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Abstract. We present a general framework for deriving continuous depen-
dence estimates for, possibly polynomially growing, viscosity solutions of fully
nonlinear degenerate parabolic integro-PDEs. We use this framework to pro-
vide explicit estimates for the continuous dependence on the coefficients and
the “Lévy measure” in the Bellman/Isaacs integro-PDEs arising in stochas-
tic control/differential games. Moreover, these explicit estimates are used to
prove regularity results and rates of convergence for some singular perturbation
problems. Finally, we illustrate our results on some integro-PDEs arising when
attempting to price European/American options in an incomplete stock mar-
ket driven by a geometric Lévy process. Many of the results obtained herein
are new even in the convex case where stochastic control theory provides an
alternative to our pure PDE methods.
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6.3. Integro-PDEs and continuous dependence 26
6.4. Examples of Lévy models 29
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1. Introduction

The theory of viscosity solutions for fully nonlinear degenerate elliptic/parabolic
PDEs is now highly developed [4, 5, 18, 25]. In recent years we have witnessed
an interest in extending viscosity solution theory to integro-PDEs [1, 2, 3, 6, 11,
12, 13, 35, 41, 43, 45, 46, 48, 49]. Such non-local equations occur in the theory
of optimal control of jump-diffusion (Lévy) processes and find many applications
in mathematical finance, see, e.g., [1, 2, 3, 11, 12, 13, 27] and the references cited
therein. We refer to the books [28, 29] for an investigation of integro-PDEs by
completely different methods.

In this paper we are interested in “continuous dependence on the nonlinearities”
estimates and various consequences of such estimates for viscosity solutions of fully
nonlinear degenerate parabolic integro-PDEs. To be as general as possible, we write
these equations in the form

ut(t, x) + F (t, x, u(t, x), Du(t, x), D2u(t, x), u(t, ·)) = 0 in QT ,

u(0, x) = u0(x) in R
N ,

(1.1)

where QT := (0, T ) × RN and F : QT × R × RN × SN × C2
p(RN ) → R is a given

functional. Here SN denotes the space of symmetric N ×N real valued matrices,
and C2

p (RN ) denotes the space of C2(RN ) functions with polynomial growth of
order p ≥ 0 at infinity.

These equations are non-local as is indicated by the u(t, ·)-term in (1.1). A
simple example of such an equation is

(1.2) ut −
∫

RM\{0}

[u(·, · + z) − u− zDu] π(dz) = 0 in QT ,

where π(dz) is a positive Radon measure on RM \{0} (the so-called Lévy measure)
with a singularity at the origin satisfying

(1.3)

∫

RM\{0}

(
|z|2 1B(0,1) + |z|p 1B(0,1)c

)
π(dz) <∞.

Note that the Lévy measure integrates functions with p-th order polynomial growth
at infinity. In view of (1.3) and a Taylor expansion of the integrand, the integro
operator in (1.2) is well defined on C2

p(RN ). Moreover, it is clear that the integro
operator in (1.2) acts as a non-local second order term, and for that reason the
“order” of the integro operator is said to be two. If |z|2 in (1.3) is replaced by
|z|, this changes the order of the integro operator from two to one, since then it
acts just like a non-local first order term. Finally, if |z|2 in (1.3) is replaced by 1
(i.e., π(dz) is a bounded measure), then the integro operator in (1.2) is said to be
bounded or of order zero, and in this case the integro operator acts like a non-local
zeroth order term.

An important example of a non-local equation of the form (1.1) is the non-convex
Isaacs equations associated with zero-sum, two-player stochastic differential games
(see, e.g., [26] for the case without jumps)

ut + inf
α∈A

sup
β∈B

{
−Lα,βu− Bα,βu+ fα,β

}
= 0 in QT ,(1.4)
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where A and B are compact metric spaces and for any sufficiently regular φ

(1.5)






Lα,βφ(t, x) = tr
[
aα,β(t, x)D2φ

]
+ bα,β(t, x)Dφ − cα,β(t, x)φ,

aα,β(t, x) =
1

2
σα,β(t, x)σα,βT

(t, x) ≥ 0,

Bα,βφ(t, x) =

∫

RM\{0}

[
φ(t, x + jα,β(t, x, z)) − φ− jα,β(t, x, z)Dφ

]
π(dz).

Here tr and T denote the trace and transpose of matrices. The Lévy measure π(dz)
is a positive Radon measure on RM \ {0}, M ≥ 1, satisfying a condition similar
to (1.3), see (A0) and (A4) in Section 4. Also see Section 4 for the (standard)
regularity assumptions on the coefficients, σ, b, c, and η. We remark that if A is
a singleton, then equation (1.4) becomes the convex Bellman equation associated
with optimal control of Lévy (jump-diffusion) processes over a finite horizon (see,
e.g., [41, 43] and the references therein). Henceforth we will refer to (1.4) simply
as the “Bellman/Isaacs equation”.

The general problem we are confronted with here is to find an upper bound on the
difference between a viscosity subsolution u of (1.1) and a viscosity supersolution
ū of (1.1) with F replaced by another nonlinear functional F̄ satisfying the same
assumptions as F . The sought upper bound for u−ū should be expressed in terms of
“F − F̄”. Let us give an explicit example of the type of results that can be obtained
with our general continuous dependence framework for integro-PDEs (1.1). Let u
be a viscosity subsolution of (1.2) and let ū be a viscosity supersolution of

(1.6) ūt −
∫

RM\{0}

[ū(·, · + z) − ū− zDū] π̄(dz) = 0 in QT ,

where π̄(dz) is another Lévy measure satisfying (1.3). For simplicity, suppose that
the viscosity sub- and supersolutions are bounded, the initial values are zero, and
that the Lévy measures admit densities (which is the typical case in finance appli-
cations, see Section 6), i.e.,

π(dz) = m(z) dz, π̄(dz) = m̄(z) dz,

for some functions m(z) and m̄(z) that may have singularities at the origin. Our
continuous dependence result then yields for any (t, x) ∈ QT

(u− ū)(t, x) ≤ C

√
T

∫

RN\{0}

|z|2 |(m− m̄)(z)| dz.(1.7)

In other words, the difference between u and ū is expressed in terms of a weighted
L1 norm of the difference between the Lévy densities m and m̄. Note that it is
important that the L1 norm is weighted with the function |z|2, as the densities
may have singularities at the origin. The reason for the “square-root” is that the
estimate is robust with respect to the smoothness of u and ū. If u and ū are both
viscosity solutions, then, by reversing the roles of u and ū, we obtain an estimate
for |u− ū|. Results similar to (1.7) will be stated for the Bellman/Isaacs equation
(1.4) (where also the parameters σα,β , bα,β, cα,β , jα,β are varied) as well as some
integro-PDEs arising in option pricing theory in financial markets driven by Lévy
processes. To our knowledge, explicit continuous dependence estimates like (1.7)
have not appeared in the literature before. Moreover, compared to our previous
work [33, 34], the results obtained herein are new even in the pure PDE case, since
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we allow for growth in the solutions and hence our results can be applied to the
PDEs (and integro-PDEs) arising in finance applications. We will come back to a
finance application of our results in the last section of this paper.

Let us mention that continuous dependence estimates are relevant when it comes
to determining the regularity of viscosity solutions and obtaining explicit error
estimates for approximate solutions. We will provide examples of both aspects.
In particular, we derive error estimates for the vanishing viscosity and vanishing
jump viscosity methods for the Bellman/Isaacs equation (1.4) as well as for another
singular perturbation problem studied first in [39, 36] in a simpler context. The
case of numerical methods is more difficult and some of the first results in that
direction for the pure PDE version of the convex Bellman equation can be found
in [7, 8, 32, 38]. We anticipate that the continuous dependence estimates herein,
together with the ideas in [7, 8, 32], can be used to derive error estimates for the
Bellman equation of controlled jump-diffusion processes. We intend to investigate
this in a future paper. Although we do not pursue this here, let us also mention
that estimates like (1.7) may be relevant to the calibration (inverse) problem for
finance models based on Lévy processes, e.g., the problem of determining the Lévy
densities using, among other things, empirical data.

Let us now put the present paper in a proper perspective regarding previous
literature on continuous dependence estimates for viscosity solutions of pure PDEs.
The case of first order time-dependent Hamilton-Jacobi equations is treated in
[50]. For second order PDEs, an applications of the comparison principle [18]
gives a useful continuous dependence estimate when, for example, F̄ is of the form
F̄ = F + h for some function h = h(x). In general, the estimate provided by
the comparison principle is limited in the sense that it cannot, for example, be
used to obtain a convergence rate for the vanishing viscosity method. Continuous
dependence estimates for degenerate parabolic equations that imply, among other
things, a rate of convergence for the vanishing viscosity method have appeared
recently in [16] (see also [30]) and [33, 34]. In particular, [33] and [34] contain
results that are general enough to include the Bellman equation associated with
optimal control of degenerate diffusion processes as well as the Isaacs equation
of zero-sum two-player stochastic differential games. Recently a modification of
our continuous dependence estimate in [33], accounting for sub-quadratic growing
solutions, was used as one key step in the proof in [14] of the x-Hölder regularity
of the gradient of solutions to fully nonlinear uniformly parabolic equations.

This paper is organized as follows: Section 2 is devoted to preliminary material
related to viscosity solutions and in particular the statement of an “Ishii Lemma”
for parabolic integro-PDEs (the elliptic version was proved recently in [35]). In
Section 3 we state and prove our general continuous dependence theorem, which
is applied to the Bellman/Isaacs equation (with bounded as well as unbounded
viscosity solutions) in Section 4. In Section 5 we present several applications to the
Bellman/Isaacs equation that include, among other things, regularity results and
error estimates for some singular perturbation problems. Finally, in Section 6 we
illustrate our results on some integro-PDEs for pricing European/American options
in an incomplete geometric Lévy stock market.

Notations. We end this introduction by collecting some notations that will be used
throughout this paper. If x, y belong to an ordered set, then we let x∨ y and x∧ y
denote max(x, y) and min(x, y) respectively. If x belong to U ⊂ R

n and r > 0,
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then B(x, r) denotes the ball {x ∈ U : |x| < r}. We use the notation 1U for
the function that is 1 in U and 0 outside. By a modulus ω, we mean a positive,
nondecreasing, continuous, sub-additive function which is zero at the origin. In the
space of symmetric matrices SN we denote by ≤ the usual ordering (i.e., X ∈ SN ,
0 ≤ X means that X positive semidefinite) and by | · | the spectral radius norm
(i.e., the maximum of the absolute values of the eigenvalues).

Let ν be a signed measure. We denote by ν+ and ν− its positive and negative
part, so that ν = ν+ − ν− (the Jordan decomposition). The absolute value or total
variation of ν is |ν| = ν+ + ν−. If ν1 and ν2 are positive measures, we may define
the maximum as follows,

ν1 ∨ ν2 :=

(
dν1

d(ν1 + ν2)
∨ dν2
d(ν1 + ν2)

)
(ν1 + ν2),

where the derivatives are Radon-Nikodym derivatives. If there are functions f1, f2
and a measure ν such that νi = fiν for i = 1, 2 then ν1 ∨ ν2 = (f1 ∨ f2)ν.

Let Cn(Ω) n = 0, 1, 2 denote the spaces of n times continuously differentiable
functions on Ω, and let C1,2((0, T )×Ω) denote the space of once in time and twice
in space Ω continuously differentiable functions. We let USC(Ω) and LSC(Ω)
denote the spaces of upper and lower semicontinuous functions on Ω, and SC(Ω) =
USC(Ω) ∪ LSC(Ω). A lower index p denotes the polynomial growth at infinity,
so Cn

p (Ω), C1,2
p ((0, T ) × Ω), USCp(Ω), LSCp(Ω), SCp(Ω) consist of functions f

from Cn(Ω), C1,2((0, T ) × Ω), USC(Ω), LSC(Ω), SC(Ω), respectively, satisfying
the growth condition

|f(x)| ≤ C(1 + |x|)p for all x ∈ Ω (uniformly in t if f depends on time).

Associated to these spaces are weighted L∞ norms which we define as follows:

|f |0,r = sup
x∈Ω

|f(x)|
(1 + |x|)r

and |g|0,r = sup
t∈(0,T )

|g(t, ·)|0,r

for every r ∈ R and every locally bounded function f on Ω and g on (0, T ) × Ω.
Finally, we let | · |0 = | · |0,0.

2. Viscosity solution theory for integro-PDEs.

In this section we provide some background material for viscosity solutions of
integro-PDEs that will be needed in the preceding sections. The class of equations
that we cover contains both second order PDEs and up to order two integro op-
erators. This generality has been considered earlier by [6, 43] using directly the
“maximum principle for semicontinuous functions” [17]. However, although this
approach yields the correct results, it has not been justified in general (see [35]).

In [35], the authors justify a slightly different approach which uses a suitably
adapted non-local “maximum principle for semicontinuous functions” or Ishii’s
Lemma, see Theorem 2.2 below. Here, we will use the abstract formulation given
in [35] to derive continuous dependence estimates for (1.1).

For every t ∈ [0, T ], x, y ∈ RN , r, s ∈ R, X, Y ∈ SN , and φ, φk , ψ ∈ C1,2
p (QT ) we

will use the following assumptions on (1.1):

The function (t, x, r, q,X) 7→ F (t, x, r, q,X, φ(t, ·)) is continuous, and if(C1)

(tk, xk) → (t, x), Dnφk → Dnφ locally uniformly in QT for n = 0, 1, 2,

and |φk(t, x)| ≤ C(1 + |x|)p (C independent of k and (t, x)), then
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F (tk, xk, r, q,X, φk(tk, ·)) → F (t, x, r, q,X, φ(t, ·)).
If X ≤ Y and (φ− ψ)(t, ·) has a global maximum at x, then(C2)

F (t, x, r, q,X, φ(t, ·)) ≥ F (t, x, r, q, Y, ψ(t, ·)).
There is a γ ∈ R (independent of r, s, t, x, q,X, φ) such that if r ≤ s, then(C3)

γ(r − s) ≤ F (t, x, r, q,X, φ(t, ·)) − F (t, x, s, q,X, φ(t, ·)).
For every constant C ∈ R,(C4)

F (t, x, r, q,X, φ(t, ·) + C) = F (t, x, r, q,X, φ(t, ·)).

Remark 2.1. The constants γ in (C3) can be assumed to be non-negative. This can
be seen by performing an exponential in time scaling of the solution of (1.1).

Definition 2.1 (Test functions). v ∈ USCp(QT ) (v ∈ LSCp(QT )) is a viscos-
ity subsolution (viscosity supersolution) of (1.1) if for every (t, x) ∈ QT and φ ∈
C1,2

p (QT ) such that (t, x) is a global maximizer (global minimizer) for v − φ,

φt(t, x) + F (t, x, v(t, x), Dφ(t, x), D2φ(t, x), φ(t, ·)) ≤ 0 (≥ 0).

We say that v is a viscosity solution of (1.1) if v is both a sub- and supersolution
of (1.1).

Note that viscosity solutions according to this definition are continuous, and that
this concept of solutions is an extension of classical solutions. Furthermore, without
changing the (sub/super) solutions, we may in this definition assume strict maxima
and that u = φ at the maximum. See [35] for simple proofs of these statements and
more remarks on this abstract formulation.

Next we introduce an alternative definition of viscosity solutions that is needed
for proving comparison and uniqueness results. For every κ ∈ (0, 1), assume that
we have a function

Fκ : QT × R × R
N × S

N × SCp(QT ) × C1,2(QT ) → R

satisfying the following list of assumptions for every t ∈ [0, T ], x, y ∈ RN , r, s ∈
R, q ∈ RN , X, Y ∈ SN , u,−v ∈ USCp(QT ), w ∈ SCp(QT ), and φ, φk , ψ, ψk ∈
C1,2

p (QT ):

Fκ(t, x, φ(t, x), Dφ(t, x), D2φ(t, x), φ(t, ·), φ(t, ·))(F0)

= F (t, x, φ(t, x), Dφ(t, x), D2φ(t, x), φ(t, ·)).
The function F in (F0) satisfy (C1).(F1)

If X ≤ Y and both (u− v)(t, ·) and (φ − ψ)(t, ·) have global maxima at x,(F2)

then Fκ(t, x, r, q,X, u(t, ·), φ(t, ·)) ≥ Fκ(t, x, r, q, Y, v(t, ·), ψ(t, ·)).
The function F in (F0) satisfy (C3).(F3)

For all constants C1, C2 ∈ R,(F4)

Fκ(t, x, r, q,X,w(t, ·) + C1, φ(t, ·) + C2) = Fκ(t, x, r, q,X,w(t, ·), φ(t, ·)).
If ψk(t, ·) → w(t, ·) a.e. in R

N and |ψk(t, x)| ≤ C(1 + |x|p), then(F5)

Fκ(t, x, r, q,X, ψk(t, ·), φ(t, ·)) → Fκ(t, x, r, q,X, u(t, ·), φ(t, ·)).

Remark 2.2. If (F0) – (F4) hold, then (C1) – (C4) also hold.
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Lemma 2.1 (Alternative definition). Assume there exists Fκ satisfying (F0) –
(F2), (F4), and (F5) for every κ ∈ (0, 1). Then v ∈ USCp(QT ) (v ∈ LSCp(QT ))
is a viscosity subsolution (viscosity supersolution) of (1.1) if and only if for ev-
ery (t, x) ∈ QT and φ ∈ C1,2(QT ) such that (t, x) is a global maximizer (global
minimizer) for v − φ, and for every κ ∈ (0, 1),

φt(t, x) + Fκ(t, x, v(t, x), Dφ(t, x), D2φ(t, x), v(t, ·), φ(t, ·)) ≤ 0 (≥ 0).

The proof is similar to that in Sayah [45], see also [6, 35]. The next theorem
replaces the maximum principle for semicontinuos functions (cf. [17, 18]) when
working with integro-PDEs.

Theorem 2.2. Let u,−v ∈ USCp(QT ), u(t, x),−v(t, x) ≤ C(1+ |x|2), solve in the
viscosity sense

ut + F (t, x, u,Du,D2u, u(·)) ≤ 0 and vt +G(t, x, v,Dv,D2v, v(·)) ≥ 0,

where F and G satisfies (C1) – (C4). Let φ ∈ C1,2((0, T )×RN×RN ) and (t̄, x̄, ȳ) ∈
(0, T )× RN × RN be such that

u(t, x) − v(t, y) − φ(t, x, y)

has a global maximum at (t̄, x̄, ȳ). Furthermore assume that in a neighborhood of
(t̄, x̄, ȳ) there are continuous functions g0 : [0, T ]×R2N → R, g1, g2 : QT → SN with
g0(t̄, x̄, ȳ) > 0, satisfying

D2φ ≤ g0(t, x, y)

(
I −I
−I I

)
+

(
g1(t, x) 0

0 g2(t, y)

)
.

If in addition for every κ ∈ (0, 1) there exist Fκ and Gκ satisfying (F0) – (F5),
then for any γ̄ ∈ (0, 1

2 ) there are a, b ∈ R and X,Y ∈ SN satisfying

a− b = φt(t̄, x̄, ȳ)

and

−g0(t̄, x̄, ȳ)
γ̄

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
−

(
g1(t̄, x̄) 0

0 g2(t̄, ȳ)

)
≤ g0(t̄, x̄, ȳ)

1 − 2γ̄

(
I −I
−I I

)(2.1)

such that

a+ Fκ(t̄, x̄, u(t̄, x̄), Dxφ(t̄, x̄, ȳ), X, u(t̄, ·), φ(t̄, ·, ȳ)) ≤ 0 and(2.2)

b+Gκ(t̄, ȳ, v(ȳ),−Dyφ(t̄, x̄, ȳ), Y, v(t̄, ·),−φ(t̄, x̄, ·)) ≥ 0.(2.3)

Outline of proof. The theorem is essentially a special case of the corresponding
elliptic result Theorem 4.8 in [35]. This follows from the procedure of Section 3 in
Crandall and Ishii [17] that we will repeat here for the readers’ convenience.

We may assume that the maximum is strict. Then the function

u(t, x) − v(s, y) − φ(t, x, y) − 1

δ
(t− s)2,

will have a global maximum at some point (t̃, s̃, x̃, ỹ) ∈ [0, T ]2×R2N . Furthermore,
as δ → 0, along a subsequence (t̃, s̃, x̃, ỹ) → (t̄, t̄, x̄, ȳ) and 1

δ (t̃− s̃)2 → 0. Choosing

δ small enough, we have (t̃, s̃) ∈ (0, T )2. Letting ψ(t, s, x, y) := φ(t, x, y)+ 1
δ (t−s)2,

it is not difficult to see that

ψt − ψs = φt and Dnψ = Dnφ (n = 1, 2).
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With this in mind, we apply the elliptic result (Lemma 7.8) in [35]. The result is

the existence of two matrices X̃, Ỹ ∈ S
N satisfying

−g0(t̃, x̃, ỹ)
γ̄

(
I 0
0 I

)
≤

(
X̃ 0

0 −Ỹ

)
−

(
g1(t̃, x̃) 0

0 g2(t̃, ỹ)

)
≤ g0(t̃, x̃, ỹ)

1 − 2γ̄

(
I −I
−I I

)

such that

ã+ F (t̃, x̃, u(t̃, x̃), Dxφ(t̃, x̃, ỹ), X̃, φ(t̃, ·, ỹ)) ≤ 0 and

b̃+G(s̃, ỹ, v(ỹ),−Dyφ(t̃, x̃, ỹ), Ỹ ,−φ(t̃, x̃, ·)) ≥ 0,

where ã := ψt(t̃, s̃, x̃, ỹ) and b̃ := ψs(t̃, s̃, x̃, ỹ). Observe that we use the F/G-
formulation, and not the Fκ/Gκ-formulation at this point. Also note that by (C4)
the (t−s)2 part in ψ does not appear in the non-local part in the above inequalities
because it is a constant w.r.t. x and y.

The inequalities give upper bounds on ã and −b̃, and since ã− b̃ = φt(t̃, x̃, ỹ), the
two sequences are bounded in δ. We may therefore extract converging subsequences
of ã, b̃, X̃, Ỹ as δ → 0. Denoting the limits by a, b,X, Y , we obtain the result
by sending δ → 0 along this subsequence, using (semi) continuity of all involved
functions.

The final step is to show that a similar result holds in the Fκ/Gκ formulation.
We omit this easy step and refer the interested reader to the proof of Theorem 4.8
in [35], see also Lemma 2.1 above. �

Remark 2.3. The technical condition u(x),−v(x) ≤ C(1+ |x|2) is an artifact of the
method used to prove Theorem 4.8 in [35]. It does not seem easy to remove. In
practice, however, it creates no difficulties.

Remark 2.4. Using the notation of [18], we note that

(a,Dxφ(t̄, x̄, ȳ), X) ∈ J 2,+
u(t̄, x̄) and (b,−Dyφ(t̄, x̄, ȳ), Y ) ∈ J 2,−

v(t̄, ȳ).

But as opposed the pure PDE case, a priori we do not know that the viscosity

inequalities hold for elements in J 2,+
u(t̄, x̄) and J 2,−

v(t̄, ȳ) respectively, see [35]
for a discussion of this point in the elliptic setting.

3. Continuous Dependence Estimates.

In this section we formulate and prove an abstract continuous dependence es-
timate for Integro-PDEs. It is a pointwise estimate which may have polynomial
growth in the space variable x. As will be explained in the following, this result
is an extension of results in [34] (see also [33, 16]) in two directions: (i) We have
equations with an integro operator and (ii) we allow for (polynomial) growth in
the estimates. In the next sections we will see how this rather complicated and
abstract result can be used to obtain new continuous dependence estimates for the
Bellman/Isaacs and Black-Scholes type equations.

The following crucial condition can be thought of as a “continuous dependence”
version of condition (3.14) in the User’s Guide [18]. For every κ ∈ (0, 1), t ∈
[0, T ], x, y ∈ RN , r, s ∈ R, q ∈ RN , X, Y ∈ SN , u,−v ∈ USCm(QT ), and φ ∈
C1,2(QT ) we assume:

Let α, ε, λ > 0, p ≥ 2, and define(F6)

φ(t, x, y) = eλtα

2
|x− y|2 + eλt ε

p
(|x|p + |y|p).
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There are constants η1, . . . , η4, p1, . . . , p4, ps,K1,K2,K3 ≥ 0 independent

of α, ε, λ, t, and a modulus mα,ε (depending on α, ε) such that

whenever u(t, x) − v(t, y) − φ(t, x, y) has a global maximum at (t̄, x̄, ȳ),

F̄κ

(
t̄, ȳ, r, eλt̄α(x̄ − ȳ) − eλt̄εȳ|ȳ|p−2, Y, v(t̄, ·),−φ(t̄, x̄, ·)

)

− Fκ

(
t̄, x̄, r, eλt̄α(x̄ − ȳ) + eλt̄εx̄|x̄|p−2, X, u(t̄, ·), φ(t̄, ·, ȳ)

)

≤
2∑

i=1

(1 + |x̄| + |ȳ|)piηi + α
4∑

i=3

(1 + |x̄| + |ȳ|)2piη2
i

+K1(1 + |x̄| + |ȳ|)ps |x̄− ȳ| +K2e
λt̄α|x̄− ȳ|2

+K3e
λt̄ε (1 + |x̄|p + |ȳ|p) +mα,ε(κ),

for every |r| ≤ |u|0 ∧ |ū|0, and X,Y satisfying
(
X 0
0 −Y

)
≤ 2eλt̄α

(
I −I
−I I

)
+ eλt̄ε(p− 1)

(
|x̄|p−2I 0

0 |ȳ|p−2I

)
.(3.1)

The matrix inequality above corresponds to the second inequality in (2.1) when
γ̄ = 1/4 and φ is as defined above.

Theorem 3.1 (Continuous Dependence Estimate). Let p ≥ 2 and m < p, let F, F̄
and Fκ, F̄κ, κ ∈ (0, 1) be functions satisfying assumptions (C1) – (C4) and (F0) –
(F6) respectively, and let u,−ū ∈ USCm(QT ) satisfy in the viscosity sense

ut(t, x) + F (t, x, u(t, x), Du(t, x), D2u(t, x), u(t, ·)) ≤ 0 and

ūt(t, x) + F̄ (t, x, ū(t, x), Dū(t, x), D2ū(t, x), ū(t, ·)) ≥ 0.

Furthermore, let p0 ≥ 0 (p0 is used in (3.2)), assume (F6) holds with

p > 2 max(p0, . . . , p4, ps),

and assume
|Du(0, x)|, |Dū(0, x)| ≤ K4(1 + |x| + |y|)ps a.e.

Then there is a constant C > 0 (depending only on K1, . . . ,K4, p0, . . . , p4, ps, p, T )
such that for every (t, x) ∈ QT :

u(t, x) − ū(t, x) ≤ C(1 + |x|)p0
∣∣(u(0, ·) − ū(0, ·))+

∣∣
0,p0

+ C

2∑

i=1

T 1−
pi
p (1 + |x|)piηi + C

4∑

i=3

T
1
2−

pi
p (1 + |x|)pi+psηi.

(3.2)

Before giving the proof we give some remarks and corollaries.

Remark 3.1. We have not specified the various constants in Theorem 3.1, but it
is possible to get bounds on them by tracing them in the proof below. However,
getting optimal bounds would be difficult from the present proof because of the
complexity, all the approximations used, and arbitrariness of the form that one
factor/term can be decreased at the expense of increasing another factor/term.

However, if all the constants p’s and K’s are independent of T , it follows from the
proof that the various constants C can be chosen to be positive, finite, continuous in
T , and strictly positive in the limit as T → 0. In addition, it follows that whenever
one of the exponents p0, p1, p2 is equal to 0, we may take the corresponding C in
(3.2) to be 1.
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Let us now consider a special case where u and ū are bounded and there is no
growth in the data, i.e., m = p0 = · · · = p4 = ps = 0.

Corollary 3.2. Assume that the assumptions of Theorem 3.1 are satisfied with
m = p0 = · · · = p4 = ps = 0 and η2 = η4 = 0. Then there is a constant C > 0 such
that

|(u− ū)+|0 ≤ |(u(0, ·) − ū(0, ·))+|0 + Tη1 + CT 1/2η3.

This corollary is an extension of Theorem 2.1 in [34] to Integro-PDEs. The
coefficient 1 in front of the Tη1-term is explained in Remark 3.1. Next we consider
the case where u and ū are both continuous. Theorem 3.1 gives an upper bound on

u(t, x) − ū(t, x)

valid for all t ∈ [0, T ) and x ∈ RN . Furthermore, this bound is independent of t, so
by sending t→ T and using continuity the same bound also holds for

u(T, x) − ū(T, x).

Renaming T to t we then have the following result:

Corollary 3.3. (a) Assume that the assumptions of Theorem 3.1 hold and in
addition that u, ū ∈ C(QT ). Then there is a constant C > 0 (independent of t)
such that for every (t, x) ∈ QT ,

u(t, x) − ū(t, x) ≤ C(1 + |x|)p0
∣∣(u(0, ·) − ū(0, ·))+

∣∣
0,p0

+ C

2∑

i=1

t1−
pi
p (1 + |x|)piηi + C

4∑

i=3

t
1
2−

pi
p (1 + |x|)pi+psηi.

(b) Assume that the assumptions of Corollary 3.2 hold and in addition that u, ū ∈
C(QT ). Then there is a constant C > 0 (independent of t) such that

u(t, x) − ū(t, x) ≤ |(u(0, ·) − ū(0, ·))+|0 + tη1 + Ct1/2η3.

That fact that the constants C can be chosen independently of t follows from
Remark 3.1. Take as new constants the maximum over [0, T ] of the t-depending
C’s given by Theorem 3.1.

Remark 3.2. Notice the time dependence in the estimate in Corollary 3.3 (a). It
differs from the time dependency in Corollary 3.3 (b) when pi > 0 for at least
one i ∈ {1, 2, 3, 4}. This is an effect of the growth in the data (and hence in the
solutions).

In the above bounds on u − ū, p behaves like a free parameter. It may vary
between its lower bound and any number p for which the non-local part of the
equation is well-defined (so no restrictions for pure PDEs!). If we were allowed to
send p→ ∞, we would obtain the T -exponents (t-exponents) 1 and 1/2. However,
our estimates do not allow this, since the way we do the proof, at least some of the
constants C will blow up as p→ ∞.

Remark 3.3. The complicated condition (F6) is a natural “structure condition”
leading to continuous dependence estimates in the viscosity solutions setting. The
use of this condition will be clearer in the next section where we derive both known
and new continuous dependence results for Bellman/Isaacs equations under as-
sumptions that include the Black-Scholes equation. The new features here con-
sist of estimates on the integro operators and allowing for estimates with growth.
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Growth in the estimates arise naturally when studying Black-Scholes type of equa-
tions where the underlying stochastic process is an exponential Lévy process. In
the following sections, we will present examples where some or all of the exponents
p0, · · · , p4, ps are different from 0.

Finally, we remark that Theorem 3.1 allows for four error terms η1, . . . , η4 (with
corresponding p1, . . . , p4). In Corollary 3.2 and in [34], only two terms were used.
One could consider any number of such error terms η, both in the above theorem
and in applications, but in this paper we confine ourselves to situations where up
to four error terms are sufficient.

Now we turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. We may assume that γ ≥ 0, see Remark 2.1. Let us start
by defining the following quantities

ψ(t, x, y) := u(t, x) − ū(t, y) − φ(t, x, y) − δσ

T
t− ε̄

T − t

where δ, ε̄ ∈ (0, 1) and

σ0 := sup
x,y∈RN

{
u(0, x) − ū(0, y) − φ(0, x, y) − ε̄

T

}+

,

σ := sup
t∈[0,T )

x,y∈RN

{
u(t, x) − ū(t, y) − φ(t, x, y) − ε̄

T − t

}
− σ0.

By the continuity of ψ, precompactness of sets of the type {ψ(t, x, y) > k}, and the
penalization term ε̄

T−t , there exists t0 ∈ [0, T ), x0, y0 ∈ RN such that

sup
t∈[0,T ),x,y∈RN

ψ(t, x, y) = ψ(t0, x0, y0).

We want an upper bound on σ + σ0, and we start by deriving a positive upper
bound for σ. We may therefore assume that σ > 0. This implies that t0 > 0, since
on one hand

ψ(t0, x0, y0) ≥ σ + σ0 − δσ > σ0,

while on the other hand t0 = 0 would imply ψ(t0, x0, y0) ≤ σ0, which is a contra-
diction.

We can now apply Theorem 2.2 (with γ̄ = 1/4) to conclude that there are
numbers a, b ∈ R satisfying a − b = φt(t0, x0, y0) + δσ

T + ε̄
(T−t)2 , and symmetric

matrices X,Y ∈ SN satisfying inequality (3.1) such that the following inequality
holds

a− b ≤ F̄κ(t0, y0, ū(t0, y0),−Dyφ(t0, x0, y0), Y, ū(t0, ·),−φ(t0, x0, ·))
−Fκ(t0, x0, u(t0, x0), Dxφ(t0, x0, y0), X, u(t0, ·), φ(t0, ·, y0)).

Since σ > 0 it follows that u(t0, x0) ≥ ū(t0, y0), so after using (F3) with γ ≥ 0,
(F6), and the above inequality, we have

δ
σ

T
+
λ

2
eλt0α|x0 − y0|2 +

λ

p
eλt0ε (|x0|p + |y0|p)

≤
2∑

i=1

(1 + |x0| + |y0|)piηi + α

4∑

i=3

(1 + |x0| + |y0|)2piη2
i
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+K1(1 + |x0| + |y0|)ps |x0 − y0| +K2e
λt0α|x0 − y0|2

+K3e
λt0ε (1 + |x0|p + |y0|p) +mα,ε(κ).

We send κ→ 0 and choose λ to satisfy

λ = 2(K2 + 1) ∨ p(K3 + 1)

(the number +1 is an arbitrarily chosen positive number) and obtain

δ
σ

T
≤

2∑

i=1

(1 + |x0| + |y0|)piηi + α

4∑

i=3

(1 + |x0| + |y0|)2piη2
i

+K1(1 + |x0| + |y0|)ps |x0 − y0| − eλt0α|x0 − y0|2 − eλt0ε (1 + |x0|p + |y0|p) .
Then we send δ → 1, maximize w.r.t. |x0 − y0|, and use

3−p+1 (1 + |x0| + |y0|)p ≤ 1 + |x0|p + |y0|p

to obtain

σ

T
≤

2∑

i=1

(1 + |x0| + |y0|)piηi + α

4∑

i=3

(1 + |x0| + |y0|)2piη2
i

+ Cα−1(1 + |x0| + |y0|)2ps − Cε (1 + |x0| + |y0|)p

:=

2∑

i=1

Ai(r) +

4∑

i=3

Ai(r) +A5(r) − Cεrp where r = 1 + |x0| + |y0|.

Now let ri denote the maximum point of

Ai(r) −
1

5
Cεrp,

for i = 1, 2, . . . , 5. That is

ri = C
(ηi

ε

) 1
p−pi

, i = 1, 2; ri = C

(
αη2

i

ε

) 1
p−2pi

, i = 3, 4; r5 = C(εα)−
1

p−2ps .

Then we have

σ ≤ T

5∑

i=1

(
Ai(ri) −

1

5
Crp

i

)

= CT

2∑

i=1

ε
−

pi
p−pi η

p

p−pi

i + CT

4∑

i=3

ε
−

2pi
p−2pi (αη2

i )
p

p−2pi + CTε−
2ps

p−2ps α− p

p−2ps .

Now we need an estimate of σ0. Using the regularity of the initial values and a
similar optimization procedure as we used above, we obtain

σ0 ≤ Cε−
p0

p−p0

∣∣∣∣
(u(0, ·) − ū(0, ·))+

1 + | · |p0

∣∣∣∣

p

p−p0

0

+ Cε−
2ps

p−2ps α− p

p−2ps .

By the calculations above we have

σ + σ0 ≤ Cε
−

p0
p−p0M

p

p−p0

0 + CT

2∑

i=1

ε
−

pi
p−pi η

p

p−pi

i

+ CT

4∑

i=3

ε
−

2pi
p−2pi (αη2

i )
p

p−2pi + Cε−
2ps

p−2ps α− p

p−2ps
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:= B0 +

2∑

i=1

Bi +

4∑

i=3

Bi(α) +B5(α),

where M0 denotes the weighted norm of the initial conditions. Note that this
expression holds for all positive α. We proceed to obtain an upper bound on σ+σ0

that does not depend on α by choosing a suboptimal α. Let α3 and α4 respectively
denote the minimum points of

Bi(α) +B5(α) = CTε
−

2pi
p−2pi (αη2

i )
p

p−2pi + Cε−
2ps

p−2ps α− p

p−2ps ,

for i = 3 and i = 4, i.e.

αi = CT
−

(p−2pi)(p−2ps)

2p(p−pi−ps) η
− p−2ps

p−pi−ps

i ε
pi−ps

p−pi−ps for i = 3, 4.

Then set

ᾱ = min{α3, α4}
and note that since ᾱ ≤ α3 and ᾱ ≤ α4, the definitions of ᾱ, α3, α4 lead to the
following bound

σ + σ0 ≤ B1 +
2∑

i=1

Bi +
4∑

i=3

Bi(ᾱ) +B5(ᾱ)(3.3)

≤ B1 +
2∑

i=1

Bi +
4∑

i=3

Bi(αi) +B5(ᾱ)

= Cε−
p0

p−p0M
p

p−p0

0 + CT
2∑

i=1

ε
−

pi
p−pi η

p

p−pi

i

+ C
4∑

i=3

T
p−2pi

2p−2pi−2ps η
p

p−pi−ps

i ε
−

pi+ps
p−pi−ps

:= A0(ε) +
2∑

i=1

Ai(ε) +
4∑

i=3

Ai(ε),

which holds for any ε > 0.
To complete the proof, we use the definition of σ to see that

u(t, x) − ū(t, x) − 2ε

p
eλt|x|p − ε̄

T − t
≤ σ + σ0

for any (t, x) ∈ QT . We send ε̄→ 0, use |x|p ≤ (1 + |x|)p, and use the bound (3.3),
to see that is

u(t, x) − ū(t, x) ≤ σ + σ0 +
2ε

p
eλT (1 + |x|)p

≤ A0(ε) +

2∑

i=1

Ai(ε) +

4∑

i=3

Ai(ε) +
2ε

p
eλT (1 + |x|)p.

This bound holds for every ε > 0. Next we find a bound independent of ε. Let εi

be the minimum point of
Ai(ε) + εC(1 + |x|)p

for i = 0, . . . , 4, i.e.,

ε0 = CM0(1 + |x|)p0−p, εi = CT
p−pi

p ηi(1 + |x|)pi−p, i = 1, 2,
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and

εi = CT
p−2pi

2p ηi(1 + |x|)pi+ps−p, i = 3, 4.

Now we set

ε̄ = max(ε1, . . . , ε5).

With this value of ε, since ε̄i ≤ ε for i = 0, . . . , 4, we have

u(t, x) − ū(t, x) ≤ A0(ε̄) +

2∑

i=1

Ai(ε̄) +

4∑

i=3

Ai(ε̄) +
2ε̄

p
eλT (1 + |x|)p

≤ A0(ε0) +

2∑

i=1

Ai(εi) +

4∑

i=3

Ai(εi) +
2ε̄

p
eλT (1 + |x|)p,

which is (3.2) and the proof is complete. �

4. The Bellman/Isaacs equation

In this section we consider the Bellman/Isaacs equation (1.4) with initial values

u(0, x) = u0(x) in R
N .(4.1)

We will state assumptions that are natural and standard in view of the connections
to the theory of stochastic control and differential games, see [25, 37, 26, 49, 43].
Under these assumptions we then derive continuous dependence results for sub-
and supersolutions that are bounded or have polynomial growth at infinity.

We assume that there are constants K1, . . . ,K5,Kt,x ≥ 0, λ ∈ R, p ≥ 2, and
a function ρ ≥ 0 such that the following statements hold for every t ∈ [0, T ],
x, y ∈ RN , α ∈ A, β ∈ B, and z ∈ RM \ {0}:

σ, b, c, f, j are continuous w.r.t. t, x, α, β and Borel measurable(A0)

w.r.t. z; A,B are compact metric spaces; π is a positive σ-finite

Radon measure on R
M \ {0} satisfying π({0}) = 0 and

K0 :=

∫

B(0,1)\{0}

ρ(z)2π(dz) +

∫

RM\B(0,1)

(1 + ρ(z))pπ(dz) <∞,

|fα,β(t, x) − fα,β(t, y)| + |u0(x) − u0(y)| ≤ K1|x− y|,(A1)

cα,β ≥ λ and |cα,β(t, x) − cα,β(t, y)| ≤ K2|x− y|,(A2)

|σα,β(t, x) − σα,β(t, y)| + |bα,β(t, x) − bα,β(t, y)| ≤ K3|x− y|,(A3)

|jα,β(t, x, z)| ≤ K4ρ(z)(1 + |x|), |jα,β(t, x, z)|χB(0,1)(z) ≤ Kt,x,(A4)

and |jα,β(t, x, z) − jα,β(t, y, z)| ≤ K5ρ(z)|x− y|.
The Lévy measure π(dz) may have a singularity at z = 0. As an example in
R1, take ρ(z) = |z| and π(dz) = z−δ χB(0,1)(z) where δ ∈ (0, 3). Furthermore,
it integrates functions growing like (1 + ρ(x))p at infinity. If assumptions (A0)
and (A4) hold, then the integral part of the Bellman/Isaacs equation (1.4) is well
defined for functions in C1,2

p (QT ), see, e.g., Garroni and Menaldi [29]. Assumptions
(A0) – (A4) were used in Pham [43] to obtain comparison results for second order
integro-PDEs, see also [35].

Note that (A1) – (A3) imply

|σα,β(t, x)| + |bα,β(t, x)| + |cα,β(t, x)| + |fα,β(t, x)| + |u0(x)| ≤ C(1 + |x|),
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for some constant C > 0. The growth at infinity of the solutions of (1.4) is equal
to the growth of the fastest growing function among the initial data u0 and the
“source term” f . Hence, assumption (A1) leads to at most linear growth.

We will now state the continuous dependence results. For i = 1, 2 we consider a
sub- or supersolution ui of

ui
t + inf

α∈A
sup
β∈B

{
−Lα,β

i ui − Bα,β
i ui + fα,β

i

}
= 0 in QT ,

ui(0, x) = ui
0(x) in R

N ,

(4.2)

whereLα,β
i and Bα,β

i are the operators defined in (1.5) corresponding to σi, bi, ci, ji, πi.

Theorem 4.1 (Bounded Case I). Assume σi, bi, ci, fi, u
i
0, ji, πi, i = 1, 2, satisfy

(A0) – (A4), u1 ∈ USC0(QT ) is a viscosity subsolution of (4.2) with i = 1, and
u2 ∈ LSC0(QT ) is a viscosity supersolution of (4.2) with i = 2. Then the following
pointwise estimate holds:

u1(t, x) − u2(t, x) ≤
∣∣(u1

0 − u2
0)

+
∣∣
0

+ T sup
α,β

{
|f1 − f2|0 + |u1|0 ∨ |u2|0|c1 − c2|0

}

+ CT 1/2
(

sup
α,β

|σ1 − σ2|0 + sup
α,β

|b1 − b2|0
)

+ CT 1/2 sup
α,β

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
1/2

0

+ CT 1/2(1 + |x|) sup
α,β

∣∣∣
∫

RN\{0}

j2|π1 − π2|(dz)
∣∣∣
1/2

0,2
,

where π = max{π1, π2} and j = max{j1, j2}.
We can get better results when u1 and u2 are more regular. We will only state

one such result.

Theorem 4.2 (Bounded Case II). Assume σi, bi, ci, fi, u
i
0, ji, πi, i = 1, 2, satisfy

(A0) – (A4), u1 ∈ C(QT ) is a viscosity subsolution of (4.2) with i = 1, u2 ∈ C(QT )
is a viscosity supersolution of (4.2) with i = 2, and

|Du1|0 + |Du2|0 <∞.

Then the following pointwise estimate holds:

u1(t, x) − u2(t, x) ≤
∣∣(u1

0 − u2
0)

+
∣∣
0

+ t sup
α,β

{
|f1 − f2|0 + |u1|0 ∨ |u2|0|c1 − c2|0 + |Du1|0 ∨ |Du2|0|b1 − b2|0

}

+ Ct1/2 sup
α,β

{
|σ1 − σ2|0 +

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
1/2

0

}

+ Ct1/2(1 + |x|) sup
α,β

∣∣∣
∫

RN\{0}

j2|π1 − π2|(dz)
∣∣∣
1/2

0,2
,

where π = max{π1, π2} and j = max{j1, j2}.
In the case of sub- and supersolutions with polynomial growth, we will relax

assumption (A1) and strengthen assumption (A2) in the following way:

There is a real number ps ≥ 0 such that(A1’)
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|fα,β(t, x) − fα,β(t, y)| + |u0(x) − u0(y)| ≤ K1(1 + |x| + |y|)ps |x− y|.
cα,β ≥ λ and cα,β is constant for each α ∈ A and β ∈ B.(A2’)

These assumptions have been used in Krylov [37] (but see Remark 4.2), where the
convex Bellman equation without an integro operator is considered. See also [25].
Note that (A1’) implies the following bound on f and u0

|fα,β(t, x)| + |u0(x)| ≤ C(1 + |x|)1+ps .

In view of earlier remarks, such a bound also applies to the solutions of (1.4). In
particular, if ps = 0, the solutions have (at most) linear growth at infinity.

Theorem 4.3 (Polynomial growth). Assume σi, bi, ci, fi, u
i
0, ji, πi, i = 1, 2,

satisfy (A0), (A1’), (A2’), (A3), and (A4), u1 ∈ USC1+ps
(QT ) is a viscosity

subsolution of (4.2) with i = 1, and u2 ∈ LSC1+ps
(QT ) is a viscosity supersolution

of (4.2) with i = 2. Let R, r ≥ 0. If p > 2 max(R, r, 1 + ps), then the following
pointwise estimate holds:

u1(t, x) − u2(t, x)

≤ C(1 + |x|)R
( ∣∣(u1

0 − u2
0)

+
∣∣
0,R

+ T 1−R
p sup

α,β
|f1 − f2|0,R

)

+ CT 1− 1+ps
p (1 + |x|)1+ps sup

α,β
|c1 − c2|

+ CT
1
2−

r
p (1 + |x|)r+ps

× sup
α,β

(
|σ1 − σ2|0,r + |b1 − b2|0,r +

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
1/2

0,r

)

+ CT
1
2−

1
p (1 + |x|)1+ps sup

α,β

∣∣∣
∫

RN\{0}

j2|π1 − π2|(dz)
∣∣∣
1/2

0,2
,

where π = max{π1, π2} and j = max{j1, j2}.
Remark 4.1. The various constants C in the above two theorems depend on inte-
grability and Lipschitz bounds and growth at infinity of the data/initial values of
two problems, and also on the constant λ defined in (A2)/(A2’). In other words,
the various constants and exponents defined in (A0) – (A4), (A1’), and (A2’).

We also remark that all constants C in the two theorems above, except the ones
in front of the |π1−π2| terms, can be chosen to depend only on one of the data-sets.
Either the u1-data or the u2-data. This fact is written out explicitly in [33].

In applications, the constants R and r appearing in Theorem 4.3 are to be chosen
such that the weighted norms are finite. In the next section, we will see examples
where (i) R = ps and r = 0 and (ii) R = 1 + ps and r = 1. Note that one could let
all the weighted norms above be different (have different R’s and r’s), but we have
omitted this case for simplicity.

Remark 4.2. The restrictive assumption (A2’) was introduced to simplify the es-
timates. With this assumption the structure of the equation is respected in the
sense that the coefficients of the i-th order term is O(xi) for i = 0, 1, 2. We could,
however, use a more general assumption like the following used by Krylov [37]:

|cα,β(t, x) − cα,β(t, y)| ≤ K2(1 + |x| + |y|)pc |x− y|
for some pc ≥ 0. In addition to modifications to the c-term, the effect on Theorem
4.3 would be to replace ps by 1 + ps + pc in the last two terms.
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Remark 4.3. Due to the complexity of the problems considered here, it is not
possible to give one continuous dependence result that is well suited for every
special case. We have given some results that are good for problems with order two
integro operators and the specified regularity of the sub- and supersolutions. By
varying the assumptions, many other (mostly easier) results can be obtained from
Theorem 3.1. Let us mention a few possible modifications:

• Better estimates can be had for integral operators of order 0 and 1, at least
when the solutions are, e.g., Lipschitz continuous.

• Estimates for locally Hölder continuous u0, f, c can be obtained by adapting
the arguments in [33] for the global Hölder case.

• When jump-vectors j1, j2 are x-bounded, the estimate of Theorems 4.1 and
4.2 have no growth.

Proofs of Theorems 4.1 – 4.3. The theorems will be proved by invoking Theorem
3.1 (see also Remark 3.1 and Corollary 3.3), so we have to define the appropriate
functions F, Fκ and check that they satisfy assumptions (C1) – (C4) and (F0) –
(F6). We set

F (t, x, r, q,X, φ(t, ·))

= inf
β∈B

sup
α∈A

{
− tr[aα,β(t, x)X ] − bα,β(t, x) q + cα,β(t, x) r + fα,β(t, x)

−
∫

RM\{0}

[
φ(t, x + jα,β(t, x, z)) − φ(t, x) − jα,β(t, x, z) q

]
π(dz)

}

and

Fκ(t, x, r, q,X, v(t, ·), φ(t, ·))

= inf
β∈B

sup
α∈A

{
− tr[aα,β(t, x)X ] − bα,β(t, x) q + cα,β(t, x) r

+ fα,β(t, x) −Bα,β
κ (t, x, q, φ(t, ·)) −Bα,β,κ(t, x, q, v(t, ·))

}

where aα,β is defined in (1.5) and

Bα,β
κ (t, x, q, φ(t, ·))

=

∫

B(0,κ)\{0}

[
φ(t, x+ jα,β(t, x, z)) − φ(t, x) − jα,β(t, x, z) q

]
π(dz),

Bα,β,κ(t, x, q, v(t, ·))

=

∫

RM\B(0,κ)

[
v(t, x+ jα,β(t, x, z)) − v(t, x) − jα,β(t, x, z) q

]
π(dz).

Note that p is defined in (A0). By (A0) and (A4), F satisfies (C1) – (C4) and Fκ

satisfies (F0) – (F5).
The main difficulty is assumption (F6). For Theorem 4.1 to be true, the constants

in (F6) must be the following: p1 = p2 = p3 = 0, p4 = 1, ps = 0,

η1 = sup
α,β

{
|f1 − f2|0 + |u1|0 ∨ |u2|0|c1 − c2|0

}
,

η2 = 0,

η2
3 = C sup

α,β

{
|σ1 − σ2|20 + |b1 − b2|20 +

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
0

}
,
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η2
4 = C sup

α,β

∣∣∣
∫

RN\{0}

j2|π1 − π2|(dz)
∣∣∣
0,2
.

Theorem 4.2 corresponds to (F6) being satisfied with the p’s and η2, η4 defined as
above and

η1 = sup
α,β

{
|f1 − f2|0 + |u1|0 ∨ |u2|0|c1 − c2|0 + |Du1|0 ∨ |Du2|0|b1 − b2|20

}
,

η2
3 = C sup

α,β

{
|σ1 − σ2|20 +

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
0

}
.

Theorem 4.3 corresponds to (F6) being satisfied with p1 = R, p2 = 1 + ps, p3 =
r, p4 = 1, ps = ps,

η1 = sup
α,β

|f1 − f2|0,R,

η2 = C sup
α,β

|c1 − c2|,

η2
3 = C sup

α,β

{
|σ1 − σ2|20,r + |b1 − b2|20,r +

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
0,r

}
,

and η4 defined as above.
In [33, 34], an assumption like (F6) was shown to hold for the pure PDE version

of (1.4) when sub- and supersolution are bounded. So the first case above of p’s
and η’s have been verified when π ≡ 0. The difficulty was the second order term
which was handled by a standard trick due to Ishii [31]. Therefore, here we will
only consider the case where σi = bi = ci = 0, which means that for i = 1, 2,

F i
κ(t, x, r, q,X, v(t, ·), φ(t, ·))

= inf
α∈A

sup
β∈B

{
fα,β

i (t, x) −Bα,β
i,κ (t, x, q, φ(t, ·)) −Bα,β,κ

i (t, x, q, v(t, ·))
}
.

The general result easily follows from combining the argument given below with
the ones given in [33, 34], where any modification due to growth should be clear
from the argument below. Furthermore, we only detail the proof of Theorem 4.3
since Theorems 4.1 and 4.2 can be proved in similar but easier ways.

Starting with the r.h.s. of the inequality in (F6) we have

F 2
κ (. . . ) − F 1

κ (. . . ) ≤ sup
α∈A,β∈B

{
fα,β
2 (t, y) − fα,β

1 (t, x)(4.3)

+Bα,β
1,κ (t, x,Dxφ(t, x, y), φ(t, ·, y)) −Bα,β

2,κ (t, y,−Dyφ(t, x, y),−φ(t, x, ·))

+Bα,β,κ
1 (t, x,Dxφ(t, x, y), u(t, ·)) −Bα,β,κ

2 (t, x,−Dyφ(t, x, y), v(t, ·))
}
.

By (A1’) we have

fα,β
2 (t, y) − fα,β

1 (t, x) ≤ (1 + |x|)R

∣∣∣∣∣
fα,β
1 − fα,β

2

(1 + | · |)R

∣∣∣∣∣
0

+K1(1 + |x| + |y|)ps |x− y|,

and hence η1 becomes what we announced above. Furthermore, the difference of

the Bα,β
1,κ and Bα,β

2,κ terms is bounded by some modulus ωα,ε(κ), as can be seen from

(A0) and (A4) (see also [43]). So we are left with the difference of the Bα,β,κ
1 and

Bα,β,κ
2 terms.
Here we will distinguish between the set on which the signed measure π1−π2 is a

positive measure and the set on which it is a negative measure. We denote these sets
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by D±, and remark that by the Hahn decomposition theorem D+∪D− = RM \{0}
and D+ ∩D− = ∅. Note that

(π1 − π2)|D±
= (π1 − π2)

±.

Let Dκ
± := D± ∩ {|z| ≥ κ} and observe that

Bα,β,κ
i (t, x, q, v) = Bα,β,κ

i,RM∩{|z|≥κ}
(t, x, q, v) = Bα,β,κ

i,Dκ
+

(t, x, q, v) +Bα,β,κ
i,Dκ

−

(t, x, q, v),

where i = 1, 2 and the extra subscript denotes the domain of integration and v is a
semicontinuous function. We have

Bα,β,κ
1,Dκ

+
(t, x,Dxφ(t, x, y), u(t, ·)) −Bα,β,κ

2,Dκ
+

(t, y,−Dyφ(t, x, y), v(t, ·))(4.4)

=

∫

Dκ
+

[
u(t, x+ jα,β

1 (t, x, z)) − u(t, x) −
(
v(t, y + jα,β

2 (t, y, z)) − v(t, y)
)

− jα,β
1 (t, x, z)Dxφ(t, x, y) − jα,β

2 (t, y, z)Dyφ(t, x, y)
]
π1(dz)

+

∫

Dκ
+

[
v(t, y + jα,β

2 (t, y, z)) − v(t, y) + jα,β
2 (t, y, z)Dyφ(t, x, y)

]

× (π1 − π2)(dz).

Let ψ be as in the proof of Theorem 3.1 with v replacing ū, and let (t, x, y) now be
a maximumpoint of ψ (called (t̄, x̄, ȳ) in (F6)). Since

ψ(t, x, y) ≥ ψ(t, x+ jα,β
1 (t, x, z), y + jα,β

2 (t, y, z)),

the first integrand is bounded by

eλtα

2
|jα,β

1 (t, x, z) − jα,β
2 (t, y, z)|2 + Ceλtερ(z)2(1 + ρ(z)p−2)(1 + |x|p + |y|p),

where the last term follows from (A4) and a Taylor expansion in x and y of the
ε-terms. Furthermore, since we π1 − π2 = (π1 − π2)

+ on D+, a similar argument

considering ψ(t, x, y) ≥ ψ(t, x, y + jα,β
2 (t, y, z)) leads to the following upper bound

on the second integral
∫

Dκ
+

(α
2
eλt|jα,β

2 (t, y, z)|2 + Ceλtερ(z)2(1 + ρ(z)p−2)(1 + |y|p)
)

(π1 − π2)
+(dz).

Note that to obtain the last estimate, it was crucial to have v and not u in the
second integral in (4.4). Combining the above estimates and using the Lipschitz

regularity of jα,β
1 , jα,β

2 , and the integrability conditions (A0) and (A4), we get

Bα,β,κ
1,Dκ

+
(t, x,Dxφ(t, x, y), u(t, ·)) −Bα,β,κ

2,Dκ
+

(t, y,−Dyφ(t, x, y), v(t, ·))

≤ α

2
eλt

∫

Dκ
+

|jα,β
1 (t, x, z) − jα,β

2 (t, x, z)|2π1(dz)

+
α

2
eλt

∫

Dκ
+

|jα,β
2 (t, y, z)|2(π1 − π2)

+(dz)

+ Ceλtα|x − y|2 + Ceλtε(1 + |x|p + |y|p).
Note that the constants C are independent of κ since by (A4), there is a factor
ρ(z)2 in all relevant integrands above. In a similar way, but by interchanging the
roles of v and (π − π)+ with u and (π − π)−, we get

Bα,β,κ
1,Dκ

−
(t, x,Dxφ(t, x, y), u(t, ·)) −Bα,β,κ

2,Dκ
−

(t, y,−Dyφ(t, x, y), v(t, ·))
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≤ α

2
eλt

∫

Dκ
−

|jα,β
1 (t, x, z) − jα,β

2 (t, x, z)|2π2(dz)

+
α

2
eλt

∫

Dκ
−

|jα,β
1 (t, y, z)|2(π1 − π2)

−(dz)

+ Ceλtα|x − y|2 + Ceλtε(1 + |x|p + |y|p).
Remember that |π1 − π2| = (π1 − π2)

+ + (π1 − π2)
−. By the above estimates

and the linear growth at infinity of j1, j2, see (A4), we can conclude that

F 2
κ (. . . ) − F 1

κ (. . . ) ≤ (1 + |x|)Rη1 + α(1 + |x|)2rη2
3 + α(1 + |x|)2η2

4

+ C
(
(1 + |x| + |y|)ps |x− y| + eλtα|x− y|2 + eλtε(1 + |x|p + |y|p)

)
,

where η1, η3, η4 were defined above. This completes the proof of condition (F6)
when σi, bi, ci = 0 for i = 1, 2. �

4.1. The obstacle problem. We will now state continuous dependence results
for bounded sub- and supersolutions of the obstacle problem corresponding to the
Bellman/Isaacs equation (1.4). For i = 1, 2 we consider

max

{
ui

t + inf
α∈A

sup
β∈B

{
−Lα,β

i ui − Bα,β
i ui + fα,β

i

}
, ui − gi

}
= 0 in QT ,

ui(0, x) = ui
0(x) in R

N .

(4.5)

The operators Lα,β
i and Bα,β

i are the operators defined in (1.5) corresponding to
σi, bi, ci, ji, πi. Now we replace assumptions (A0) and (A1) by the following

Assumption (A0) holds and g is continuous and compatible with u0, i.e.(A0’)

u0(x) ≤ g(0, x) for all x ∈ R
N .

|fα,β(t, x) − fα,β(t, y)| + |g(t, x) − g(t, y)| + |u0(x) − u0(y)| ≤ K3|x− y|.(A1”)

Theorem 4.4 (Obstacle problem). Assume σi, bi, ci, fi, u
i
0, ji, πi, gi, i = 1, 2,

satisfy (A0’), (A1”), (A2), (A3), and (A4), u1 ∈ USC0(QT ) is a viscosity subso-
lution of (4.5) with i = 1, and u2 ∈ LSC0(QT ) is a viscosity supersolution of (4.5)
with i = 2. Then the following pointwise estimate holds:

u1(t, x) − u2(t, x) ≤
∣∣(u1

0 − u2
0)

+
∣∣
0
+ |g1 − g2|0

+ T sup
α,β

{
|f1 − f2|0 + |u1|0 ∨ |u2|0|c1 − c2|0

}

+ CT 1/2
(

sup
α,β

|σ1 − σ2|0 + sup
α,β

|b1 − b2|0
)

+ CT 1/2 sup
α,β

∣∣∣
∫

RN\{0}

|j1 − j2|2π(dz)
∣∣∣
1/2

0

+ CT 1/2(1 + |x|) sup
α,β

∣∣∣
∫

RN\{0}

j2|π1 − π2|(dz)
∣∣∣
1/2

0,2
,

where π = max{π1, π2} and j = max{j1, j2}.
The proof of this result relies on an obstacle version of Theorem 3.1 (see also

Remark 3.1) and follows along the lines of the proof of Theorem 4.1. The modi-
fications are easy and will be omitted here. See [32] for a proof in the case of no
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integral term. We mention that the results corresponding to Theorems 4.2 and 4.3
also hold for the obstacle problem.

In the next sections the above result will be used in the American option problem
and in a singular perturbation problem by J.-L. Lions and S. Koike.

5. Applications

5.1. Regularity of solutions. In this subsection we will use the results of the
previous section to obtain Lipschitz estimates for the viscosity solution u of the
Bellman/Isaacs equation (1.4). We remark that the procedure given below have
essentially been used in [33, 32] (bounded solutions) and in [14] (solutions with sub-
quadratic growth) to obtain x-regularity of solutions and in the two last papers also
to obtain the t-regularity. While it is not the most general approach for obtaining
x-regularity, it seems to be a natural approach for t-regularity.

The estimates below will be derived under natural assumptions on the data. In
fact, we will use the same assumptions on the coefficients as Krylov [37] (but see
Remark 4.2), and all results given below will be consistent with those obtained in
Chapter 4.1 in [37]. Note however that as opposed to Krylov, we consider also
non-convex equations and equations with integro terms. Furthermore, we do not
use stochastic control theory, but pure PDE methods.

Let us start by giving an estimate of the Lipschitz regularity in x. We assume
that (A0), (A1’), (A2’), (A3), and (A4) hold. Theorem 4.3 yields directly the next
result, as can be seen by choosing u1(t, x) = u(t, x+ h), u2(t, x) = u(t, x), R = ps,
and r = 0.

Proposition 5.1. Under the assumptions given above, there is a constant C de-
pending only on T and the data, such that for every t ∈ [0, T ], x, h ∈ RN ,

|u(t, x+ h) − u(t, x)| ≤ C(1 + |x|)ps |h|.
We will now show how one can obtain regularity in time – at least when the initial

condition has suitable growth restrictions on its two first derivatives. We proceed
in three steps. First we estimate the difference |u(t+h, x)−u(t, x)| using Theorem
4.3 with u1(t, x) = u(t + h, x) and u2(t, x) = u(t, x) and the following natural
assumptions on the time regularity of the data: There are constants C1, . . . , C3

such that for every t, s ∈ [0, T ], x ∈ RN , and z ∈ RM \ {0},
|fα,β(t, x) − fα,β(s, x)| ≤ C1(1 + |x|)1+ps |t− s| (ps defined in (A1’)),(B1)

|σα,β(t, x) − σα,β(s, x)| + |bα,β(t, x) − bα,β(s, x)| ≤ C2(1 + |x|)|t− s|,(B2)

|jα,β(t, x, z) − jα,β(s, x, z)| ≤ C3ρ(z)(1 + |x|)|t− s|.(B3)

The result is (with R = 1 + ps and r = 1):

Lemma 5.2. Under the assumptions given above, there is a constant C depending
only on T and the data, such that for every x ∈ RN , and t, h such that h ≥ 0 and
t, t+ h ∈ (0, T ],

|u(t+ h, x) − u(t, x)| ≤ C(1 + |x|)1+ps |u(h, ·) − u0|0,1+ps
+ C(1 + |x|)1+psh.

The second step is to estimate the weighted norm above. We want to show that
∣∣∣∣
u(h, x) − u0(x)

(1 + |x|)1+ps

∣∣∣∣ ≤ Ch.(5.1)
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Here we make the following simplifying assumption on the initial data:

u0 ∈ C2(RN ) and |Diu0(x)| ≤ C i(1 + |x|)1+ps−i for i = 0, 1, 2.(B4)

(ps is defined in (A1’)).

It is not difficult to see that if C is large and t is small then

w±(t, x) := u0(x) ± Ct(1 + |x|2)(1+ps)/2

is a subsolution of (1.4) when the sign is minus and a supersolution when it is plus.
By the comparison principle we have w− ≤ u ≤ w+ which implies (5.1) for small
h.

Combining step 1 and step 2 we have

|u(t+ h, x) − u(t, x)| ≤ C(1 + |x|)1+psh

for small h. The third step is to obtain an estimate for any h. Pick an arbitrary h
and let M be an integer such that h/M is small enough for the above estimate to
apply. Then we have

|u(t+ h, x) − u(t, x)| ≤
M∑

i=1

|u(t+ ih/M, x) − u(t+ (i− 1)h/M, x)|

≤
M∑

i=1

C(1 + |x|)1+psh/M = C(1 + |x|)1+psh,

and we are done. What we have proved is the following proposition:

Proposition 5.3. Under the assumptions given above, there is a constant C de-
pending only on T and the data, such that for every x ∈ RN , and t, h such that
h ≥ 0 and t, t+ h ∈ (0, T ],

|u(t+ h, x) − u(t, x)| ≤ C(1 + |x|)1+psh.

We remark that assumption (B4) can be relaxed to requiring that u0 belongs

to W 2,∞
loc (RN ) and the growth restrictions on the derivatives hold a.e. This follows

from Theorem 4.3 after a mollification of u0, see [32] p. 14 for a similar argument
(see also [14]). However, except for the case where all coefficients are bounded, it is
not straightforward to use this procedure to obtain Hölder 1/2 regularity estimates
in time when u0 is only Lipschitz continuous. Such estimates have been obtained by
probabilistic arguments, at least for convex Bellman equations. We refer to Pham
[43] for the case where ps = 0 and solutions have linear growth at infinity, and to
Krylov [37] Exercise 4.1.2 for the pure PDE case where solutions have polynomial
growth at infinity.

5.2. The vanishing viscosity method. In this section we will study the vanish-
ing viscosity problem for the Bellman/Isaacs equation,

uε
t + inf

α∈A
sup
β∈B

{
−Lα,βuε − Bα,βuε + fα,β

}
= ε2∆uε in QT ,

uε(x, 0) = u0(x) in R
N ,

where the operators L and B have been defined in (1.5). The idea is to obtain
the rate of convergence of uε → u0 as ε → 0. The vanishing viscosity method
have been widely used to obtain both existence and uniqueness of solutions of first
order non-linear equations, see ,e.g., [40, 20, 50] for Hamilton-Jacobi equations and
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[21] for conservation laws. Note that this construction procedure is in general not
reasonable for non-convex second order equations, since now the “viscous problem”
need not have smooth solutions.

We will assume that (A0), (A1’), (A2’), (A3), and (A4) hold, and use Theorem
4.3 to compare uε and u0. Note that all coefficients coincide, except for the diffusion
coefficients. In vanishing viscosity equation it is σσT +ε2I , and in the limit equation
it is σσT . It is not difficult to see that√

σσT + ε2I −
√
σσT ≤ εI,

so we immediately have:

Proposition 5.4. Under the assumptions given above, there is a constant C de-
pending only on T and the data, such that for every ε > 0 and (t, x) ∈ QT ,

|u(t, x) − uε(t, x)| ≤ Ct1/2(1 + |x|)psε.

Such estimates have been known from stochastic control theory, at least for
the convex Bellman equation without an integro operator and no growth in the
solutions (cf. Fleming and Soner [25] p. 181). From a PDE point of view, similar
results have been given for first order Hamilton-Jacobi equation in [19] and recently
for second order equations in [16, 33, 34]. However, the above result is valid under
more general assumptions (polynomial growth and integro terms), and it also gives
the dependence on time t as opposed to earlier results.

5.3. The vanishing jump viscosity method. Now we propose a new limit pro-
cedure which we call the vanishing jump viscosity method in analogy with the
vanishing viscosity method considered above. Consider

uε
t + inf

α∈A
sup
β∈B

{
−Lα,βuε + fα,β

}
= Bεu

ε in QT ,

uε(x, 0) = u0(x) in R
N ,

(5.2)

where the operator L is as above and B is defined as

Bεφ =

∫

RM\{0}

[
φ(·, · + εz) − φ− εzDφ

]
π(dz),

for any smooth function φ and z ∈ RN . We may write

Bεφ(t, x) = ε2
∫

RM\{0}

(

∫ 1

0

∫ s

0

[
zTD2φ(t, x + zr)z

]
dr ds)π(dz)

to see that this term is non-local second order term with “ellipticity” constant ε2.
Assume that (A0) – (A3) hold with ρ(z) = |z|, and note that the jump vector
j = εz is bounded in x. Then by Theorem 4.1 and Remark 4.3, the following result
holds:

Proposition 5.5. Under the assumptions given above, there is a constant C de-
pending only on T and the data, such that for every ε > 0 and (t, x) ∈ QT ,

|u(t, x) − uε(t, x)| ≤ Ct1/2ε.

Compared with Proposition 5.4, ps = 0 and solutions are bounded. We remark
that for ε > 0 the underlying stochastic process is a jump-diffusion process, while in
the limit ε = 0 the jump term is zero and the underlying process is a pure diffusion.
We also remark that this result can be generalized to general jump-vectors j and
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a nonlinear dependence on the integro operator. Finally, we mention that it is not
clear if the vanishing jump viscosity method is useful in practice, since it is not
known in general if equation (5.2) has smooth solutions for ε > 0.

5.4. A singular perturbation problem by J.-L. Lions and S. Koike. In this
subsection we study a generalization to integro-PDEs of a singular perturbation
problem studied in Koike [36]. This problem is a generalization of the following
problem proposed and analyzed by J. L. Lions [39]:

max{−ε2∆uε + uε, uε − g} = 0 a.e. in Ω,

uε = 0 on ∂Ω,

where Ω is a smooth bounded domain and g is any given smooth function such that
g = 0 on ∂Ω. Using the classical theory of variational inequalities, Lions proves
that

‖uε − u0‖L2(Ω) ≤ Cε,

for some constant C. Armed with viscosity solution techniques, Koike studies the
following generalization:

max{max
k

{−Lk,εuε − fk}, uε − g} = 0 in Ω,

uε = 0 on ∂Ω,

where Ω is smooth and bounded, ε > 0, k ∈ N,

Lk,εφ = ε2tr[akD2φ] + εbkDφ− ckφ,

and the data belong to C2(Ω). Furthermore, he assumes that there are α, θ > 0 such
that ck ≥ α and ξTAkξ ≥ θ|ξ|2 for every k and ξ ∈ RN . Under the compatibility
assumption that u0 ≡ min{mink{fk/ck}, g} = 0 on ∂Ω, he proves that

‖uε − u0‖L∞(Ω) ≤ Cε.

We will study the following parabolic generalization of the above problems to
integro-PDEs,

max{max
α∈A

{ut −Lα,εuε − Bαuε − fα}, uε − g} = 0 in QT ,

uε(0, x) = 0 in R
N ,

where ε > 0, Bα is defined in (1.5) (let e.g. β ∈ {0}), and

Lα,εφ = ε2
1

2
tr

[
σασαTD2φ

]
+ εbαDφ− cαφ.

We will assume that all coefficients are bounded and satisfy (A0’), (A1”), (A2) –
(A4). The boundedness of f (and the 0 initial condition) implies that that both uε

and u0 are bounded, so using Theorem 4.4 to compare uε and u0 yields:

Proposition 5.6. Under the assumptions given above, there is a constant C de-
pending only on T and the data, such that for every ε > 0 and (t, x) ∈ QT ,

‖uε − u0‖L∞(QT ) ≤ Cε.
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6. Continuous dependence in the Black-Scholes model

6.1. Introduction. The standard model for describing the evolution of stock prices
is the geometric Brownian motion, and this model assumes that the stock returns
are normally distributed. However, the normal distribution poorly fits the stock
returns. Indeed, it is well known that returns distributions are, for example, lep-
tokurtic and have longer and fatter tails than the normal distribution (see, e.g.,
[47, 22, 10, 44]). To improve on this unfortunate situation, many Lévy, or jump-
diffusion models, have been suggested in the literature over the years (we say a little
bit more about this at the end of this section). For a general introduction to the
theory of pricing contingent claims in diffusion as well as jump-diffusion markets,
we refer to [47]. We also refer to [42, 15] (there are many more) for some particular
papers studying option pricing problems in the context of Lévy processes.

In this section we illustrate our continuous dependence results on some integro-
PDEs for pricing European/American options in a financial market model driven
by a geometric Lévy process for the stock price. In this context solutions are not
bounded, and even in the pure PDE case our previous results [33] cannot be applied.

For the sake of clarity and simplicity of presentation, we will in this section
restrict ourselves to a model consisting of one risky asset (stock) and hence one-
dimensional integro-PDEs. In view of the previous sections in this paper, we can
certainly do this without loss of generality.

6.2. Option pricing in Lévy markets. We consider a financial market where
the underlying uncertainty is described by a probability space (Ω,F , P ) equipped
with a filtration (Ft)t≥0 satisfying the usual assumptions [47]. The financial market
consists of a bond (bank account) whose price process evolves according to dBt =
rBt dt, where r > 0 is a constant interest rate, and a risky asset (stock) with
price dynamics denoted by Xt. Under the no-arbitrage assumption there exists
a measure equivalent to P that turns Xte

−rt into a martingale. In a complete
financial market the unique arbitrage free price of a contingent claim is given as
a discounted conditional expectation value with respect to the unique equivalent
martingale measure, which in turn solves the Black-Scholes PDE. In an incomplete
market, however, there exist infinitely many equivalent martingale measures and
corresponding arbitrage free prices. Consequently, to price a contingent claim,
one needs to select an appropriate equivalent martingale measure. Lévy markets
are indeed incomplete, but we are not interested in any particular choice of an
equivalent martingale measures. Instead, without loss of generality, we assume
that P is a given martingale measure.

The (risk-neutral) price dynamics Xt under martingale measure P is here given
by the geometric Lévy model

(6.1) Xt = X0 exp(rt + Lt), t > 0, X0 := x > 0,

where Lt is a Lévy process. The Lévy-Khintchine decomposition of Lt reads [47]

Lt = µt+ σWt +

∫ t

0

∫

0<|z|<1

z Ñ(dz, ds) +

∫ t

0

∫

|z|≥1

z N(dz, ds),

where µ ∈ R; σ ≥ 0; Wt is a Brownian motion; N(dt, dz) is the jump measure of Lt

with a compensator π(dz)× dt; and the so-called Lévy measure π(dz) is a positive
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Radon measure on R \ {0} satisfying

π ({0}) = 0,

∫

R\{0}

(
|z|2 ∧ 1

)
π(dz) <∞.

The triplet
(
µ, σ2, π(dz)

)
is called the characteristic triplet of the Lévy process Lt.

We assume that the Lévy measure π(dz) satisfies the integrability condition

(6.2)

∫

|z|≥1

(ez − 1) π(dz) <∞,

which is a necessary and sufficient condition for the stock price given by (6.1) to
possess first moments.

The condition that Xte
−rt should be a martingale puts some restrictions on the

characteristic triplet
(
µ, σ2, π(dz)

)
. Namely,

µ = −1

2
σ2 −

∫

R\{0}

(
ez − 1 − z1|z|<1

)
π(dz).

Hence, under (6.2), we can use Itô’s formula (see, e.g., [47]) for semimartingales to
write (6.1) as

dXt = rXt dt+ σXt dWt +Xt−

∫

R\{0}

(
ez − 1

)
Ñ(dz, dt).(6.3)

For a European option g(Xt) with maturity T , given P , the corresponding
arbitrage-free price at time t is

ct = E

[
e−r(T−t)g(XT ) | Ft

]
,

while for an American option with payoff {g(Xt)}0≤t≤T it is given by

Ct = ess sup
τ∈Tt,T

E

[
e−r(τ−t)g(Xτ ) | Ft

]
,

where Tt,T denotes all the stopping times between t and T .
Introducing the change of variables t 7→ T − t, the arbitrage-free price of the

European option can be stated as

ct = c(T − t,Xt), c(t, x) = E
[
e−rT g(XT (x)) |Xt = x

]
.

Similarly, the arbitrage-free price of the American option is can be stated as

Ct = C(T − t,Xt), C(t, x) = sup
τ∈T0,t

E
[
e−rτg(Xτ (x)) |Xt = x

]
.

6.3. Integro-PDEs and continuous dependence. It is well know that c(t, x) :
[0, T ]× (0,∞) → R and C(t, x) : [0, T ]× (0,∞) → R solve uniquely in the viscosity
solution sense (see, e.g., [43]) the following integro-PDE problems:

(6.4)





ut −
1

2
σ2x2uxx − rxux + ru

−
∫

R\{0}

[u(t, x+ x(ez − 1)) − u(t, x) − x(ez − 1)ux(t, x)] πp(dz) = 0,

u(0, x) = g(x).
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and

(6.5)





min

{
u− g, ut −

1

2
σ2x2uxx − rxux + ru

−
∫

R\{0}

[u(t, x+ x(ez − 1)) − u(t, x) − x(ez − 1)ux(t, x)] πp(dz)

}
= 0,

u(0, x) = g(x).

Typical examples of payoff functions are

g(x) = (x−K)+ (call) and g(x) = (K − x)+ (put),

where K > 0 is the exercise price. Instead of being specific, we shall here simply
assume that g(x) is some function satisfying, for any x, y ∈ (0,∞),

(6.6) |g(x) − g(y)| ≤ C|x− y|, |g(x)| ≤ C(1 + |x|).
Moreover, we shall assume that the Lévy measure π(dz) admits a density (see below
for an example):

π(dz) = m(z) dx, for some function m : R \ {0} → R.(6.7)

The following theorem is a consequence of our previous more general results.

Theorem 6.1. Assume (6.6) and (6.7) hold. For i = 1, 2, assume σi > 0, ri > 0
are constants, and πi(dz) = mi(z) dz are Lévy measures admitting densities. For
i = 1, 2, let ui be a viscosity solution of (6.4), or (6.5), with the “data” σ, r, π(dz), g
replaced by

σi, ri, πpi

i (dz) = mi(z) dz, gi.

Then for any p > 2 and any (t, x) ∈ [0, T )× (0,∞)

|u1(t, x) − u2(t, x)|

≤ C(1 + x)
(
|g1 − g2|0,1 + |r1 − r2| + |σ1 − σ2|

)

+ C(1 + x)

√∫

R\{0}

|z|2
∣∣∣m1(z) −m2(z)

∣∣∣ dz

for some constant C that depends on the data of the two problems and T .

Remark 6.1. In the previous sections we have considered equations set in the domain
(0, T )× R

N , while here we are on the domain (0, T )× (0,∞). So strictly speaking
we can not use our previous results “directly” to obtain Theorem 6.1. But it is easy
to overcome this, simply extend the function g by symmetry to all of (0, T )×R, and
consider equations (6.4) and (6.5) on the new domain (0, T )×R. Now we may use
Theorem 3.1. Theorem 6.1 then follows since the solutions of these new problems
will coincide with u1 and u2 (defined in Theorem 6.1) on [0, T )×(0,∞). The reason
for this is that the equations degenerate at x = 0, so there is no “communication”
between the two domains (0, T )× (−∞, 0) and (0, T ) × (0,∞).

We will now display some applications of Theorem 6.1.

(i) Different Lévy measures. Note that different choices of the Lévy measure
correspond to different geometric Lévy models for the stock price dynamics. In
particular, as an application of Theorem 6.1, we have an explicit estimate on the
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difference between the unique arbitrage free European/American option (Black-
Scholes) price in a complete diffusion market, call it vcom(t, x) and the arbitrage
free European/American option price in our Lévy market, call it vincom(t, x):

|vcom(t, x) − vincom(t, x)| ≤ C(1 + x)

√∫

R\{0}

|z|2m(z) dz.

(ii) Truncation of domain of integration I. When attempting to solve integro-
PDEs like (6.4) or (6.5) by numerical methods, one needs to reduce the integration
domain R \ {0} to a bounded domain. One way to achieve this is to replace the
original Lévy process Lt with characteristic triplet

(
µ, σ2, π(dz)

)
by another Lévy

process Lε
t with characteristic triplet

(
µε, σ

2, πε(dz)
)
, where ε > 0 is small and

µε = −1

2
σ2 −

∫

R\{0}

(
ez − 1 − z1|z|<1

)
πε(dz),

πε(dz) = 1|z|<1/ε π(dz).

Let c and cε denote the prices of the European option corresponding to the
Lévy process Lt and Lε

t , respectively. Then cε solves (6.4) with the integral
∫

R\{0}

replaced by
∫

R\{0}∩|z|<1/ε. Theorem 6.1 provides us with the following pointwise

error estimate for the truncation of the Lévy measure:

|c(t, x) − cε(t, x)| ≤ C(1 + x)

√∫

R\{0}∩|z|≥1/ε

|z|2m(z) dz.

For example, if the Lévy measure has enough exponential decay towards infinity,
in the sense that ∫

|z|>1

|z|2e2K|z| π(dz) <∞,

for some constant K > 0. Then we obtain from the above estimate

|c(t, x) − cε(t, x)| ≤ C̃(1 + x)e−K/ε,

which shows that the truncation error decays to zero exponentially fast as ε tends
to zero. The same type of estimate holds for the American option value C and its
approximation Cε.

(iii) Truncation of domain of integration II. For numerical purposes, one needs
to remove also the small jumps (infinite activity region) from the integro operator.
The small jumps acts like a diffusion term, and one way to account for this is to
replace the original Lévy process Lt by another Lévy process Lε

t with characteristic
triplet

(
µε, σ

2, πε(dz)
)
, where ε > 0 is small and

µε = −1

2
σ2

ε −
∫

R\{0}

(
ez − 1 − z1|z|<1

)
πε(dz),

σ2
ε = σ2 +

∫

|z|≤ε

|z|2 π(dz),

πε(dz) = 1|z|>ε π(dz).

This approach was used in [23, 24], see also the discussion in the introduction of [11].
Corresponding to the Lévy process Lt and Lε

t , let c and cε denote the respective
prices of the European option. Then cε solves (6.4) with σ2 replaced by σ2

ε and
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the integral
∫

R\{0}
replaced by

∫
R\{0}∩|z|>ε

. In other words, we have removed the

singularity at the origin by introducing a new diffusion term in the integro-PDE.
Theorem 6.1 provides us with the following pointwise error estimate for this

procedure:

|c(t, x) − cε(t, x)| ≤ C(1 + x)

√∫

|z|≤ε

|z|2m(z) dz.

The same type of estimate holds for the American option value C and its approxi-
mation Cε. Suppose π(dz) = m(z) dz for some density m(z) that satisfies for some
constant C > 0

m(z) ≤ C/|z|1+α, α ∈ [1, 2),

for all z sufficiently close to the origin. Then the above estimate yields

|c(t, x) − cε(t, x)| ≤ C̃(1 + x)ε1−
α
2 , α ∈ [1, 2).

In the specific Lévy measures mentioned below, we have α = 1.
It is interesting to notice that even if we did not insert the removed small jumps

as an additional diffusion term in the integro-PDE, the rate of convergence would
still be ε1−

α
2 .

Remark 6.2. The above estimates are probably not optimal in the case of an Eu-
ropean option, as the solution to (6.4) is classical away from x = 0. One should
however keep in mind that with techniques developed in this paper these estimates
hold also for the American option value and in fact for general fully nonlinear
degenerate integro-PDEs for which classical solutions do not exist.

6.4. Examples of Lévy models. As already mentioned before, many Lévy mod-
els have been suggested in the literature over the years. As an example, let us
mention the HYP (hyperbolic) Lévy model, which is proposed in [22] as a model
for German stock prices, and it is shown to give an extremely good fit. In [10] the
NIG (normal inverse Gaussian) Lévy model is suggested, and in [44] it is shown to
perform well in modeling German stock prices. The last two models belong to the
class of GH (generalized hyperbolic) Lévy models. These models are characterized
by independent increments which belong to the class of GH distributions. This class
of distributions, and in particular its two corresponding subclasses, NIG distribu-
tions and HYP distributions, has proved to provide an excellent fit to empirically
observed log-return distributions.

The class of GH distributions, introduced by [9], can be characterized as normal
variance-mean mixtures, where the mixing distribution is a GIG distribution. This
class of distributions includes many interesting subclasses, and limiting cases like
the NIG, HYP, VG, Student-t, and normal distributions. All of them have been
used to model financial returns.

The density of a GH distribution depends on five parameters (λ, α, β, δ, µ), with
domain of variation

λ ∈ R, α > 0, β ∈ (−α, α) , δ > 0, µ ∈ R,

and with the following interpretation: α is a steepness parameter (the larger α, the
steeper density), β is a parameter of asymmetry (if β = 0 the density is symmetric
around the mean), δ is a scale parameter, and µ is a location parameter. The special
case of λ = − 1

2 gives a NIG distribution. For λ = 1
2 we get the HYP distribution.
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The Lévy measure πGH(dz) is absolutely continuous with respect to the Lebesgue
measure dz, and its density mGH(z) is given by a fairly complicated representation.
As an example, we display the density of the NIG distribution (a subclass of the
GH distributions):

mNIG(z) =
αδ

π
exp

(
δ
√
α2 − β2 + β(z − µ)

) K1

(
α
√
δ2 + (z − µ)2

)
√
δ2 + (z − µ)2

,

where K1 is the modified Bessel function of the third kind and index 1, i.e.,

K1(y) =
1

2

∫ ∞

0

exp
(
− 1

2y(s+ s−1)
)
ds, for y > 0,

where z ∈ R, µ ∈ R, δ > 0, and 0 ≤ |β| ≤ α. The parameters have the following
meaning: α is the steepness of the distribution, β the asymmetry, µ the location
and δ the scale. If β = 0 then the distribution is symmetric. The Lévy-Khintchine
representation for the normal inverse Gaussian Lévy process takes the form

Lt = ξt+

∫ t

0

∫

R\{0}

z Ñ(dt, dz), ξ = µ+
δβ√
α2 − β2

.

In empirical studies one usually centers the data and let µ = 0. In this case the
Lévy measure takes the form

πNIG(dz) = mNIG(z) dz =
αδ

π|z|e
βzK1(α|z|) dz.

Finally, notice that due to the properties of the Bessel function, the densitymNIG(z)
behaves like 1/|z|2 near the origin.
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