ∞, so its global maximum
M is attained at some point (x̄, ȳ) ∈ RN × RN . We will derive a positive upper
bound for M in the case that M > 0.

By the defining viscosity subsolution/supersolution inequalities for u, v and the
maximum principle for semicontinuous functions [22], properly adapted to integro-
partial differential equations in [35], we get for any 0 < κ < 1 the inequality

λ(u(x̄)− v(ȳ))

≤ sup
θ∈Θ

{
1
2

tr [aθ1(x̄)X]− 1
2

tr [aθ1(ȳ)Y ]

+ bθ(x̄)Dxφ(x̄, ȳ)− bθ(ȳ)(−Dyφ(x̄, ȳ))

+ (cθ(ȳ)− cθ(x̄))v(ȳ) + fθ(ȳ)− fθ(x̄)

+
1
2

tr [aθ2(x̄)X]− 1
2

tr [āθ2(ȳ)Y ]

+ J θκφ(x̄, ȳ)− J θκ(−φ)(x̄, ȳ)

+ J θ,κ(u, φ(·, ȳ))(x̄)− J θ,κ(v,−φ(x̄, ·))(ȳ)

}
,

(6.3)

where J θκ ,J θ,κ and J θκ,J
θ,κ

are defined as in (2.3) with ηθ replaced by ηθ1 and ηθ1
respectively, and X,Y are appropriate matrices given by the maximum principle for
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semicontinuous functions (see [35] for details). Here we have also used the estimate

cθ(x̄)u(x̄)− cθ(ȳ)v(ȳ) = cθ(x̄)(u(x̄)− v(ȳ)) + (cθ(x̄)− cθ(ȳ))v(ȳ)

≥ λ(u(x̄)− v(ȳ)) + (cθ(x̄)− cθ(ȳ))v(ȳ),

which follows from (A.3’) and the fact that u(x̄)−v(ȳ) ≥ 0 (since otherwise M ≤ 0).
A by now standard argument, see [32, 33, 34], using the Lipschitz regularity of

u, v and the coefficients, yields that the first four differences on the right-hand side
of (6.3) are bounded by Cα−1 +ω(ε), for some modulus ω. Similar arguments also
lead to the estimate

1
2

tr [aθ2(x̄)X]− 1
2

tr [āθ2(ȳ)Y ] ≤ α
∫
E1

|η2(x̄, z)− η̄2(ȳ, z)|2 ν(dz).

This follows from “Ishii’s trick”, see [22, Example 3.6].
By Lemma 2.1 the J θκ − J

θ

κ term is bounded by some modulus ωα,ε(κ). So we
are only left with the J θ,κ − J θ,κ term. We have

J θ,κ(u, φ(·, ȳ))(x̄)− J θ,κ(v,−φ(x̄, ·))(ȳ)

=
∫
κ<|z|<1

[
u(x̄+ ηθ1(x̄, z))− u(x̄)−

(
v(ȳ + η̄θ1(ȳ, z))− v(ȳ)

)
− ηθ1(x̄, z)Dxφ(x̄, ȳ)− η̄θ1(ȳ, z)Dyφ(x̄, ȳ)

]
ν(dz)

+
∫
|z|≥1

[
u(x̄+ ηθ1(x̄, z))− u(x̄)−

(
v(ȳ + η̄θ1(ȳ, z))− v(ȳ)

) ]
ν(dz).

(6.4)

Since
ψ(x̄, ȳ) ≥ ψ(x̄+ ηθ1(x̄, z), ȳ + η̄θ1(ȳ, z)),

the first integral in (6.4) is bounded by∫
κ<|z|<1

[
α|ηθ1(x̄, z)− η̄θ1(ȳ, z)|2 + Cε(|z|21E1 + e`|z|1E1)

]
ν(dz),

where the last term follows from (A.2) and a Taylor expansion in x and y of the
ε-terms. By the Lipschitz regularity of u, v and η1, cfr. (A.2), and the integrability
conditions satisfied by ν(dz), cfr. (A.1), we find that this term is bounded by

Cα

∫
E1

|ηθ1(x̄, z)− η̄θ1(x̄, z)|2 ν(dz) + Cα−1 + Cε.

Consider now the integrand of the second term in (6.4). Assume that [u]1 ≤ [v]1.
By the Lipschitz regularity of u this integrand is bounded by

[u]1|x̄+ηθ1(x̄, z)− ȳ− η̄θ1(ȳ, z)|+
(
u(ȳ + η̄θ1(ȳ, z))− v(ȳ + η̄θ1(ȳ, z))

)
− (u(x̄)− v(ȳ)) .

Note that the second and third differences in this expression are upper bounded by

sup
RN
{u− v} − sup

R2N
{u(x)− v(y)− φ(x, y)} − φ(x̄, ȳ),

By the Lipschitz regularity of u, v and the inequality sup{· · · }−sup{· · · } ≤ sup{· · ·−
· · · }, this in turn can be bounded by

sup
R2N

{
[u]1|x− y| − α|x− y|2

}
.

We bound this expression by maximizing with respect to r = |x−y| and get Cα−1.
We can now conclude that(

[u]1 ∧ [v]1
)∫

E1
|ηθ1(x̄, z)− η̄θ1(x̄, z)| ν(dz) + Cα−1



24 E.R. JAKOBSEN, K.H. KARLSEN, AND C. LA CHIOMA

constitutes an upper bound on the second integral in (6.4). Here we also used (A.1),
(A.2), and the standard bound |x̄− ȳ| ≤ Cα−1.

Combining all the previous estimates we have achieved

λM ≤ λ(u(x̄)− v(ȳ))

≤ Cα sup
θ∈Θ

∣∣∣ ∫
E1

(
|ηθ1(·, z)− η̄θ1(·, z)|2 + |ηθ2(·, z)− η̄θ2(·, z)|2

)
ν(dz)

∣∣∣
0

+
(

[u]1 ∧ [v]1
)

sup
θ∈Θ

∣∣∣ ∫
E1
|ηθ1(·, z)− η̄θ1(·, z)| ν(dz)

∣∣∣
0

+ Cα−1 + ω(ε) + ωα,ε(κ).

This last estimate holds trivially when M ≤ 0. Since λ|(u − v)+|0 ≤ λM , the
result of the theorem now follows by first sending κ→ 0, then sending ε→ 0, then
minimizing the resulting expression with respect to α, and finally interchanging the
roles of u and v. �

To prove the next theorem, we need the following auxilliary lemma:

Lemma 6.3. Suppose (A.1), (A.2) hold and λ1, . . . , λn ≥ 0 satisfy
∑n
i=1 λi = 1.

If u1, . . . , un ∈ Cb(RN ) are viscosity subsolutions of (6.1), then
∑n
i=1 λiu

i is also
a viscosity subsolution of (6.1).

Proof. In this proof we set a := a1 + a2. We prove the result for n = 2. The
general case follows by induction. We will show that λ1u

1 + λ2u
2 is a subsolution

of (6.1). Let χ ∈ C2(RN ) and assume that λ1u
1 + λ2u

2−χ has a global maximum
at x ∈ RN . We may assume without loss of generality that this maximum is strict.
Now introduce the functions

φ(x, y) =
1
α
|x− y|2,

ψ(x, y) = λ1u
1(x) + λ2u

2(y)− λ1χ(x)− λ2χ(y)− φ(x, y).

Let mα = supR2N ψ(x, y) and note that this supremum is attained at some point
(xα, yα) when α is small. Moreover, it is possible to show that xα, yα → x and
1
α |xα − yα|

2 → 0 as α→ 0.
Now by the maximum principle for semicontinuous functions [22], properly adapted

to integro-partial differential equations in [35],

sup
θ∈Θ

{
− 1

2
tr
[
aθ(xα)X + aθ(yα)Y )

]
(6.5)

− bθ(xα)(λ1Dχ(xα) +Dxφ(xα, yα))

− bθ(yα)(λ2Dχ(yα) +Dyφ(xα, yα))

+ cθ(xα)λ1u
1(xα) + cθ(yα)λ2u

2(yα)

− J θκ (λ1χ+ φ(·, yα))(xα)− J θκ (λ2χ+ φ(xα, ·))(yα)

− J θ,κ(λ1u
1, λ1Dχ(xα) +Dxφ(·, yα))(xα)

− J θ,κ(λ2u
2, λ2Dχ(yα) +Dyφ(xα, ·))(yα)

− λ1f
θ(xα)− λ2f

θ(yα)

}
≤ 0,

for some matrices X,Y satisfying(
X 0
0 Y

)
≤ C

α

(
I −I
−I I

)
+
(
λ1D

2χ(xα) 0
0 λ2D

2χ(yα)

)
.
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We immediately see that

tr
[
aθ(xα)X + aθ(yα)Y )

]
≤ tr

[
aθ(xα)λ1D

2χ(xα) + aθ(yα)λ2D
2χ(yα)

]
.

Next observe that ψ(x̄, ȳ) ≥ ψ(x̄+ ηθ(x̄, z), ȳ + ηθ(ȳ, z)) which is equivalent to

λ1u
1(x̄+ ηθ(x̄, z))− λ1u

1(x̄) + λ2u
2(ȳ + ηθ(ȳ, z))− λ2u

2(ȳ)

≤ λ1χ(x̄+ ηθ(x̄, z))− λ1χ(x̄) + λ2χ(ȳ + ηθ(ȳ, z))− λ2χ(ȳ)
+ terms involving φ,

and hence

J θ,κ(λ1u
1, λ1Dχ(xα))(xα) + J θ,κ(λ2u

2, λ2Dχ(yα))(yα)(6.6)

≤ J θ,κ(λ1χ, λ1Dχ(xα))(xα) + J θ,κ(λ2χ, λ2Dχ(yα))(yα)
+ terms involving φ.

Now computations similar to those in the proof of Theorem 6.2 show that the sum
of all terms containing φ in (6.5) and (6.6) can be bounded by C

α |xα−yα|
2 +ωα(κ).

Hence we are left with the following inequality:

sup
θ∈Θ

{
tr
[
aθ(xα)λ1D

2χ(xα) + aθ(yα)λ2D
2χ(yα)

]
− bθ(xα)λ1Dχ(xα)− bθ(yα)λ2Dχ(yα)

+ cθ(xα)λ1u
1(xα) + cθ(yα)λ2u

2(yα)

− λ1J θ,κ(χ,Dχ(xα))(xα)− λ2J θ,κ(χ,Dχ(yα))(yα)

− λ1f
θ(xα)− λ2f

θ(yα)

}
≤ C

α
|xα − yα|2 + ωα(κ).

Sending first κ→ 0 and then α→ 0 we get

sup
θ∈Θ

{
− 1

2
tr
[
aθ(x̄)D2χ(x)

]
− bθ(x)Dχ(x)

+ cθ(x)
(
λ1u

1(x) + λ2u
2(x)

)
− J θ,0(χ,Dχ(x̄))(x̄)

}
≤ 0.

Since J θ,0(χ,Dχ(x̄))(x̄) = J θχ(x̄) (see (1.3)), according to Definition 2.1, λ1u
1 +

λ2u
2 is a viscosity subsolution of (6.1). �

Before we can state the final result of this section, we need to introduce an
equation which has both (1.5) and the equation appearing in the proof of Theorem
5.2 as special cases. To this end, we introduce the equation

sup
θ∈Θ
|e|≤ε

{
− tr

[(
aθ1(x+ e) + a2(x+ e)

)
D2u

]
− bθ(x+ e)Du− J θ,e1 u(x)

+ cθ(x+ e)u− fθ(x+ e)
}

= 0 in RN ,

(6.7)

where a1, a2 are defined in (6.2) and

J θ,e1 u(x) :=
∫
E

[
u(x+ ηθ1(x+ e, z))− u(x)− 1{|z|<1}η

θ
1(x+ e, z)Du(x)

]
ν(dz).

The final result of this section is

Theorem 6.4. Suppose (A.1) - (A.3) hold and let uε be a C0,1(RN ) viscosity
subsolution of (6.7). Then uε := ρε ∗ uε is a viscosity subsolution of (6.1).
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Proof. We start by observing that from equation (6.7) we have

sup
θ∈Θ

{
− tr

[(
aθ1(x+ e) + a2(x+ e)

)
D2uε

]
− bθ(x+ e)Duε − J θ,e1 uε(x)

+ cθ(x+ e)uε − fθ(x+ e)
}

= 0 in RN for every |e| ≤ ε.

By a change of variables x→ x− e we see that uε(· − e) is a viscosity subsolution
of (6.1) for every |e| ≤ ε. Now we define the following quantities:

Qα(h) := α+
[
− h

2
,
h

2

]N
, ρε,h(α) :=

∫
Qα(h)

ρε(y) dy,

uε,h(x) :=
∑

α∈hZN
uε(x− α)ρε,h(α).

The function uε,h is an approximation of uε and by properties of mollifiers we see
that uε,h → uε uniformly as h → 0. Note that ρε,h(α) ≥ 0 and that ρε,h(α) > 0
only for finitely many α since ρε has compact support. Furthermore∑

α∈hZN
ρε,h(α) =

∫
RN

ρε(y) dy = 1,

and therefore when h < ε, uε,h(x) is a convex combination of viscosity subsolutions
uε(·−α) of (6.1). Thanks to Lemma 6.3 , we conclude that uε,h itself is a viscosity
subsolution of (6.1). Hence, by the stability result for viscosity subsolutions, cf. [22,
Lemma 6.1], uε = limh→0 uε,h is also a viscosity subsolution of (6.1). �
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and exponential lévy models. SIAM J. Numer. Anal. 43(4): 1596–1626, 2005.

[22] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

[23] P. J. Davis and P. Rabinowitz. Methods of numerical integration. Computer Science and
Applied Mathematics. Academic Press Inc., Orlando, FL, 1984.

[24] Y. d’Halluin, P. A. Forsyth, and G. Labahn. A penalty method for American options with

jump-diffusion processes. Numer. Math., 97(2):321–352, 2004.
[25] P. Dupuis and M. R. James. Rates of convergence for approximation schemes in optimal

control. SIAM J. Control Optim., 36(2):719–741, 1998.

[26] S. Elganjoui. Master’s thesis, Dep. of Mathematics, University of Bergen, January 2001.
[27] S. Elganjoui and K. H. Karlsen. A markov chain approximation scheme for a singu-
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