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Abstract. First we introduce and analyze a convergent numerical method
for a large class of nonlinear nonlocal possibly degenerate convection diffusion

equations. Secondly we develop a new Kuznetsov type theory and obtain
general and possibly optimal error estimates for our numerical methods – even

when the principal derivatives have any fractional order between 1 and 2! The

class of equations we consider includes equations with nonlinear and possibly
degenerate fractional or general Levy diffusion. Special cases are conservation

laws, fractional conservation laws, certain fractional porous medium equations,

and new strongly degenerate equations.

1. Introduction

In this paper we develop a numerical method along with a general Kuznetsov
type theory of error estimates for integro partial differential equations of the form

(1.1)

{
∂tu+ divf(u) = Lµ[A(u)], (x, t) ∈ QT ,
u(x, 0) = u0(x), x ∈ Rd,

where QT = Rd × (0, T ) and the nonlocal diffusion operator Lµ is defined as

Lµ[φ](x) =

ˆ
|z|>0

φ(x+ z)− φ(x)− z · ∇φ(x) 1|z|<1(z) dµ(z),(1.2)

for smooth bounded functions φ. Here 1 denotes the indicator function. Through-
out the paper the data (f,A, µ, u0) is assumed to satisfy:

(A.1) f = (f1, . . . , fd) ∈W 1,∞(R;Rd) with f(0) = 0,

(A.2) A ∈W 1,∞(R), A non-decreasing with A(0) = 0,

(A.3) µ ≥ 0 is a Radon measure such that
´
|z|>0

|z|2 ∧ 1 dµ(z) <∞,

(A.4) u0 ∈ L∞(Rd) ∩ L1(Rd) ∩BV (Rd).
We use the notation a ∧ b = min(a, b) and a ∨ b = max(a, b).

Remark 1.1. These assumptions can be relaxed in two standard ways: (i) f,A can
take any value at u = 0 (replace f by f − f(0) etc.), and (ii) f,A can be assumed
to be locally Lipschitz. By the maximum principle and (A.4), solutions of (1.1) are
bounded, and locally Lipschitz functions are Lipschitz on compact domains.

The measure µ and the operator Lµ are respectively the Lévy measure and the
generator of a pure jump Lévy process. Any such process has a Lévy measure
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and generator satisfying (1.2) and (A.3), see e.g. [4]. Example are the symmetric
α-stable processes with fractional Laplace generators where

dµ(z) = cλ
dz

|z|d+λ
(cλ > 0) and Lµ ≡ −(−∆)λ/2 for λ ∈ (0, 2).(1.3)

Non-symmetric examples are popular in mathematical finance, e.g. the CGMY
model where

dµ(z) =


C e−G|z|

|z|1+λ
dz for z > 0,

C e−M |z|

|z|1+λ
dz for z < 0,

and where d = 1, λ(= Y ) ∈ (0, 2), and C,G,M > 0. We refer the reader to [14] for
more details on this and other nonlocal models in finance. In both examples the
nonlocal operator behaves like a fractional derivative of order between 0 and 2.

Equation (1.1) has a local non-linear convection term (the f -term) and a frac-
tional (or nonlocal) non-linear possibly degenerate diffusion term (the A-term).
Special cases are scalar conservation laws (A ≡ 0), fractional and Lévy conserva-
tion laws (A(u) = u and α-stable or more general µ) – see e.g. [6, 1] and [7, 29, 25],
fractional porous medium equations [16] (A = |u|m−1u for m ≥ 1 and α-stable µ),
and strongly degenerate equations where A vanishes on a set of positive measure.
If either A is degenerate or Lµ is a fractional derivative of order less than 1, then
solutions of (1.1) are not smooth in general and uniqueness fails for weak (distri-
butional) solutions. Uniqueness can be regained by imposing additional entropy
conditions in a similar way to what is done for conservation laws. The Kruzkov
entropy solution theory of scalar conservation laws [27] was extended to cover frac-
tional conservation laws in [1], to more general Lévy conservation laws in [25], and
then finally to setting of this paper, equations with non-linear fractional diffusion
and general Lévy measures in [11]. For local 2nd order degenerate convection dif-
fusion equations like

(1.4) ∂tu+ divf(u) = ∆A(u),

there is an entropy solution theory due to Carrillo [9].
In recent years, integro partial differential equations like (1.1) have been at the

center of a very active field of research. A thorough description of the mathematical
background for such equations, relevant bibliography, and applications to several
disciplines of interest can be found in [1, 2, 7, 11, 16, 25].

The first contribution of this paper is to introduce a numerical method for equa-
tion (1.1) and prove that it converges toward the entropy solution of (1.1) under
assumptions (A.1)–(A.4). The numerical method is based upon a monotone fi-
nite volume discretization of an approximate equation with truncated and hence
bounded Lévy measure. Essentially it is an extension of the method in [11] from
symmetric α-stable to general Lévy measures, but since non-symmetric measures
are allowed, the discretization becomes more complicated here. Apart from its abil-
ity to capture the correct solution for the whole family of equations of the form
(1.1), the main advantage of our numerical method is that it allows for a complete
error analysis through the new framework for error estimates that we develop in
the second part of the paper.

The second, and probably most important contribution of the paper, is the devel-
opment of a theory capable of producing error estimates for degenerate equations
of order greater than 1. This theory is based on a non-trivial extension of the
Kuznetsov theory for scalar conservation laws [28] to the current fractional diffu-
sion setting. An initial step in this analysis was performed in [2], with the derivation
of a so-called Kuznetsov lemma in a relevant form for (1.1). In [2] the lemma is
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used in the derivation of continuous dependence estimates and error estimates for
vanishing viscosity type of approximations of (1.1). In the present paper, we show
how it can be used in solving the more difficult problem of finding error estimates
for numerical methods for (1.1).

As a corollary of our Kuznetsov type theory, we obtain explicit λ-dependent
error estimates when µ is a measure satisfying

0 ≤ 1|z|<1dµ(z) ≤ cλ
dz

|z|d+λ
for cλ > 0 and λ ∈ (0, 2).(1.5)

In this paper we will call such measures fractional measures. For example for the
implicit version of our numerical method (3.5), we prove in Section 6 that

‖u(·, T )− u∆x(·, T )‖L1(Rd) ≤ CT


∆x

1
2 λ ∈ (0, 1),

∆x
1
2 log(∆x) λ = 1,

∆x
2−λ

2 λ ∈ (1, 2),

where u is the entropy solution of (1.1) and u∆x is the solution of (3.5). Note that
our error estimate covers all values λ ∈ (0, 2), all spacial dimensions d, and possibly
strongly degenerate equations! Also note that under our assumptions, the solution
u possibly only have BV regularity in space. Hence the error estimate is robust in
the sense that it holds also for discontinuous solutions, and moreover, the classical
result of Kuznetsov [28] for conservation laws follows as a corollary by taking A ≡ 0
(a valid choice here!) and λ ∈ (0, 1). The above estimate is also consistent with
error estimates for the vanishing λ-fractional viscosity method,

∂tu+ divf(u) = −∆x (−∆)λ/2u as ∆x→ 0+,

see e.g. [18, 1], but note that our problem is different and much more difficult.
There is a vast literature on approximation schemes and error estimates for scalar

conservations laws, we refer e.g. to the books [26, 22] and references therein for
more details. For local degenerate convection-diffusion equations like (1.4), some
approximation methods and error estimates can be found e.g. in [20, 21, 24] and
references therein. In this setting it is very difficult to obtain error estimates for nu-
merical methods, and the only result we are aware of is a very recent one by Karlsen
et al. [24] (but see also [10]). This very nice result applies to rather general equa-
tions of the form (1.4) but in one space dimension and under additional regularity
assumptions (e.g. ∂x(A(u)) ∈ BV ). When it comes to nonlocal convection-diffusion
equations, the literature is very recent and not yet very extensive. The paper [15]
introduce finite volume schemes for radiation hydrodynamics equations, a model
where Lµ is a nonlocal derivative of order 0. Then fractional conservation laws are
discretized in [17, 13, 12] with finite difference, discontinuous Galerkin, and spectral
vanishing viscosity methods respectively. In [15, 13] Kuznetsov type error estimates
are given, but only for integrable Lévy measures or measures like (1.3) with λ < 1.
Both of these results can be obtained through the framework of this paper. In
[12] error estimates are given for all λ but with completely different methods. The
general degenerate non-linear case is discretized in [11] (without error estimates)
for symmetric α-stable Lévy measures and then in the most general case in the
present paper.

Linear non-degenerate versions of (1.1) frequently arise in Finance, and the prob-
lem of solving these equations numerically has generated a lot of activity over the
last decade. An introduction and overview of this activity can be found in the book
[14], including numerical schemes based on truncation of the Lévy measure. We
also mention the literature on fractional and nonlocal fully non-linear equations
like e.g. the Bellman equation of optimal control theory. Such equations have been
intensively studied over the last decade using viscosity solution methods, including
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initial results on numerical methods and error analysis. We refer e.g. [5, 8, 23] and
references therein for an overview and the most general results in that direction.
In fact, ideas from that field has been essential in the development of the entropy
solution theory of equations like (1.1), and the construction of monotone numerical
methods of this paper parallels the one in [8]. However the structure of the two
classes of equations along with their mathematical and numerical analysis are very
different.

This paper is organized as follows. In Section 2 we recall the entropy formulation
and well-posedness results for (1.1) of [11] and the Kuznetsov type lemma derived
in [2]. We present the numerical method in Section 3. There we focus on the
case of no convection (f ≡ 0) to simplify the exposition and focus on new ideas.
In Section 4 we prove several auxiliary properties of the numerical method which
will be useful in the following sections. We establish existence, uniqueness, and a
priori estimates for the solutions of the numerical method in Section 5. The general
Kuznetsov type theory for deriving error estimates is presented in Section 6, where
it is also used to establish a rate of convergence for equations with fractional Lévy
measures, i.e. (1.5) holds. In Section 7 we extend all the results considered so far
to general convection-diffusion equations of the form (1.1) with f 6≡ 0. Finally, we
give the proof of the main error estimate Theorem 6.1 in Section 8.

2. Preliminaries

In this section we briefly recall the entropy formulation for equations of the form
(1.1) introduced in [11], and the new Kuznetsov type of lemma established in [2].
Let η(u, k) = |u − k|, η′(u, k) = sgn (u − k), ql(u, k) = η′(u, k) (fl(u) − fl(k)) for
l = 1, . . . , d, and write the nonlocal operator Lµ[φ] as

Lµr [φ] + Lµ,r[φ] + γµ,r · ∇φ,

where

Lµr [φ](x) =

ˆ
0<|z|≤r

φ(x+ z)− φ(x)− z · ∇φ(x)1|z|≤1 dµ(z),

Lµ,r[φ](x) =

ˆ
|z|>r

φ(x+ z)− φ(x) dµ(z),

γµ,rl = −
ˆ
|z|>r

zl1|z|≤1 dµ(z), l = 1, . . . , d.

We also define µ∗ by µ∗(B) = µ(−B) for all Borel sets B 63 0. Let us recall thatˆ
Rd
ϕ(x)Lµ[ψ](x) dx =

ˆ
Rd
ψ(x)Lµ

∗
[ϕ](x) dx

for all smooth L∞ ∩ L1 functions ϕ,ψ, cf. [2, 11].

Definition 2.1. (Entropy solutions) A function u ∈ L∞(QT ) ∩ C([0, T ];L1(Rd))
is an entropy solution of (1.1) if, for all k ∈ R, r > 0, and test functions 0 ≤ ϕ ∈
C∞c (Rd × [0, T ]),ˆ

QT

η(u, k) ∂tϕ+
(
q(u, k) + γµ

∗,r
)
· ∇ϕ+ η(A(u), A(k))Lµ

∗

r [ϕ]

+ η′(u, k)Lµ,r[A(u)]ϕ dx dt

−
ˆ
Rd
η(u(x, T ), k)ϕ(x, T ) dx+

ˆ
Rd
η(u0(x), k)ϕ(x, 0) dx ≥ 0.

(2.1)

Note that γµ,rl ≡ 0 when the Lévy measure µ is symmetric, i.e. when µ∗ ≡ µ.
From [11] we now have the following well-posedness result.
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Theorem 2.1. (Well-posedness) Assume (A.1) – (A.4) hold. Then there exists a
unique entropy solution u of (1.1) such that

u ∈ L∞(QT ) ∩ C([0, T ];L1(Rd)) ∩ L∞(0, T ;BV (Rd)),

and the following a priori estimates hold

‖u(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd),

‖u(·, t)‖L1(Rd)) ≤ ‖u0‖L1(Rd),

|u(·, t)|BV (Rd) ≤ |u0|BV (Rd),

‖u(·, t)− u(·, s)‖L1(Rd) ≤ σ(|t− s|),

for all t, s ∈ [0, T ] where

σ(r) =

{
c r if

´
|z|>0

|z| ∧ 1 dµ(z) <∞,
c r

1
2 otherwise.

Moreover, if also (1.5) holds, then

σ(r) =


c r if λ ∈ (0, 1),

c |r ln r| if λ = 1,

c r
1
λ if λ ∈ (1, 2).

The last a priori estimate is slightly more general then the one in [11], and follows
e.g. in the limit from the estimates in Lemmas 5.3 and 5.4. We now recall the new
Kuznetsov type of lemma established in [2]. Let

ω ∈ C∞c (R), 0 ≤ ω ≤ 1, ω(τ) = 0 for all |τ | > 1, and

ˆ
R
ω(τ) dτ = 1,

and define ωδ(τ) = 1
δ ω
(
τ
δ

)
, Ωε(x) = ωε(x1) · · ·ωε(xd), and

ϕε,δ(x, y, t, s) = Ωε(x− y)ωδ(t− s)

for ε, δ > 0. We also need

Eδ(v) = sup
|t−s|<δ
t,s∈[0,T ]

‖v(·, t)− v(·, s)‖L1(Rd).
(2.2)

In the following we let dw = dx dtdy ds and CT ≥ 0 be a constant depending on
time and the initial data u0 that may change from line to line.

Lemma 2.2. (Kuznetsov type of lemma) Assume (A.1) – (A.4) hold. Let u be the
entropy solution of (1.1) and v be any function in L∞(QT ) ∩ C([0, T ];L1(Rd)) ∩
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L∞(0, T ;BV (Rd)) with v(· , 0) = v0(·). Then, for any ε, r > 0 and 0 < δ < T ,

‖u(·, T )− v(·, T )‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) + C (ε+ Eδ(u) ∨ Eδ(v))

−
¨
QT

¨
QT

η(v(x, t), u(y, s)) ∂tϕ
ε,δ(x, y, t, s) dw

−
¨
QT

¨
QT

q(v(x, t), u(y, s)) · ∇xϕε,δ(x, y, t, s) dw

+

¨
QT

¨
QT

η(A(v(x, t)), A(u(y, s)))Lµ
∗

r [ϕε,δ(x, ·, t, s)](y) dw

−
¨
QT

¨
QT

η′(v(x, t), u(y, s))Lµ,r[A(v(·, t))](x)ϕε,δ(x, y, t, s) dw

−
¨
QT

¨
QT

η(A(v(x, t)), A(u(y, s))) γµ
∗,r · ∇xϕε,δ(x, y, t, s) dw

+

¨
QT

ˆ
Rd
η(v(x, T ), u(y, s))ϕε,δ(x, T, y, s) dx dy ds

−
¨
QT

ˆ
Rd
η(v0(x), u(y, s))ϕε,δ(x, 0, y, s) dx dy ds

The proof is given in [2]. The original result of result of Kuznetsov in [28] is a
special case when µ = 0 (or A = 0).

3. The numerical method

In this section we derive our numerical method. Here and in the following sec-
tions we focus on the case f ≡ 0 to simplify the exposition and focus on the new
ideas. The general case f 6= 0 will then be treated at the end, in Section 7.

We will consider uniform space/time grids given by xα = α∆x for α ∈ Zd and
tn = n∆t for n = 0, . . . , N = T

∆t . We also use the following rectangular subdivisions
of space

Rα = xα + ∆x (0, 1)d for α ∈ Zd.
We start by discretizing the nonlocal operator, replacing the measure µ by the

bounded truncated measure 1|z|>∆x
2

(z)µ and the gradient by a numerical gradient

D̂∆x = (D̂1, · · · , D̂d),(3.1)

where D̂l ≡ Dγ
l are upwind finite difference operators defined by

(3.2) Dγ
l φ(x) =


D+
l φ(x) :=

φ(x+ ∆x el)− φ(x)

∆x
for γ

µ,∆x2
l > 0,

D−l φ(x) :=
φ(x)− φ(x−∆x el)

∆x
otherwise.

Here e1, . . . , ed is the standard basis of Rd. This gives an approximate nonlocal
operator

L̂µ[A(φ)](x)

=

ˆ
|z|>∆x

2

A(φ(x+ z))−A(φ(x)) dµ(z) + γµ,
∆x
2 · D̂∆xA(φ(x)),

(3.3)

which is monotone by upwinding and non-singular since the truncated measure is
bounded.

A semidiscrete approximation of (1.1) with f ≡ 0 is then obtained by solving
the approximate equation

∂tu = L̂µ[A(u)],(3.4)
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by a finite volume method on the spacial subdivision {Rα}α. I.e. for each t, we
look for piecewise constant approximate solution

U(x, t) =
∑
β∈Zd

Uβ(t) 1Rβ (x),

that satisfy (3.4) in weak form with 1
∆xd

1Rβ as test functions: For every α ∈ Zd,

1

∆xd

ˆ
Rα

∂tU dx =
1

∆xd

ˆ
Rα

L̂µ[A(U)] dx.

Finally we discretize in time by replacing ∂t by backward or forward differences
D±∆t and Uα(t) by a piecewise constant approximation Unα . The result is the implicit
method

Un+1
α = Unα + ∆t L̂µ〈A(Un+1)〉α,(3.5)

and the explicit method

Un+1
α = Unα + ∆t L̂µ〈A(Un)〉α(3.6)

where

L̂µ〈A(Un)〉α =
1

∆xd

ˆ
Rα

L̂µ[A(Ūn)](x) dx,

and Ūn(x) =
∑
β∈Zd U

n
β 1Rβ (x) is a piecewise constant x-interpolation of U . As

initial condition for both methods we take

U0
α =

1

∆xd

ˆ
Rα

u0(x) dx for all α ∈ Zd.

Lemma 3.1.

L̂µ〈A(Un)〉α =
∑
β∈Z

Gαβ A(Unβ )

with Gαβ = Gα,β +Gα,β and

Gα,β =
1

∆xd

ˆ
Rα

ˆ
|z|>∆x

2

1Rβ (x+ z)− 1Rβ (x) dµ(z) dx,

Gα,β =

d∑
l=1

γ
µ,∆x2
l

1

∆xd

ˆ
Rα

Dγ
l 1Rβ (x) dx.

(3.7)

Remark 3.2. Gα,β is a Toeplitz matrix (cf. Lemma 4.1 (b)) while Gα,β is a tridi-
agonal matrix. When the measure µ is symmetric, then Gα,β is symmetric and
Gα,β = 0.

Proof. Since

A(Ū(x)) =
∑
β∈Zd

A(Uβ) 1Rβ (x) and D̂∆xŪ(x) =
∑
β∈Zd

Uβ D̂∆x1Rβ (x),
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we find that

∆xdL̂µ〈A(U)〉α =

ˆ
Rα

L̂µ[A(Ū)](x) dx

=

ˆ
Rα

ˆ
|z|>∆x

2

A(Ū(x+ z))−A(Ū(x)) dµ(z) dx

+ γµ,
∆x
2 ·
ˆ
Rα

∑
β∈Zd

A(Uβ) D̂∆x1Rβ (x) dx

=
∑
β∈Zd

A(Uβ)

(ˆ
Rα

ˆ
|z|>∆x

2

1Rβ (x+ z)− 1Rβ (x) dµ(z) dx

)

+
∑
β∈Zd

A(Uβ)

(
d∑
l=1

γ
µ,∆x2
l

ˆ
Rα

Dγ
l 1Rβ (x) dx

)
.

The proof is complete. �

4. Properties of the numerical method

In this section we show that the numerical methods are conservative, monotone
and consistent in the sense that certain cell entropy inequalities are satisfied. We
start by a technical lemma summarizing the properties of the weights Gαβ defined

in (3.7).

Lemma 4.1.
(a)

∑
α∈Zd G

α
β =

∑
α∈Zd G

β
α = 0 for all β ∈ Zd.

(b) Gβα = Gβ+el
α+el

for all α, β ∈ Zd and l = 1, . . . , d.

(c) Gββ ≤ 0 and Gαβ ≥ 0 for α 6= β.

(d) There is c̄ = c̄(d, µ) > 0 such that Gββ ≥ −
c̄

σ̂µ(∆x) and where

σ̂µ(s) =

{
s when

´
|z| ∧ 1 dµ(z) <∞,

s2 otherwise.
(4.1)

(e) If (1.5) holds, then there is c̄ = c̄(d, λ) > 0 such that Gββ ≥ −
c̄

σ̂λ(∆x) for

σ̂λ(s) =


sλ for λ > 1,
s
| ln s| for λ = 1,

s for λ < 1.

(4.2)

Proof. (a) By the definitions of Gα,β , G
α,β and Fubini’s theorem,

∆xd
∑
α∈Zd

Gα,β =

ˆ
|z|>∆x

2

(ˆ
Rd

1Rβ (x+ z) dx−
ˆ
Rd

1Rβ (x) dx
)

dµ(z) = 0,

∆xd
∑
α∈Zd

Gα,β = ±
d∑
l=1

γ
µ,∆x2
l

∆x

( ˆ
Rd

1Rβ (x±∆x el)dx−
ˆ
Rd

1Rβ (x)dx
)

= 0,

and, since
∑
β∈Zd 1Rβ (x) ≡ 1,

∆xd
∑
β∈Zd

Gα,β =

ˆ
Rα

ˆ
|z|>∆x

2

( ∑
β∈Zd

1Rβ (x+ z)−
∑
β∈Zd

1Rβ (x)
)

dµ(z) dx = 0,

∆xd
∑
β∈Zd

Gα,β = ±
d∑
l=1

γ
µ,∆x2
l

∆x

ˆ
Rα

( ∑
β∈Zd

1Rβ (x±∆x el)−
∑
β∈Zd

1Rβ (x)
)

dx = 0.
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Therefore
∑
α∈Zd G

α
β =

∑
α∈Zd

(
Gα,β +Gα,β

)
= 0 and

∑
β∈Zd G

α
β = 0.

(b) Let y = x+ el and note that

∆xd Gα,β =

ˆ
Rα+el

ˆ
|z|>∆x

2

1Rβ (y −∆x el + z)− 1Rβ (y −∆x el) dµ(z) dy

=

ˆ
Rα+el

ˆ
|z|>∆x

2

1Rβ+el
(y + z)− 1Rβ+el

(y) dµ(z) dy

= ∆xd Gβ+el,α+el .

In a similar fashion we get Gα,β = Gβ+el,α+el .

(c) Note that

∆xd Gβ,β =

ˆ
Rβ

ˆ
|z|>∆x

2

1Rβ (x+ z)− 1 dµ(z) dx ≤ 0.

while by the definition Dγ
l , see (3.2),

∆xd Gβ,β = −
d∑
l=1

γ
µ,∆x2
l sgn

(
γ
µ,∆x2
l

) ˆ
Rβ

1Rβ (x)

∆x
dx ≤ 0.

For α 6= β,

∆xd Gα,β =

ˆ
Rα

ˆ
|z|>∆x

2

1Rβ (x+ z) dµ(z) dx ≥ 0,

Gα,β = 0 for α 6= β ± el, and by the definition of Dγ
l ,

∆xd Gβ±el,β =

d∑
l=1

γ
µ,∆x2
l sgn

(
γ
µ,∆x2
l

) ˆ
Rβ±el

1Rβ (x±∆x el)

∆x
dx ≥ 0.

Therefore Gββ = Gβ,β +Gβ,β ≤ 0 and Gαβ = Gα,β +Gα,β ≥ 0 for α 6= β.

(d) To find the lower bound on Gββ we note that
´
Rβ

1Rβ (x+z)−1Rβ (x) dx ≥ −∆xd,

and hence

Gβ,β ≥ −
ˆ
|z|>∆x

2

dµ(z) ≥ −
ˆ
|z|<1

((
|z|
∆x
2

)2

1|z|<1(z) + 1|z|>1(z)

)
dµ(z).

The bound then follows since

∆xGβ,β ≥ −d
ˆ

∆x
2 <|z|<1

|z| dµ(z) ≥ −d
ˆ

0<|z|<1

|z|2
∆x
2

dµ(z).

When
´
|z| ∧ 1 dµ(z) <∞, the corresponding bound follows by a similar argument.

(e) When (1.5) hold we can estimate Gβ,β in the following way

Gβ,β ≥ −
ˆ

∆x
2 <|z|<1

|z|
∆x
2

cλdz

|z|d+λ
−
ˆ
|z|>1

dµ(z)

= −

cλ
2

∆x
σd

1−λ

(
1−

(
∆x
2

)1−λ)
+ C for λ 6= 1,

−cλ 2
∆xσd ln ∆x

2 + C for λ = 1.



10 S. CIFANI AND E. R. JAKOBSEN

The last equality can be proved using polar coordinates, and σd is the surface area
of the unit sphere in Rd. Similarly we find that

∆xGβ,β ≥ −d
ˆ

∆x
2 <|z|<1

|z| cλdz

|z|d+λ
= −dcλ


σd

1−λ

(
1−

(
∆x
2

)1−λ)
for λ 6= 1,

−σd ln ∆x
2 for λ = 1,

and since
(

1−(∆x
2 )1−λ

)
is less than 1 or (∆x

2 )1−λ when λ < 1 or λ > 1 respectively

(and when ∆x < 2), the proof is complete. �

From the two facts that Gβα ≥ 0 when α 6= β and sgn(u)A(u) = |A(u)|, we now
immediately get a Kato type inequality for the discrete nonlocal operator (3).

Lemma 4.2. (Discrete Kato inequality) If {uα, vα}α∈Zd are two bounded sequences,
then

sgn(uα − vα)
∑
β∈Zd

Gαβ(A(uβ)−A(vβ)) ≤
∑
β∈Zd

Gαβ |A(uβ)−A(vβ)| .

From Lemma 4.1 it also follows that the explicit method (3.6) and the implicit
method (3.5) are conservative and monotone, at least when the explicit method
satisfies the following CFL condition:

c̄LA
∆t

σ̂µ(∆x)
< 1 where σ̂µ is defined in (4.1).(4.3)

Here c̄ is defined in Lemma 4.1, and LA denotes the Lipschitz constant of A. When
the Lévy measure µ also satisfies (1.5), we have a weaker CFL condition

c̄LA
∆t

σ̂λ(∆x)
< 1 where σ̂λ is defined in (4.2).(4.4)

Proposition 4.3 (Conservative monotone schemes).
(a) The implicit and explicit methods (3.5) and (3.6) are conservative, i.e. for an
l1-solution U , ∑

α

Unα =
∑
α

U0
α.

(b) The implicit method is monotone, i.e. if U and V solve (3.5), then

Un ≤ V n ⇒ Un+1 ≤ V n+1 for n ≥ 0.

(c) If (4.3) (or (4.4) and (1.5)) holds, then the explicit method (3.6) is monotone.

Remark 4.4. The CFL condition (4.3) implies that ∆t
∆x2 ≤ C in general (just as

for the heat equation), and ∆t
∆x ≤ C when

´
|z| ∧ 1 dµ(z) < ∞. Condition (4.3) is

sufficient for all equations considered in this paper. In real applications however,
typically (1.5) holds, and the superior CFL condition (4.4) should be used.

Proof. (a) Sum (3.5) or (3.6) over α, change the order of summation, and use
Lemma 4.1 (a):∑

α∈Zd
Un+1
α =

∑
α∈Zd

Unα + ∆t
∑
β∈Zd

A(Uβ)

( ∑
α∈Zd

Gαβ

)
=
∑
α∈Zd

Unα .

(c) Let Tα[u] = uα + ∆t
∑
β∈Zd G

α
β A(uβ), the right hand side of (3.6). By Lemma

4.1 (c), Gαβ ≥ 0 for α 6= β and hence

∂uβTα[u] ≥ 0 for β 6= α.

Since A non-decreasing and Gαα ≤ 0, we use the lower bound on Gαα in Lemma 4.1
(c) to find that

∂uαTα[u] = 1 + ∆tGααA
′(uα) ≥ 1− c̄LA

∆t

σ̂µ(∆x)
,
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which is positive by the CFL condition (4.3).

(b) The proof is similar to and easier than the proof of (c). �

We then turn to checking the consistency of the method, and to do that we write
Gα,β = Grα,β +Gα,β,r and Gα,β = Gα,β,r +Gα,βr for r > 0 where

Grα,β =
1

∆xd

ˆ
Rα

ˆ
∆x
2 <|z|≤r

1Rβ (x+ z)− 1Rβ (x) dµ(z) dx,

Gα,β,r =
1

∆xd

ˆ
Rα

ˆ
|z|>r

1Rβ (x+ z)− 1Rβ (x) dµ(z) dx,

Gα,β,r =
1

∆xd

d∑
l=1

γ
µ,∆x2
l,r

ˆ
Rα

Dγr
l 1Rβ (x) dx

for γ
µ,∆x2
l,r = −

ˆ
∆x
2 <|z|≤r

zl1|z|≤1 dµ(z),

Gα,βr =
1

∆xd

d∑
l=1

γµ,rl

ˆ
Rα

Dγr

l 1Rβ (x) dx.

If r < ∆x
2 , we set Grα,β = 0 = Gα,β,r. We also define

Gβ,rα = Grα,β +Gα,β,r and Gβα,r = Gα,β,r +Gα,βr ,

and note that Lemmas 4.1 and 4.2 obviously still holds with Gβ,rα or Gβα,r replacing

Gβα.

Proposition 4.5. (Cell-entropy inequalities)
(a) If U is a solution of the implicit method (3.5), then, for all r > 0 and k ∈ R,

η(Un+1
α , k) ≤ η(Unα , k) + ∆t

∑
β∈Zd

Gα,rβ η(A(Un+1
β ), A(k))

+ ∆t η′(Un+1
α , k)

∑
β∈Zd

Gαβ,r A(Un+1
β ).

(4.5)

(b) Assume the CFL condition (4.3) (or (4.4) and (1.5)) holds. If U is a solution
of the explicit method (3.6), then, for all r > 0 and k ∈ R,

η(Un+1
α , k) ≤ η(Unα , k) + ∆t

∑
β∈Zd

Gα,rβ η(A(Unα ), A(k))

+ ∆t η′(Un+1
α , k)

∑
β∈Zd

Gαβ,r A(Unα ).
(4.6)

Remark 4.6. In the cell-entropy inequality for the explicit method, the η′-term
appears in the “wrong” time. In Section 6, we will see that this leads to worse error
estimates for the explicit method than for the implicit method.

Remark 4.7 (Convergence to entropy solutions). Proposition 4.5 and a standard
argument show that any C([0, T ];L1

loc(Rd))-convergent sequence of (interpolated)
solutions ū∆x of (3.5) or (3.6), will converge to an entropy solution of (1.1). We
refer to Theorem 3.9 in [22] and Section 4.2 in [11] for more details. Convergence
to the entropy solution also follows from the error estimates of Section 6.

Proof. (a) By (3.5) we easily see that for any k ∈ R,

Un+1
α ∨ k ≤ Unα ∨ k + ∆t1(k,+∞)(U

n+1
α ) L̂µ〈A(Un+1)〉α,

Un+1
α ∧ k ≥ Unα ∧ k + ∆t1(−∞,k)(U

n+1
α ) L̂µ〈A(Un+1)〉α.
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Subtracting and using η(u, k) = |u− k| and η′(u, k) = sgn (u− k), we find that

η(Un+1
α , k) ≤ η(Unα , k) + ∆t η′(Un+1

α , k) L̂µ〈A(Un+1)〉α.

For any r > 0, we use Lemmas 4.1 (a) and 4.2 with Gα,rβ replacing Gαβ to see that

η′(Un+1
α , k)

∑
β∈Zd

Gα,rβ A(Un+1
β )

= η′(Un+1
α , k)

∑
β∈Zd

Gα,rβ (A(Un+1
β )−A(k))

since
∑
β∈Zd

Gα,rβ = 0


≤
∑
β∈Zd

Gα,rβ η(A(Un+1
β ), A(k)).

The cell entropy inequality now follows from writing Gαβ = Gαβ,r + Gα,rβ and using
the above inequalities.

(b) By (3.6) and monotonicity (Proposition 4.5 (c)) we obtain the following in-
equalities: For all r > 0,

Un+1
α ∨ k ≤ Unα ∨ k + ∆t

∑
β∈Zd

Gα,rβ A(Unβ ∨ k)

+ ∆t1(k,+∞)(U
n+1
α )

∑
β∈Zd

Gαβ,r A(Unβ ),

Un+1
α ∧ k ≥ Unα ∧ k + ∆t

∑
β∈Zd

Gα,rβ A(Unβ ∧ k)

+ ∆t1(−∞,k)(U
n+1
α )

∑
β∈Zd

Gαβ,r A(Unβ ).

Since η(A(U), A(k)) = A(U ∨k)−A(U ∧k), the cell entropy inequality follows from
subtracting the two inequalities. �

5. A priori estimates, existence, and uniqueness

In this section we state and prove several a priori estimates for the solutions
of the numerical methods (3.5) and (3.6). In what follows, we will use different
interpolants ū of the solutions Unα of the schemes. For the implicit method (3.5)
we take

ū(x, t) = Un+1
α for all (x, t) ∈ Rα × (tn, tn+1],(5.1)

while for the explicit method (3.6),

ū(x, t) = Unα for all (x, t) ∈ Rα × [tn, tn+1).(5.2)

We now prove the following a priori estimates for ū:

‖ū(·, t)‖L1(Rd) ≤ ‖u0‖L1(Rd),(5.3)

‖ū(·, t)‖L∞(Rd) ≤ ‖u0‖L∞(Rd),(5.4)

|ū(·, t)|BV (Rd) ≤ |u0|BV (Rd).(5.5)

Lemma 5.1. (A priori estimates)
(a) If U solve (3.5) and ū is defined by (5.1), then the a priori estimates (5.3) –
(5.5) hold for all t > 0.

(b) Assume the CFL condition (4.3) (or (4.4) and (1.5)) holds. If U solve (3.6)
and ū is defined by (5.2), then the a priori estimates (5.3) – (5.5) hold for all t > 0.
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Proof. Since the schemes are conservative and monotone, cf. Proposition 4.3, this
is a standard result that essentially follows from the Crandall-Tartar Lemma. For
explicit methods in part (b) we refer to e.g. Theorem 3.6 in [22] for the details.

We did not find a reference for implicit methods, so we give a proof of part (a)
here. See also [17] for the case when A is linear. Let uα = Un+1

α , hα = Unα , and
write (3.5) as

(5.6) uα −∆t
∑
β∈Zd

Gαβ A(uβ) = hα.

We prove (5.3). Multiply (5.6) by sgn(uα) and use Lemma 4.2 to get

|uα| −∆t
∑
β∈Zd

Gαβ |A(uβ)| ≤ |hα|,

which by Fubini’s theorem and the fact that
∑
α∈Zd G

α
β = 0 implies that∑

α∈Zd
|uα| ≤

∑
α∈Zd

|hα|.

By the definition of uα, hα and an iteration in n, it follows that∑
α∈Zd

|Unα | ≤
∑
α∈Zd

|U0
α|.

By (5.1), ‖ū(·, t)‖L1(Rd) = ∆xd
∑
α∈Zd |Unα | for t ∈ (tn, tn+1], and (5.3) follows.

To prove (5.5), we subtract two equations (5.6) evaluated at different points,

uα − uα−el −∆t
∑
β∈Zd

(
Gαβ A(uβ)−Gα−elβ A(uβ)

)
= hα − hα−el

and use the fact that Gαβ = Gα+el
β+el

to see that

uα − uα−el −∆t
∑
β∈Zd

Gαβ

(
A(uβ)−A(uβ−el)

)
= hα − hα−el .

Then we multiply by sgn(uα−uα−el), use Lemma 4.2, and sum over α, to find that∑
α∈Zd

|uα − uα−el | ≤
∑
α∈Zd

|hα − hα−el | .

The estimate (5.5) then follows by iteration and the definitions of uα, hα, ū.

It remains to prove (5.4). Note that since
∑
α |uα| < ∞ by (5.3), there is an

α0 such that supα uα = uα0 . Moreover, the parabolic term is nonpositive at the
maximum point: since

∑
β∈Zd G

α
β = 0 and

∑
β∈Zd |Gαβ | <∞,∑

β∈Zd
Gα0

β A(uβ) =
∑
β∈Zd

Gα0

β

(
A(uβ)−A(uα0

)
)
≤ 0.

Then by the above inequality and (5.6),

sup
α∈Zd

uα = uα0 ≤ uα0 −∆t
∑
β∈Zd

Gα0

β A(uβ) = hα0 ≤ sup
α∈Zd

hα.

In a similar way we find that infα∈Zd hα ≤ infα∈Zd uα and (5.4) follow from the
definitions of uα, hα, ū and an iteration in n. �

Lemma 5.2 (Global existence and uniqueness).
(a) There exists a unique solution Un ∈ l1 of the implicit scheme (3.5) for all n ≥ 0.

(b) Assume the CFL condition (4.3) (or (4.4) and (1.5)) holds. Then there exists
a unique solution Un ∈ l1 of the explicit scheme (3.6) for all n ≥ 0.
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Note that Un ∈ l1 implies that ū(·, t) ∈ L1(Rd).

Proof. (a) Let uα = Un+1
α and hα = Unα , rewrite (3.5) as (5.6), define

Tα[u] = uα − ε
(
uα −∆t

∑
β∈Zd

Gαβ A(uβ)− hα
)
,

and let ε be such that

ε

(
1 + LAc̄

∆t

σ̂µ(∆x)

)
< 1.

We first show that Tα is monotone, i.e. u ≤ v implies Tα[u] ≤ Tα[v]. For α 6= β,
Gαβ ≥ 0 by Lemma 4.1, and hence since A non-decreasing,

∂uβTα[u] ≥ 0.

Moreover, since A non-decreasing and − c̄
σ̂µ(∆x) ≤ G

α
α ≤ 0,

∂uαTα[u] = 1− ε+ ε∆tGααA
′(uα) ≥ 1− ε

(
1 + LAc̄

∆t

σ̂µ(∆x)

)
which is positive by our choice of ε.

Since T is monotone and A is nondecreasing,∑
α

(
Tα[u]− Tα[v]

)+

≤
∑
α

(
Tα[u ∨ v]− Tα[v]

)
= (1− ε)

∑
α∈Zd

(uα ∨ vα − vα) + ε∆t
∑
α∈Zd

∑
β∈Zd

Gαβ

(
A(uβ ∨ vβ)−A(vβ)

)
= (1− ε)

∑
α∈Zd

(uα − vα)+ + ε∆t
∑
β∈Zd

( ∑
α∈Zd

Gαβ

)(
A(uβ)−A(vβ)

)+

.

A similar estimate holds for
∑
α(Tα[u]−Tα[v])−, and since

∑
α∈Zd G

α
β = 0, we have

shown that ∑
α∈Zd

|Tα[u]− Tα[v]| ≤ (1− ε)
∑
α∈Zd

|uα − vα|.

So Tα is an l1-contraction and Banach’s fixed point theorem then implies that there
exists a unique solution ū ∈ l1 of Tα[ū] = ūα and hence also of (5.6).

(b) Existence follows by construction and the a priori estimates in Lemma 5.1.
Uniqueness essentially follows by monotonicity and

∑
αG

α
β = 0: Assume two so-

lutions Un and V n, subtract the two equations and multiply by sgn (Un − V n),
and use the Kato inequality (Lemma 4.2) along with

∑
αG

α
β = 0 to show that∑

α |Un − V n| ≤
∑
α |U0 − V 0|. �

We have the following regularity estimate in time:

Lemma 5.3. (Regularity in time)
(a) Assume (A.2) – (A.4) hold, and let U be a solution of the implicit method (3.5)
and ū defined by (5.1). Then

‖ū(·, s)− ū(·, t)‖L1(Rd) ≤ σµ(|s− t|+ ∆t)

for all s, t > 0, where

σµ(r) =

r if
´
|z|>0

|z| ∧ 1 dµ(z) <∞,

√
r otherwise.
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(b) Assume (A.2) – (A.4) and (4.3) (or (4.4) and (1.5)) hold, and let U be a
solution of the explicit method (3.6) and ū defined by (5.2). Then

‖ū(·, s)− ū(·, t)‖L1(Rd) ≤ σµ(|s− t|+ ∆t)

for all s, t > 0, where σµ is defined in (a).

Proof. The two proofs are essentially identical, so we only do the proof for case (a).

1) By (3.5), we find that for any x ∈ Rα,

Unα − Un−1
α =

∆t

∆xd

ˆ
Rα

L̂[A(Ūn)](x) dx.

Take a test function 0 ≤ φ ∈ C∞c and define φα = 1
∆xd

´
Rα

φ(y)dy and φ̄(x) =∑
α φα1Rα(x). Multiply the equation by ∆xdφα and sum over α to find that

ˆ
Rd
φ̄(x)(Ūn(x)− Ūn−1(x)) dx = ∆t

ˆ
Rd
φ̄(x)L̂[A(Ūn)](x) dx,

where Let L̂∗ be the adjoint of L̂, then since Ū is constant over Rα,
ˆ
Rd
φ(x)(Ūn(x)− Ūn−1(x)) dx =

ˆ
Rd
φ̄(x)(Ūn(x)− Ūn−1(x)) dx

= ∆t

ˆ
Rd

(φ̄(x)− φ(x))L̂[A(Ūn)](x) dx+ ∆t

ˆ
Rd
L̂∗[φ](x)A(Ūn)(x) dx.

2) Let ωε be an approximate unit, i.e. ωε(x) = 1
εd
ω(xε ) where 0 ≤ ω ∈ C∞0 and´

Rd ω dx = 1. Take φ(x) = ωε(y − x) in the equation above and let Unε = Ūn ∗ ωε:

Ūnε − Ūn−1
ε = ∆t(ω̄ε − ωε) ∗ L̂[A(Ūn)] + ∆tL̂∗[ωε] ∗A(Ūn).

By Fubini we then find that

1

∆t
‖Ūnε − Ūn−1

ε ‖L1 ≤ ‖ω̄ε − ωε‖L1‖L̂[A(Ūn)]‖L1 + ‖L̂∗[ωε] ∗A(Ūn)‖L1 = I1 + I2.

3) To estimate I1, note that by a standard argument

‖ω̄ε − ωε‖L1 ≤ |ωε|BV ∆x =
cω
ε

∆x,

and then by the definition of L̂ in (3.3), Fubini, the L1 ∩ BV regularity of Un

(Lemma 5.1), and the regularity of A in (A.2),

‖L̂[A(Ūn)]‖L1

=

ˆ
|z|>∆x

2

ˆ
Rd
A(Ūn(x+ z))−A(Ūn(x))− z · D̂∆xA(Ūn(x))1|z|<1 dxdµ(z)

≤
ˆ
|z|>∆x

2

(
2|A(Un)|BV |z|1|z|<1 + 2‖A(Un)‖L11|z|>1

)
dµ(z)

≤ C
ˆ
|z|>∆x

2

|z| ∧ 1 dµ(z) ≤ C

∆x

ˆ
|z|>0

|z|2 ∧ 1 dµ(z).

These estimates along with (A.3) shows that I1 ≤ Cε−1.



16 S. CIFANI AND E. R. JAKOBSEN

4) Then we estimate I2. Note first that since D̂∆x = D + (D̂∆x −D), we can use
Taylor’s formula to see that

φ(x+ z)− φ(x)− zD̂∆xφ(x)

=

ˆ 1

0

(1− s)zTD2φ(x+ sz)z ds±∆x

d∑
i=1

zi

ˆ 1

0

(1− s)φxixi(x± s∆x) ds.

This identity along with the definition of L̂∗, repeated use of Fubini, and one
integration by parts in x, then leads to

L̂∗[ωε] ∗A(Ūn)(x)

= −
ˆ 1

0

ˆ
∆x
2 <|z|<1

ˆ
Rd

(1− s)Dωε(x− y + sz)z ⊗ z DA(Ūn(y)) dy dµ(z) ds

∓∆x

d∑
i=1

ˆ 1

0

ˆ
∆x
2 <|z|<1

ˆ
Rd

(1− s)∂xiωε(x− y ± s∆x)zi ∂xiA(Ūn(y)) dydµ(z)ds

+

ˆ
Rd

ˆ
|z|>1

(
ωε(x− y + z)− ωε(x− y)

)
A(Ūn(x)) dµ(z) dy.

Here DA(Ūn(y)) dy should be interpreted as a measure, and
´
|DA(Ūn(y))|dy =´

d|A(Un)|(y) = |A(Un)|BV . By Young’s inequality for convolutions (Fubini in our
case), we then find that

I2 ≤
3

2
|ωε|BV |A(Ūn)|BV

ˆ
0<|z|<1

|z|2 dµ(z) + 2‖ωε‖L1‖A(Ūn)‖L1

ˆ
|z|>1

dµ(z)

≤ Cε−1.

Here again we have used the properties and regularity of µ, A, Ūn, and ωε.

5) By steps 2) – 4) we can conclude that

‖Ūnε − Ūmε ‖L1 ≤
n∑

j=m+1

‖Ū jε − Ū j−1
ε ‖L1 ≤ C

ε
|n−m|∆t,

where the constant C does not depend on n or m. By the triangle inequality and
standard BV -estimates, it then follows that

‖Ūn − Ūm‖L1 ≤ ‖Ūn − Ūnε ‖L1 + ‖Ūnε − Ūmε ‖L1 + ‖Ūmε − Ūm‖L1

≤ |Ūn|BV ε+
C

ε
|n−m|∆t+ |Ūm|BV ε,

and hence by taking ε = C
√
|n−m|∆t,

‖Ūn − Ūm‖L1 ≤ C
√
|n−m|∆t.

For the time-interpolated function ū defined in (5.1), we then find the following
estimate

‖ū(·, t)− ū(·, s)‖L1 = ‖Ūn − Ūm‖L1 ≤ C
√
|n−m|∆t ≤ C

√
|t− s|+ ∆t.

The equality follows since for each t, s there are n,m such that ū(x, t) = Ūn(x) and
ū(x, s) = Ūm(x). Moreover, by the definition of ū, |n−m|∆t ≤ |t− s|+ ∆t.

It remains to prove a better estimate for the case when
´
|z|∧1 dµ(z) <∞. This

proof is similar but much easier than the proof above, so we skip it. �
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The time regularity result in Lemma 5.3 is not optimal for Levy operators L
with order in the interval [1, 2). To get optimal results we need more detailed
information on the Levy measure µ than merely assumption (A.3). We will now
prove an improved time regularity result for fractional measures (1.5). In this result
we will need the following CFL condition,

C
∆t

∆x1∨λ < 1 for λ ∈ (0, 2).(5.7)

Lemma 5.4. (Time regularity for fractional measures) Assume (A.2) – (A.4), and
(1.5) hold.

(a) If the CFL condition (5.7) hold, U is a solution of the implicit method (3.5)
and ū its interpolation defined by (5.1), then for all s, t > 0,

‖ū(·, s)− ū(·, t)‖L1(Rd) ≤ σλ(|s− t|+ ∆t); σλ(τ) =


τ λ < 1,
τ | ln τ | λ = 1,

τ
1
λ λ > 1.

(b) If the CFL condition (4.4) hold, U is a solution of the explicit method (3.6) and
ū its interpolation defined by (5.2), then for all s, t > 0,

‖ū(·, s)−ū(·, t)‖L1(Rd) ≤ σλ(|s−t|+∆t); σλ(τ) =


τ λ < 1,
τα for any α ∈ (0, 1) λ = 1,

τ
1
λ λ > 1.

Note well that in this result we need the CLF condition also for the implicit
scheme. The reason is that the time-regularity is linked through the equation to
the approximate ∆x-depending diffusion term as will be seen from the proof. For
the implicit scheme, we can have better results for λ = 1 since we can use the less
restrictive CFL condition (5.7).

Proof. The result for λ < 1 is a corollary to Lemma 5.3. The proof for λ ≥ 1 is
the same as the proof of Lemma 5.3, except that we use different estimates for I1
and I2 in step 2). From step 3) in that proof and (1.5) and a simple computation
in polar coordinates, we get that

I1 ≤ C
∆x

ε

ˆ
|z|>∆x

2

|z| ∧ 1 dµ(z) ≤ C∆x

ε

(ˆ
∆x
2 <|z|<1

|z| dz
|z|d+λ

+ C

)

≤ C

ε

{
∆x+ ∆x2−λ for λ > 1,

∆x−∆x ln ∆x for λ = 1.

To estimate I2, we use Taylor expansions and integration by parts to find that

L̂∗[ωε] ∗A(Ūn)(x) =

−
ˆ 1

0

ˆ
∆x
2 <|z|<ε

ˆ
Rd

(1− s)Dωε(x− y + sz)z ⊗ z DA(Ūn(y)) dy dµ(z) ds

−
ˆ 1

0

ˆ
ε<|z|<1

ˆ
Rd

(
ωε(x− y + sz)− ωε(x− y)

)
z DA(Ūn(y)) dy dµ(z) ds

∓∆x

d∑
i=1

ˆ 1

0

ˆ
∆x
2 <|z|<ε

ˆ
Rd

(1− s)∂xiωε(x− y ± s∆x)zi ∂xiA(Ūn(y)) dydµ(z)ds

∓
d∑
i=1

ˆ 1

0

ˆ
ε<|z|<1

ˆ
Rd

(
ωε(x− y ± s∆x)− ωε(x− y)

)
zi ∂xiA(Ūn(y)) dydµ(z)ds

+

ˆ
Rd

ˆ
|z|>1

(
ωε(x− y + z)− ωε(x− y)

)
A(Ūn(x)) dµ(z) dy.
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Then by Fubini, the definition of ωε, and the change of variables (x, z)→ (εx, εz),

ˆ
Rd

ˆ
∆x
2 <|z|<ε

|Dωε(x+ sz)||z|2 dµ(z) ≤ cλε1−λ
ˆ
Rd
|Dω|dx

ˆ
0<|z|<1

|z|2 dz

|z|d+λ
.

By similar estimates and Young’s inequality for convolutions we find that

I2 ≤ cλε
1−λ|A(Ūn)|BV

(
3|ω|BV

ˆ
0<|z|<1

|z|2 dz

|z|d+λ
+ 4‖ω‖L1

ˆ
1<|z|< 1

ε

|z|dz
|z|d+λ

)
+ 2‖A(Ūn)‖L1‖ωε‖L1

ˆ
|z|>1

dµ(z)

≤ C

{
ε1−λ + 1, λ > 1,

| ln ε|+ 1, λ = 1.

Note that the ln ε-term comes from the integral over 1 < |z| < 1
ε .

As in step 5) in the proof of Lemma 5.3, we then find that

‖Ūn − Ūm‖L1 ≤ |Ūn|BV ε+ |n−m|∆t(I1 + I2) + |Ūm|BV ε.

To conclude, we assume that ∆x ≤ ε which means in particular that

I1 + I2 ≤ C

{
ε1−λ + 1, λ > 1,

| ln ε|+ 1, λ = 1.

When λ > 1, the final result follows from taking ε = c(|n −m|∆t) 1
λ and arguing

as in the end of the proof of Lemma 5.3. Note that in view of the CFL conditions
(4.4) and (5.7), the constant c can be chosen such that ∆x ≤ ε. For λ = 1, we
can use ε = c|n − m|∆t for the implicit method in view of (5.7), and by (4.4),

ε = c(|n−m|∆t)α′ for any α′ ∈ (0, 1), will do the job for the explicit method. �

By the a priori estimates Lemma 5.1 and 5.3 and Kolmogorov’s compactness
theorem (cf. e.g. [22, Theorem 3.8]), we find subsequences of both methods (3.5)
and (3.6) converging to some function u. The function u inherits all the a priori
estimates of ū, and it will be the unique entropy solution of (1.1) by Remark 4.7.
In short, we have the following result:

Theorem 5.5. (Compactness) Assume (A.2) – (A.4) hold. If either

(i) U is the solution of the implicit method (3.5) and ū defined by (5.1), or
(ii) U is the solution of the explicit method (3.6), ū defined by (5.2), and (4.3)

(or (4.4) and (1.5)) also holds,

then there is a subsequence of {ū}∆x>0 converging in C([0, T ];L1(Rd)) to the unique
entropy solution u of (1.1) as ∆x→ 0. Moreover,

u ∈ L∞(QT ) ∩ C([0, T ];L1(Rd)) ∩ L∞(0, T ;BV (Rd)).

Remark 5.6. This result provides a proof for the existence result Theorem 5.3 in
[11] for L1 ∩ L∞ ∩ BV entropy solutions of (1.1), and then the general existence
result in L1 ∩ L∞ follows by a density argument using the L1-contraction.

6. Error estimates

In this section we give different error estimates and convergence results for our
schemes, estimates that are valid for general Levy measures and better estimates
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that holds for fractional measures satisfying (1.5). To give the general result, we
need the following quantities:

Iε,r1 =
1

ε

ˆ
|z|≤r

|z|2 dµ(z),

Iε,δ,r2 =

(
∆x

ε
+

∆t

δ

)(ˆ
r<|z|≤1

|z|dµ(z) +

ˆ
|z|>1

dµ(z)

)
;

Ir3 = E∆t(ū)

ˆ
|z|>r

dµ(z).

Theorem 6.1. (Error estimates) Assume (A.2) – (A.4) hold, and let u be the
entropy solution of (1.1).

(a) Let U be a solution of the implicit method (3.5) and ū defined by (5.1). Then
for all ε > 0, 0 < δ < T , and ∆x

2 < r ≤ 1,

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT
(
ε+ Eδ(u) ∨ Eδ(ū) + Iε,r1 + Iε,δ,r2

)
,(6.1)

(b) Assume also (4.3) holds, and let U be a solution of the explicit method (3.6)
and ū defined by (5.2). Then for all ε > 0, 0 < δ < T , and ∆x

2 < r ≤ 1,

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT
(
ε+ Eδ(u) ∨ Eδ(ū) + Iε,r1 + Iε,δ,r2 + Ir3

)
,(6.2)

The proof of this result will be given in Section 8.

Corollary 6.2 (Convergence). Under the assumptions of Theorem 6.1, the solu-
tions of the implicit method (3.5) and the explicit method (3.6) both converge to the
unique entropy solution of (1.1) as ∆x,∆t→ 0.

Proof. The result follows from the error estimates of Theorem 6.1 by first sending
∆x,∆t→ 0, then r → 0, and finally ε, δ → 0. �

We will now see how Theorem 6.1 (along with Lemma 5.4) can be used to pro-
duce explicit rates of convergence for our scheme in the case of fractional measures
satisfying (1.5). First we define

(6.3) σIMλ (τ) =


τ

1
2 λ ∈ (0, 1),

τ
1
2 | log τ | λ = 1,

τ
2−λ

2 λ ∈ (1, 2),

and

(6.4) σEXλ (τ) =

{
τ

1
2 λ ∈

(
0, 2

3

]
,

τ
2−λ
2+λ λ ∈ ( 2

3 , 1) ∪ (1, 2).

Theorem 6.3. (Convergence rate for fractional measures) Under the assumptions
of Lemma 5.4 (including (1.5) and a CFL condition for the implicit scheme), for
all λ ∈ (0, 2),

‖u(·, T )− ū(·, T )‖L1(Rd) ≤


CT σ

IM
λ (∆x) for the implicit method (3.5),

CT σ
EX
λ (∆x) for the explicit method (3.6).

Note that the rate for the explicit method is worse due to the extra term Ir3 in
Theorem 6.1.
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Corollary 6.4 (Explicit scheme when λ = 1). Let the assumptions of Lemma 5.4
(b) hold with λ = 1 and let α ∈ (1, 2) be arbitrary. If the stronger CLF condition
C ∆t

∆xα < 1 holds, then

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT σEXα (∆x) for the explicit method (3.6).

Proof. Note that the CFL condition (4.4) is satisfied and that the assumption (1.5)
holds with any λ ∈ [1, 2). Hence the result follows from the λ > 1 case in Theorem
6.3. �

Proof of Theorem 6.3. Let us first give the proof for the implicit method (3.5).
First we note that by (1.5),ˆ

|z|≤r
|z|2 dµ(z) ≤ cλ

ˆ
|z|≤r

|z|2

|z|d+λ
dz ≤ O

(
r2−λ) for all λ ∈ (0, 2), r ≤ 1,

while

ˆ
r<|z|≤1

|z| dµ(z) ≤ cλ
ˆ
r<|z|≤1

|z|
|z|d+λ

dz =


O(1) if λ ∈ (0, 1),

O(| ln r|) if λ = 1,

O
(
r1−λ) if λ ∈ (1, 2).

Using these estimates along with the CFL condition (5.7) and Lemma 5.4, we find
that the estimate (6.1) in Theorem 6.1 takes the form

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT


ε+ δ + r2−λ

ε +
(

∆x
ε + ∆x

δ

)
if λ ∈ (0, 1),

ε+ δ | ln δ|+ r
ε + | ln r|

(
∆x
ε + ∆x

δ

)
if λ = 1,

ε+ δ
1
λ + r2−λ

ε + r1−λ
(

∆x
ε + ∆xλ

δ

)
if λ ∈ (1, 2).

The conclusion then follows by taking r = ∆x for all λ ∈ (0, 2), ε = δ =
√

∆x for

λ ∈ (0, 1], while ε = ∆x
2−λ

2 and δ = ∆x
λ
2 for λ ∈ (1, 2).

For the explicit method (3.6) we also need to take into account the extra I3-term,

Ir3 = σλ(∆t)

ˆ
|z|>r

dµ(z)︸ ︷︷ ︸
O(r−λ)

,

Lemma 5.4, and the slightly more restrictive CFL condition (4.4). The expression
(6.2) in Theorem 6.1 then takes the form

‖u(·, T )− ū(·, T )‖L1(Rd)

≤ CT

ε+ δ + r2−λ

ε +
(

∆x
ε + ∆x

δ

)
+ ∆x

rλ
if λ ∈ (0, 1),

ε+ δ
1
λ + r2−λ

ε + r1−λ
(

∆x
ε + ∆xλ

δ

)
+ ∆x

rλ
if λ ∈ (1, 2).

We minimize two and two terms and take the maximum minimizers, first w.r.t. ε
and δ and then w.r.t. r,

‖u(·, T )− ū(·, T )‖L1(Rd)

≤ CT

r
2−λ

2 + ∆x
1
2 + ∆x

rλ
, if λ ∈ (0, 1)

r
2−λ

2 + r
1−λ

2 ∆x
1
2 + r

1−λ
1+λ∆x

λ
1+λ + ∆x

rλ
if λ ∈ (1, 2),

≤ CT

∆x
1
2 + ∆x

2−λ
2+λ if λ ∈ (0, 1),

∆x
2−λ

2 + ∆x
2−λ
3−λ + ∆x

2−λ
2+λ if λ ∈ (1, 2).
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The final result follows since 2−λ
3−λ > 2−λ

2+λ for λ ∈ ( 1
2 , 2) and 2−λ

2+λ < 1
2 for λ ∈

( 2
3 , 2). �

Remark 6.5. The rates can not be improved by taking a different truncation of the
singularity, i.e. replacing in the method

Gα,β =
1

∆xd

ˆ
Rα

ˆ
|z|>∆x

2

1Rβ (x+ z)− 1Rβ (x) dµ(z) dx

by

Gα,β =
1

∆xd

ˆ
Rα

ˆ
|z|>ρλ(∆x)

1Rβ (x+ z)− 1Rβ (x) dµ(z) dx.

The reason is that the function ρλ that minimize the error expression

ε+ δ +
ρ2−λ
λ (∆x)

ε
+ ρ1−λ

λ (∆x)

(
∆x

ε
+

∆x

δ

)
,

is always ρλ(∆x) = O(∆x)!

Remark 6.6. We believe that the rates for the implicit schemes are optimal, at
least when there are nonlinear convection terms in the equation (i.e. when f 6= 0 in
(1.1), see Section 7). But we have not found analytical examples confirming this,
nor have we been able to observe the above rates in preliminary, but probably too
crude, numerical tests. Maybe it is not straight forward to construct analytical
or numerical examples confirming the optimality of the rates. We leave it as a
challenge for people with more experience in realizing numerical schemes to test
the optimality numerically.

7. Convection-diffusion equations

In this section we discuss how to extend the results established in the previous
sections to the case f 6= 0. Note that all the arguments needed to handle the
additional f -term are well-known. We consider the following numerical methods

Un+1
α = Unα + ∆t

d∑
l=1

D−l f̂l(U
n+1
α , Un+1

α+el
) + ∆t L̂µ〈A(Un+1)〉α, (implicit)(7.1)

Un+1
α = Unα + ∆t

d∑
l=1

D−l f̂l(U
n
α , U

n
α+el

) + ∆t L̂µ〈A(Un+1)〉α, (expl-impl)(7.2)

Un+1
α = Unα + ∆t

d∑
l=1

D−l f̂l(U
n
α , U

n
α+el

) + ∆t L̂µ〈A(Un)〉α, (explicit)(7.3)

where

(i) D−l Uα = 1
∆x (Uα − Uα−el) and {el}l is the standard basis of Rd, and

(ii) f̂ = (f̂1, . . . , f̂d) is a consistent (i.e. f̂(u, u) = f(u)), Lipschitz continuous
numerical flux which is non-decreasing w.r.t. the first variable and non-
increasing w.r.t. the second one.

Remark 7.1. Some examples of numerical fluxes f̂ satisfying (ii) are the well-known
Lax-Friedrichs flux, the Godunov flux, and the Engquist-Osher flux, cf. e.g. [26].

For the schemes (7.2) and (7.3), we also need the CFL conditions

2dLF
∆t

∆x
+ c̄LA

∆t

σ̂µ(∆x)
< 1 and 2dLF

∆t

∆x
< 1(7.4)

respectively (compare with (4.3)), where σ̂µ is defined in (4.1) and LF is the Lips-

chitz constant of f̂ . Then the all the a priori estimates and other results of Section
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5 continue to hold for the new schemes, and we still have compactness via Kol-
mogorov’s theorem. The modifications needed to identify the any limit as the
unique entropy solution of (1.1) are standard and can be found e.g. in Chapter 3
in [22], and hence the convergence of the methods (7.1)–(7.3) follows.

We will now give the statement of the result of Theorem 6.1 that is valid for the
current setting where f 6= 0. To do so we reuse the quantities Iε,r1 and Ir3 of section

6, but redefine Iε,δ,r2 as follows

Iε,δ,r2 =

(
∆x

ε
+

∆t

δ

)(
1 +

ˆ
r<|z|≤1

|z|dµ(z) +

ˆ
|z|>1

dµ(z)

)
.

Theorem 7.2. (Error estimates) Assume (A.1) – (A.4) hold, and let u be the
entropy solution of (1.1).

(a) Let U be a solution of (7.1) or (7.2) and ū defined by (5.1). For (7.2) we
also need the second CLF condition in (7.4). Then for all ε > 0, 0 < δ < T , and
∆x
2 < r ≤ 1,

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT
(
ε+ Eδ(u) ∨ Eδ(ū) + Iε,r1 + Iε,δ,r2

)
.

(b) Assume also that the first CFL condition in (7.4) holds, and let U be a solution
of (7.3) and ū defined by (5.2). Then for all ε > 0, 0 < δ < T , and ∆x

2 < r ≤ 1,

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT
(
ε+ Eδ(u) ∨ Eδ(ū) + Iε,r1 + Iε,δ,r2 + Ir3

)
.

The proof is essentially equal to the proof of Theorem 6.1 augmented by standard
Kuznetsov type computations to handle the f -term, cf. e.g. [22, Example 3.14].
We skip it.

Remark 7.3. It is easy to see that the contribution to the error from the discretiza-
tion of the f -term is always less or of the same order as the contributions of the
other terms. In particular, for fractional measures (1.5), we immediately get that
the schemes satisfy the error estimate of Theorem 6.3 with modulus σIMλ for (7.1)
and (7.2) and modulus σEXλ for (7.3).

8. The proof of Theorem 6.1

Proof of Theorem 6.1 for the implicit method (3.5).

1. We use Lemma 2.2 to compare the solution of the scheme to the exact solution.
In the resulting inequality, we introduce the scheme via the time derivative and the
initial/final terms. To do this, we use integration by parts on each interval (tn, tn+1)
and summation by parts to get discrete time derivatives on ū so that we can use
the cell entropy inequality (4.5). We get that (remember the definition of ū)

−
¨
QT

¨
QT

η(ū(x, t), u(y, s)) ∂tϕ
ε,δ(x, y, t, s)dw + initial and final terms

=

¨
QT

N−1∑
n=0

∑
α∈Zd

(
η(Un+1

α , u(y, s))− η(Unα , u(y, s))

)ˆ
Rα

ϕε,δ(x, y, tn+1, s) dxdyds.

Let ϕ̄ε,δ = ϕ̄ε,δ(x, y, t, s) be the function which for each (y, s) ∈ QT is defined by

ϕnα =
1

∆xd

ˆ
Rα

ϕε,δ(x, y, tn, s) dx for x ∈ Rα, t ∈ (tn−1, tn],
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and use above equation along with the cell entropy inequality (4.5) and Lemma 3.1
to write the inequality of Lemma 2.2 in the following way

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT (∆x+ ε+ Eδ(u) ∨ Eδ(v))

+

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s)))Lµ
∗

r [ϕε,δ(x, ·, t, s)](y) dw︸ ︷︷ ︸
H1

+

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s))) L̂µ
∗

r [ϕ̄ε,δ(·, y, t, s)](x) dw︸ ︷︷ ︸
H2

+

¨
QT

¨
QT

η′(ū(x, t), u(y, s))Lµ,r[A(ū(·, t))](x) (ϕ̄ε,δ − ϕε,δ)(x, y, t, s) dw︸ ︷︷ ︸
H3

+

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s))) γµ
∗,r · (D̂ϕ̄ε,δ −∇xϕε,δ)(x, y, t, s) dw︸ ︷︷ ︸

H4

.

Here we have also used the notation

L̂[φ](x) = L̂r[φ](x) + L̂r[φ](x) + γµ,r · D̂∆xφ(x)

where L̂ is defined in (3.3), L̂r = Lr for r ≥ ∆x
2 , and

L̂r[φ](x) =

ˆ
∆x
2 <|z|<r

φ(x+ z)− φ(x)− 1|z|<1z · D̂∆xφ(x) dµ(z).

Note that the discrete operator D̂l = D̂∆x,l (see (3.2)) always acts on the x-variable
(the variable of ū). To complete the proof we need to estimate H1, . . . ,H4.

2. Estimates of H1 and H2. By Taylor’s formula with integral remainder, inte-
gration by parts, and Fubini (– see e.g. Lemma B.1 in [2] for more details),

|H1| ≤
¨
QT

¨
QT

ˆ
|z|≤r

ˆ 1

0

(1− τ)
∣∣Dyη(A(ū(x, t)), A(u(y, s)))

∣∣
· ωδ(t− s)

∣∣DyΩε(x− y + τz)
∣∣︸ ︷︷ ︸

=|DxΩε(x−y+τz)|

|z|2 dτ dµ(z) dw

≤ 1

2
LA

ˆ T

0

|u(·, s)|BV (Rd) ds

ˆ
Rd
|DxΩε(x)| dx

ˆ
R
ωε(t) dt

ˆ
|z|≤r

|z|2 dµ(z))

≤ CT LA |u0|BV (Rd) ε
−1

ˆ
|z|≤r

|z|2 dµ(z).

Here we also used Theorem 2.1 and the standard estimate
´
Rd |DxΩε(x)| dx = O( 1

ε ).
We find a similar estimate for H2 via a regularization procedure and the ar-

gument for H1 above. Let ϕ̄ε,δ% be a mollification in the x-variable of ϕ̄ε,δ, i.e.

ϕ̄ε,δ% = ϕ̄ε,δ ∗x Ωρ where the convolution is in x only. Then ϕ̄ε,δ% is smooth in x, and

|ϕ̄ε,δ% (·, y, t, s)|BV (Rd) ≤ |ϕ̄ε,δ(·, y, t, s)|BV (Rd) ≤ |ϕε,δ(·, y, t, s)|BV (Rd) = O
(
ε−1
)
,

where the first inequality holds for all % small enough (cf. e.g. [30, Theorem 5.3.1]),
while the second one is obvious. Let us call

H%
2 =

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s))) L̂µ
∗

r [ϕ̄ε,δ% (·, y, t, s)](x) dw.
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First note that lim%→0H
%
2 = H2 by the dominated convergence theorem since we are

integrating away from the singularity and ϕ̄ε,δ% (·, y, t, s) → ϕ̄ε,δ(·, y, t, s) pointwise.

Then, since ϕ̄ε,δ% (·, y, t, s) is smooth, we repeat the argument used for H1 and obtain

|H%
2 | ≤ CT LA |u0|BV (Rd) |ϕ̄ε,δ% |BV (Rd)

ˆ
∆x
2 <|z|≤r

|z|2 dµ(z).

Since |ϕ̄ε,δ% |BV (Rd) = O(ε−1), we can take the limit %→ 0 and get

|H2| ≤ CT LA |u0|BV (Rd) ε
−1

ˆ
|z|≤r

|z|2 dµ(z).

3. Estimate of H3. By the definition of ϕ̄ε,δ and properties of mollifiers, a standard
argument shows that

¨
QT

∣∣ϕ̄ε,δ(x, y, t, s)− ϕε,δ(x, y, t, s)∣∣ dy ds

≤ d|Ωε|BV ‖ωδ‖L1∆x+ d‖Ωε‖L1 |ωδ|BV ∆t ≤ O
(

∆x

ε
+

∆t

δ

)
.

Similar estimates are given in e.g. [13]. This estimate along with several applica-
tions of Fubini’s theorem then show that for all ∆x

2 < r ≤ 1,

|H3| ≤
¨
QT

∣∣Lµ,r[A(ū(·, t))](x)
∣∣(¨

QT

∣∣ϕ̄ε,δ(x, y, t, s)− ϕε,δ(x, y, t, s)∣∣ dy ds

)
dx dt

≤ cLA
(

∆x

ε
+

∆t

δ

)(¨
QT

ˆ
r<|z|≤1

|ū(x+ z, t)− ū(x, t)| dµ(z) dxdt

+

¨
QT

ˆ
|z|>1

|ū(x+ z, t)− ū(x, t)| dµ(z) dxdt

)

≤ CTLA
(∆x

ε
+

∆x

δ

)(
|u0|BV

ˆ
r<|z|≤1

|z|dµ(z) + ‖u0‖L1

ˆ
|z|>1

dµ(z)

)
.

4. Estimate of H4. Let l ∈ (0, . . . , d) and write

H4,l = γµ
∗,r

l

¨
QT

∑
α∈Zd

N−1∑
n=0

η(A(Unα ), A(u(y, s)))

ˆ tn+1

tn

ˆ
Rα

D̂lϕ̄
ε,δ(x, y, t, s) dw︸ ︷︷ ︸

H1
4,l

− γµ
∗,r

l

¨
QT

∑
α∈Zd

N−1∑
n=0

η(A(Unα ), A(u(y, s)))

ˆ tn+1

tn

ˆ
Rα

∂xlϕ
ε,δ(x, y, t, s) dw︸ ︷︷ ︸

H2
4,l

.

Since
´ tn+1

tn

´
Rα

ϕ̄ε,δ(x, y, t, s) dxdt =
´ tn+1

tn

´
Rα

ϕε,δ(x, y, tn+1, s) dxdt by definition,

we can use summation by parts to find that

H1
4,l = −

¨
QT

∑
α∈Zd

N−1∑
n=0

D̂lη(A(Unα ), A(u(y, s)))

ˆ tn+1

tn

ˆ
Rα

ϕε,δ(x, y, tn+1, s) dw.
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Integration in the xl-direction followed by summation by parts leads to

H2
4,l = −∆x

¨
QT

∑
α∈Zd

N−1∑
n=0

D̂lη(A(Unα ), A(u(y, s)))

·
ˆ tn+1

tn

ˆ
· · ·
ˆ
ϕε,δ(x|xl=xαl , y, t, s) dx1 . . . dxl−1 dxl+1 . . . dxd dtdy ds.

Here we first integrated ∂xlϕ
ε,δ(·, y, t, s) along the interval (xαl , xαl+1

) to obtain

the difference ϕε,δ(x|xl=xαl+1
, y, t, s)−ϕε,δ(x|xl=xαl , y, t, s), and then we used sum-

mation by parts to move this difference onto η(A(Unα ), A(u(y, s))). Note that
x|xl=xαl = (x1, . . . , xl−1, xαl , xl+1, . . . , xd), and that xl = xαl is fixed here while

the other variables xj , j 6= l vary.

By the above computations, the inequality |D̂lη(A(Unα ), A(u(y, s)))| ≤ |D̂lA(Unα )|
(i.e. ||a− k| − |b− k|| ≤ |a− b|), and Fubini, we find that

H4,l = γµ
∗,r

l

¨
QT

∑
α∈Zd

N−1∑
n=0

D̂lη(A(Unα ), A(u(y, s)))

·
ˆ tn+1

tn

ˆ
Rα

(
ϕε,δ(x|xl=xαl , y, t, s)− ϕ

ε,δ(xα, y, tn+1, s)
)

dxdt dy ds

≤ γµ
∗,r

l

∑
α∈Zd

N−1∑
n=0

|D̂lA(Unα )|

·
ˆ tn+1

tn

ˆ
Rα

¨
QT

∣∣∣ϕε,δ(x|xl=xαl , y, t, s)− ϕε,δ(xα, y, tn+1, s)
∣∣∣ dw.

Since φε,δ(x, y, t, s) = Ωε(x− y)ωδ(t− s) and (x, t) ∈ Rα × (tn, tn+1], we find as in
part 3 that

¨
QT

∣∣∣ϕε,δ(x|xl=xαl , y, t, s)− ϕε,δ(xα, y, tn+1, s)
∣∣∣ dyds

≤ C
(
|Ωε|BV ‖ωδ‖L1∆x+ ‖Ωε‖L1 |ωδ|BV ∆t

)
= O

(
∆x

ε
+

∆t

δ

)
.

Summing over l we then find that

|H4| ≤ dC|γµ
∗,r|
(

∆t

δ
+

∆x

ε

)(N−1∑
n=0

∑
α∈Zd

|D̂lA(Unα )|∆t∆xd
)
,

and since
∑
α∈Zd |D̂lA(Unα )|∆xd = |A(ū(·, tn))|BV ≤ LA|u0|BV , we conclude that

|H4| ≤ CTLA
(

∆x

ε
+

∆t

δ

)ˆ
r<|z|≤1

|z|dµ(z).

In view of part 1 - 4 the proof is now complete. �

Proof of Theorem 6.1 for the explicit method (3.6). We argue as in the beginning
of the proof for the implicit method, replacing the implicit cell entropy inequality
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by the explicit one (4.6), and find that

‖u(·, T )− ū(·, T )‖L1(Rd) ≤ CT (∆x+ ε+ Eδ(u) ∨ Eδ(v))

+

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s)))Lµ
∗

r [ϕε,δ(x, ·, t, s)](y) dw

+

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s))) L̂µ
∗

r [ϕ̄ε,δ(·, y, t, s)](x) dw

+

¨
QT

¨
QT

η′(ū(x, t+ ∆t), u(y, s))Lµ,r[A(ū(·, t))](x) ϕ̄ε,δ(x, y, t, s) dw

−
¨
QT

¨
QT

η′(ū(x, t), u(y, s))Lµ,r[A(ū(·, t))](x)ϕε,δ(x, y, t, s) dw

+

¨
QT

¨
QT

η(A(ū(x, t)), A(u(y, s))) γµ
∗,r · (D̂ϕ̄ε,δ −∇xϕε,δ)(x, y, t, s) dw.

The difference with the previous proof is the interpolation (5.2), and more impor-
tantly, the new Lµ,r-terms. Note that by a change of variables,¨

QT

¨
QT

η′(ū(x, t+ ∆t), u(y, s))Lµ,r[A(ū(·, t))](x) ϕ̄ε,δ(x, y, t, s) dw

=

¨
QT

¨
Q∆t,T

η′(ū(x, t), u(y, s))Lµ,r[A(ū(·, t−∆t))](x) ϕ̄ε,δ(x, y, t, s) dw

+

ˆ T+∆t

T

ˆ
Rd

¨
QT

η′(ū(x, t), u(y, s))Lµ,r[A(ū(·, t−∆t))](x) ϕ̄ε,δ(x, y, t, s) dw,

where Qa,b = Rd × (a, b). The last term on the right can be estimated by

∆t‖φε,δ‖L1

(
|A(ū)|BV

ˆ
r<|z|<1

|z|dµ(z) + 2‖A(ū)‖L1

ˆ
|z|>1

dµ(z)

)

= O (∆t)

ˆ
r<|z|<1

|z|dµ(z).

By similar computations, we can write the Lµ,r-terms in the above inequality as¨
QT

¨
Q∆t,T

η′(ū(x, t), u(y, s))Lµ,r[A(ū(·, t−∆t))−A(ū(·, t))](x) ϕ̄ε,δ(x, y, t, s) dw︸ ︷︷ ︸
I

+

¨
QT

¨
QT

η′(ū(x, t), u(y, s))Lµ,r[A(ū(·, t))](x) (ϕ̄ε,δ − ϕε,δ)(x, y, t, s) dw

+O (∆t)

ˆ
r<|z|<1

|z|dµ(z).

Here we estimate the first term using the time regularity of ū,

I ≤
¨
QT

|Lµ,r[A(ū(·, t−∆t))−A(ū(·, t))](x)|
¨
QT

ϕ̄ε,δ(x, y, t, s) dw︸ ︷︷ ︸
=O(1)

≤ c 2LA

(ˆ T

0

‖ū(·, t−∆t)− ū(·, t)‖L1(Rd) dt

) ˆ
|z|>r

dµ(z)

≤ CT E∆t(ū)

ˆ
|z|>r

dµ(z),

where E∆t(ū) is defined in (2.2). Now all the remaining terms can be estimated as
in the proof for the implicit method (3.5), so the proof is complete. �
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[4] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge, 2009.

[5] G. Barles and C. Imbert. Second-Order Elliptic Integro-Differential Equations: Viscosity

Solutions’ Theory Revisited. Ann. Inst. H. Poincare Anal. Non Linaire 25 (2008), 567–585.
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