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Abstract. We develop a viscosity solution theory for a system of nonlinear
degenerate parabolic integro-partial differential equations (IPDEs) related to

stochastic optimal switching and control problems or stochastic games. In

the case of stochastic optimal switching and control, we prove via dynamic
programming methods that the value function is a viscosity solution of the

IPDEs. In our setting the value functions or the solutions of the IPDEs are

not smooth, so classical verification theorems do not apply.

1. Introduction

In this paper we analyze a system of integro-partial differential equations (IPDEs
henceforth) related to stochastic optimal switching and control or stochastic games.
In the case of stochastic optimal switching and control problems, we prove via the
dynamic programming method that the value function is a viscosity solution of the
relevant IPDE. Such results exist in the pure PDE case [21, 47], and this paper is
partly motivated by a desire to extend these results to the non-local case.

The system of equations involves M equations and is of the form

Fi(t, x, u(t, x), ∂tui(t, x), Dui(t, x), D2ui(t, x), ui(t, ·)) = 0 in (0, T )× Rn, i ∈ I,
(1.1)

for I = {1, 2, . . . ,M}. We also impose an initial condition

ui(0, x) = gi(x) in Rn, i ∈ I.

Here, g = (g1, g2, . . . , gM ) and u = (u1, u2, . . . , uM ) are RM valued functions. The
nonlocal nature of the system (1.1), indicated by the term “ui(t, ·)”, is the main
focus of this paper. The nonlinear and nonlocal functions Fi are defined as

Fi(t, x, r, pt, px, X, ϕ(·)) = max
{
pt + sup

α∈Ai
inf
β∈Bi

[
Lα,βi (t, x, ri, px, X)− J α,βi ϕ

]
;

ri −Mir
}
,

for (t, x, r, pt, px, X) ∈ R×Rn ×RM ×R×Rn × Sn (Sn the set of n× n symmetric
matrices) and any smooth real-valued function ϕ(t, x). The operators Lα,βi , J α,βi ,
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and Mi are defined as follows:

Lα,βi (t, x, ri, px, X) = −Tr(aα,βi (t, x)X)− bα,βi (t, x)px + cα,βi (t, x)ri − fα,βi (t, x),

J α,βi ϕ =
∫
E

[
ϕ(t, x+ ηα,βi (t, x, z))− ϕ− 1|z|≤1η

α,β
i (t, x, z)Dxϕ

]
ν(dz),

Miu = min
j 6=i
{uj + k(i, j)},

where k(i, j) ≥ 0, E = Rm\{0}, and ν is a positive Radon measure on E (the Lévy
measure) with an “at most” second order singularity at the origin and exponential
decay at infinity. The setsAi and Bi are separable metric spaces (typically subsets of
some Euclidean space) and the coefficients ai, ηi, bi, ci, fi are functions taking values
respectively in Rn×n,Rn,Rn,R,R. The specific assumptions on the coefficients
will be stated later, but roughly speaking we will assume that the coefficients are
Lipschitz continuous in x.

The matrices aα,βi are assumed to be merely non-negative definite and as such
can vanish at some points. Similarly, the jump vectors ηα,βi ≥ 0 can vanish. Conse-
quently, there are no regularization effects in this problem coming from the second
order operator (“Laplacian smoothing”) or from the integral operator (“fractional
Laplacian smoothing”). Because of this, the system (1.1) will in general not have
classical solutions, and a suitable notion of viscosity solutions is needed.

As already mentioned, the system (1.1) is closely related to the optimal control of
Jump-diffusion (Lévy) processes. It arises formally as the Bellman-Isaacs equation
for zero-sum stochastic games where the state is given by controlled jump-diffusion
processes involving also switching between different control regimes (indexed by i).
The maximizing player (α) disposes both “continuous” and “switching controls”
while the minimizing player (β) only disposes “continuous controls”. If the sets Bi
are singletons (no minimizing player), then the system (1.1) is the convex Bellman
equation related to optimal control of jump-diffusion process with both continuous
and switching controls.

In case of pure diffusions (i.e., ν = 0), the value function of the control problem
satisfies a dynamic programming principle (see [24, 21, 47]), which implies that it
is a viscosity solution of a system like (1.1). However, for processes with jumps, to
the best of our knowledge, there is no proved dynamic programming principle in
the literature that covers the generality of (1.1). We refer to [31] for some rigorous
results in two space dimensions. Generally speaking, experts expect the dynamic
programming principle to hold and frequently use it without proof. In this paper,
using well-known arguments, we have chosen to include a rigorous proof.

We mention that control problems involving switching have applicability to real-
life problems such as production planning in a flexible manufacturing system (see
[25, 44] and the references therein). In this context, the control problems are
typically modeled by using diffusion processes leading to pure PDEs, but it is not
far fetched to think about more general models with jumps in the state dynamics,
thereby motivating the study of systems like (1.1). Another important area of
application is portfolio optimization for an investor operating in multiple Lévy
driven markets. It is feasible to assume that this investor has to pay a certain
premium when pulling out from one market and entering into another one. In such
a scenario, the investor would like to optimize the value of his portfolio by switching
from one market to another and also continuously changing the portfolio while
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remaining in the same market. This portfolio optimization problem can be viewed
as an optimal switching problem and one gets a system of nonlocal variational
inequalities as the Bellman equation. In fact, while being in the same market,
the agent would always look to change his holdings depending on different market
modes , say the bull and bear modes, which appear randomly in an economic cycle.
In such a scenario, it is possible to think that the market and the investor are
engaged in a switching game; we refer to [12] for more in this direction.

In addition to the applications mentioned above, we are also motivated by
the problem of deriving error estimates for numerical schemes for second order
Hamilton-Jacobi-Bellman equations. This is a difficult problem that remained open
for a long time before the works of Krylov [35, 36, 37] and Barles & Jakobsen
[8, 9, 10]. We also mention [18, 20] as important recent contributions in this area.
The methods developed in these works involve the use of carefully chosen smooth
approximations of the viscosity solution of the underlying equation. In some recent
developments [9, 10], Barles & Jakobsen used solutions of certain switching systems
to generate suitable approximations of the viscosity solution of the Bellman equa-
tion associated with the optimal control of diffusion processes. In a separate piece
of work [17], we adapt this approach to the nonlocal Bellman equation of controlled
jump-diffusion processes, which is drawing a lot of interests these days due to its
applications in mathematical finance (see for example [3], [2], [14], [15], [22] and the
references therein). To derive error estimates like those in [9, 10] for the nonlocal
Bellman equation we need to have at our disposal a viscosity solution theory for
switching systems of the type (1.1).

The viscosity solution theory for second order PDEs is well developed [23] and has
become an essential tool in the study of controlled diffusions [4, 26]. Expanding its
availability beyond scalar equations, viscosity solution theory for systems has been
advanced to understand the optimal switching of controls for both deterministic
[21, 38],[45],[48] and stochastic [30, 29, 49] problems; these works offer a number
of results on existence, uniqueness, and qualitative properties of solutions. On
the other hand, the viscosity solution approach to nonlocal equations is still under
development and is currently an active research area, cf. for example [1, 2, 6, 7, 19,
32, 33, 34, 42, 43]. Contrary to its pure PDE counterpart, the available literature
applying viscosity solutions to systems of integro-PDEs is very limited, but see [5]
(switching systems are not covered).

The contributions of this article can be divided into two main parts. The first
part includes a comprehensive study of viscosity solutions for the system (1.1), while
the second one analyzes the problem of optimal switching of stochastic controls. It is
not difficult to adapt techniques from stochastic analysis to prove, for example, the
existence of viscosity solutions of the underlying Bellman equation. In the present
context, the Bellman equation related to the optimal switching problem serves as an
example of the system (1.1), but it does not cover the general form and therefore
we mostly rely on PDE techniques [23] to prove our results, including existence
and uniqueness of (suitably defined) viscosity solutions, continuous dependence
estimates, and some regularity results.

The rest of paper is organized as follows: in Section 2 we list all the notations,
state the full set of assumptions, and define viscosity sub- and supersolutions along
with equivalent characterizations. We also state the comparison principle, unique-
ness, and existence results in this section. The optimal switching problem with a
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jump-diffusion driven state process is introduced and analyzed in Section 3. The
main result of this section is the proof of the dynamic programming principle. In
Section 4 we prove the results stated in Section 2. Finally, Section 5 contains a
continuous dependence estimate along with an application to the Hölder continuity
of viscosity solutions.

2. Notation, assumption, well-posedness, and regularity

We denote the set {1, . . . ,M} by I. We also use the notations QT and Q̄T
respectively for (0, T ) × Rn and [0, T ) × Rn. For various constants depending on
the data we mainly use N,K,C with/without subscripts.

For a bounded Lipschitz continuous function h(x) defined on Rn, its Lipschitz
norm |h|1 is defined as

|h|1 := sup
x∈Rn

|h(x)|+ sup
x,y∈Rn

|h(x)− h(y)|
|x− y|

.

and denote the space of all h so that |h|1 < ∞ by C1
b (Rn) or sometimes only by

C1
b . We also define

C
1
2 ,1

b (Q̄T ) :=
{
h(t, x) : sup

(t,x)∈Q̄T
|h(t, x)|+ sup

(t,x),(s,y)∈Q̄T

|h(t, x)− h(s, y)|
|t− s| 12 + |x− y|

<∞
}
.

For |h(t, ·)| we simply mean |·|1 norm of h(t, x) as a function of x alone and for a fixed
t. Let C1,2((0, T )×Rn) be the space of once in time and twice in space continuously
differentiable functions. Also, denote the set of all upper and lower semicontinuous
functions on Q̄T respectively by USC(Q̄T ) and LSC(Q̄T ). A lower index would
mean polynomial growth at infinity, therefore the spaces USCp(Q̄T ), LSCp(Q̄T ),
C1,2
p ((0, T ) × Rn) contain the functions h respectively from

USC(Q̄T ), LSC(Q̄T ), C1,2((0, T )× Rn) satisfying the growth condition

|h(x)| ≤ C(1 + |x|p) for all x ∈ Rn (uniformly in t if h depends on t.)

We identify the spaces USC0(Q̄T ) and LSC0(Q̄T ) respectively with USCb(Q̄T ) and
LSCb(Q̄T ); “b” is an index signifying boundedness. From time to time we will not
explicitly mention the control parameters α, β and this will be done on occasions
where the assertions are valid for all parameters.

Now we list the assumptions on the data:

(A.1) aα,βi = 1
2σ

α,β
i σα,βi

T
and σi, bi, ci, fi, ηi are continuous functions of t, x, α, β;

Ai,Bi are compact metric spaces; and the positive Radon measure ν defined
on E satisfies∫

0<|z|≤1

|z|2ν(dz) +
∫
|z|≥1

eΛ|z|ν(dz) ≤ K

for some K,Λ > 0.
(A.2) For any α, β and i, j ∈ I; and for each t ∈ [0, T ]

|fα,βi (t, ·)|1 + |gi|1 ≤ K;

k(i, i) = 0, k(i, j) > 0 for i 6= j;

gi(x)−Mig(x) ≤ 0 for all x ∈ Rn.
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(A.3) cα,βi ≥ 0 for all i and α, β and

|σα,βi (t, x)− σα,βi (t, y)|+ |bα,βi (t, x)− bα,βi (t, y)|+ |cα,βi (t, x)− cα,βi (t, y)|
≤ K|x− y|.

(A.4) For all i, t, x, α, β, ηα,βi (t, x, z) is Borel measurable in z and

|ηα,βi (t, x, z)| ≤ K
(
|z| ∧ 1

)
, |ηα,βi (t, x, z)− ηα,βi (t, y, z)| ≤ K

(
|z| ∧ 1

)
|x− y|

Remark. The assumptions (A.1) – (A.4) are natural and standard, except maybe
for the boundedness of f, g and the decay of ν at infinity. These last assumptions can
be relaxed and the results of this paper still hold in a properly modified form. The
integrability assumptions on ν are natural in financial applications. Boundedness of
f, g will imply bounded solutions, an assumption we make for the sake of simplicity.
The requirement that ci ≥ 0 can be relaxed, via an exponential scaling of the
solution, to the requirement that the functions ci are bounded from below. The last
assumption guarantees that the non-local part is well defined for smooth solutions
with less than exponential growth at infinity.

Remark. It will turn out that continuous viscosity solutions (as well as classical
solutions) of (1.1) satisfy ui(t, x)−Miu(t, x) ≤ 0 for all i, t, x. Letting t→ 0 leads
to ui(0, x)−Miu(0, x) ≤ 0. Therefore, the (compatibility) condition on g in (A.2)
is necessary for viscosity solutions to be continuous in t at t = 0.

Next, we are going to give the definition of sub- and supersolutions to (1.1),
which includes the initial condition as a part of it. Before doing so, we need to
introduce the following quantities, for κ ∈ (0, 1):

J α,βi,κ (t, x, q, φ(t, ·)) =
∫
B(0,κ)\{0}

(ϕ(t, x+ ηα,βi (t, x, z))− ϕ− ηα,βi (t, x, z)q
)
ν(dz),

J α,β,κi (t, x, q, v(t, ·)) =
∫
B(0,κ)C

(v(t, x+ ηα,βi (t, x, z))− v − 1|z|≤1η
α,β
i .q

)
ν(dz)

and

Fκi
(
t, x, r, pt, px, X, v(t, ·), ϕ(t, ·)

)
= max

[
pt + sup

α∈Ai
inf
β∈Bi

{
− Tr(aα,βi (t, x)X)− bα,βi (t, x)px + cα,βi (t, x)ri − fα,βi (t, x)

− J α,βi,κ (t, x, px, φ(t, ·))− J α,β,κi (t, x, px, v(t, ·))
}

; ri −Mir
]
.

Definition 2.1. (i) A function u ∈ USCp([0, T ]×Rn) is a viscosity subsolution of
(1.1) if

ui(0, x) ≤ gi(x), x ∈ Rn, 1 ≤ i ≤M

and if for any 1 ≤ i ≤ M,ϕ ∈ C1,2((0, T ]× Rn), wherever (t, x) ∈ (0, T )× Rn is a
global maximum point of ui − ϕ

Fκi (t, x, u(t, x), ϕt(t, x), Dϕ(t, x), D2ϕ(t, x), ui(t, ·), ϕ(t, ·) ≤ 0 ∀ κ ∈ (0, 1).

(ii) A function u ∈ LSCp([0, T ]× Rn) is a viscosity supersolution of (1.1) if

ui(0, x) ≥ gi(x), x ∈ Rn, 1 ≤ i ≤M
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and if for any 1 ≤ i ≤ M,ϕ ∈ C1,2((0, T ]× Rn), wherever (t, x) ∈ (0, T )× Rn is a
global minimum point of ui − ϕ

Fκi (t, x, u(t, x), ϕt(t, x), Dϕ(t, x), D2ϕ(t, x), ui(t, ·), ϕ(t, ·) ≥ 0 ∀ κ ∈ (0, 1).

(iii) A function u ∈ Cp([0, T ]×Rn) is a viscosity solution of (1.1) if it is both a sub
and a supersolution.

This definition is formulated in terms of test functions ϕ. Note that the test
function appears in the non-local slot, which is unavoidable when ν is singular.
Some growth assumptions on the sub- and supersolutions are needed for the integral
term to be finite; our polynomial growth assumption is not optimal but sufficient
for our needs.

As usual, any classical solution is also a viscosity solution and any smooth vis-
cosity solution is a classical solution. Moreover, an equivalent definition is obtained
by replacing “global maxima/minima” with “strict global maxima/minima” in the
above definition. We may also assume that φ = ui at the maximum/minimum
point.

Next, we give an alternative definition which will be used when proving existence
of solutions via Perron’s method.

Lemma 2.1 (Alternative definition). A function v ∈ USCp([0, T ] × Rn)(or v ∈
LSCp([0, T ] × Rn : RM )) is a subsolution (supersolution) to (1.1) iff
vi(0, x) ≤ g(x)(vi(0, x) ≥ g(x)) for all i ∈ I and for every (t, x) ∈ QT and
φ ∈ C1,2

p (QT ) such that (t, x) is a global maxima (global minima) of vi − φ then

Fi(t, x, u, ∂t(t, x), φ(t, x), Dφ(t, x), D2φ(t, x), φ(t, ·)) ≤ 0(≥ 0)

The proof of the lemma is similar to the scalar case, see [33] or [42].

Remark. The choice of (0, 1) as the domain of κ does not influence the Definition
2.1. One can equivalently replace (0, 1) by an interval of type (0, δ) for δ > 0. All
such choices for domain of κ could be proven to be equivalent to the alternative
definition in Lemma 2.1. However, in order for our methodology to work, we need
to be able to pass to the limit κ→ 0 and the Definition 2.1 is formulated with that
in mind.

Remark. Traditionally [23], to prove uniqueness of solutions we need to work with
the sub- and superjets of a solution u. However, due to the singular non-local part
of these equations, it is not straightforward to give, as in the local case, a definition
in terms of sub- or superjets. In this paper these jets are introduced via a “non-
local” maximum principle of semi-continuous functions [33], see Lemma 4.1. We
also refer to [7] for slightly different but (in this setting) equivalent way of doing
this.

Next, we state the comparison, existence, uniqueness, and regularity results for
bounded viscosity solutions of (1.1). The proofs will be given in Sections 4 and 5.

Theorem 2.2 (Comparison). Assume (A.1) – (A.4). Let u,−v ∈ USC(Q̄T ; RM )
be respectively sub- and supersolutions of (1.1) such that ui(x),−vi(x) ≤ C(1+|x|2)
for i = 1, . . . ,M , then

ui ≤ vi for i = 1, . . . ,M.
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Theorem 2.3 (Existence). Assume (A.1) – (A.4), and the existence of two func-
tions ū ∈ USCb([0, T ) × Rn : RM ) and v̄ ∈ LSCb([0, T ) × Rn : RM ) which are
respectively sub- and supersolutions of (1.1). Then there exists a unique viscosity
solution u ∈ Cb([0, T )× Rn : RM ) to the system (1.1) satisfying ū ≤ u ≤ v̄.

Since±(Kt+|g|0) are sub- and supersolutions of (1.1), the two previous theorems
immediately give existence and uniqueness of a bounded viscosity solution of (1.1):

Corollary 2.4. Assume (A.1) – (A.4). There exists a unique viscosity solution
u ∈ Cb(Q̄T ) of the system (1.1) satisfying

|ui(t, x)| ≤ Kt+ |g|0

for all (t, x) ∈ Q̄T , where K comes from (A.2).

The comparison principle is stated for sub- and supersolutions of quadratic
growth. This is more than what is needed for uniqueness and existence of bounded
solutions, but we will need it later when we prove time regularity of the solution.

The unique viscosity solution of (1.1) enjoys the following regularity:

Theorem 2.5 (Regularity). Assume (A.1) – (A.4), and let u be the viscosity
solution of (1.1). Then there is a constant C, depending on the data, such that

|ui(t, x)− ui(s, y)| ≤ C
[
|x− y|+ (1 + |x|+ |y|)|t− s| 12

]
,

for all (t, x), (s, y) ∈ Q̄T and i ∈ I.

3. Optimal switching of stochastic controls

We want to prove a connection between optimal switching problems for Lévy
processes and systems of nonlocal equations of the form (1.1). If Ai = U for all i
and the sets Bi are singletons (no β dependence), we prove that the value function
of the switching control problem is a viscosity solution of a system like (1.1).

For (t, x) ∈ [0, T )×Rn, consider the following stochastic differential equation on
a filtered probability space

(
Ω,Ft, P,Ft,·

)
[ where Ft is a σ algebra and Ft,· is the

shorthand for a filtration (Ft,s)s≥t.]:

dY (s) = b(s, Y (s); a(s), ζ(s))ds+ σ(s, Y (s); a(s), ζ(s))dW (s)(3.1)

+
∫

Rm\{0}
η(s, Y (s−), z; a(s−), ζ(s−))dÑ(ds, dz)

with

Y (t) := x ∈ Rn and s ∈ (t, T ]

for some positive constant T > 0. In the above SDE, the b, η’s are Rn valued
functions, N is Poisson random measure on Rm × (Ω,F , P ) and W (s) is a k-
dimensional Brownian motion defined on (Ω,F , P ). The diffusion coefficients σ are
n × k matrices. The control processes ζ(s) and a(s) take values respectively in a
metric space U and in a finite set A = {1, 2, . . . ,M}.

Definition 3.1. (Admissible Control)
i) An admissible (continuous) control ζ(s), for s ∈ [t, T ], is a U-valued càdlàg

process adapted to the filtration Ft,·.
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ii) An admissible (switching) control a is a sequence of switching times τi and
switching decisions di, i.e.,

a := {τi, di}i≥0

such that each τi is a Ft,· stopping time with

t = τ0 ≤ τ1 ≤ τ2 ≤ .... ≤ τi ≤ τi+1 ≤ .... ≤ T
and di is Ft,τi measurable with values in A.

For each d = 1, 2, . . . ,M we denote the set of all admissible (switching) controls
starting with d as Ad(t) and set of all (continuous) admissible controls by U(t), i.e.,

Ad(t) =
{
a = {τi, di}i≥0 : a is an admissible (switching) control and d0 = d

}
,

U(t) =
{
ζ(·) : ζ(s) is an admissible (continuous) control on [t, T ]

}
.

Any admissible switching control a = {di, τi}i≥0 could be thought of as a control
process a(s) as follows:

a(s) =
∑
i≥1

di−1χ[τi−1,τi)(s),

which is obviously cádlág .
For given control processes a(·) ∈ Ad(t) and ζ(·) ∈ U(t), the cost functional

associated with the control problem is given by the expectation value

Jdt,x(a(·), ζ(·)) := Et,x
[ ∫ T

t

f(s, Y (s), a(s), ζ(s))ds+ g(Y (T )) +
∑
j≥1

k(dj−1, dj))
]
,

where Y (·) is the solution to (3.1) with controls a(s), ζ(s) and k(i, j) is the cost of
switching from decision i to decision j for all i, j ∈ A. We also note that due to
the nontrivial switching cost (i.e., k(i, j) > 0 for i 6= j), one is likely to get different
values of the cost functional for different initial values of a. Next, we formally state
the control problem.

Optimal Switching Problem: For any (t, x, d) ∈ [0, T ) × Rd ×A, determine(
a∗(·), ζ∗(·)

)
∈ Ad(t)× U(t) such that

V d(t, x) ≡ Jdt,x(a∗(·), ζ∗(·)) = inf(
a(·),ζ(·)

)
∈Ad(t)×U(t)

Jdt,x(a(·), ζ(·)).

The vector valued function V (t, x) :=
(
V 1(t, x), V 2(t, x), . . . , VM (t, x)

)
is called the

value function of the control problem.

Remark. In our definition of admissible control we allow an infinite number of
switching times. Since such controls incur an infinite switching cost, they will never
be minimizing costs for the control problem, and hence we could restrict Ad(t) to
controls having a finite number of switchings. We also add that σ, b, f, η, k(·, ·), ν
satisfy assumptions (A.1), (A.2), (A.3), and (A.4) with the convention that gi(x) =
g(x) for all i (g is scalar now).

Optimal switching control problems have been studied by many authors over
the last few decades, we refer to [21, 38, 48, 47, 46] and references therein. These
references mainly consider processes without jumps (continuous sample paths) and
the corresponding Bellman-Isaacs equations are pure PDEs. An exception is a series
of papers by Lenhart and co-workers on piece-wise deterministic processes (with
finite Lévy measures), see, e.g., [38]. To the best of our knowledge the optimal
switching problem has not been studied before in a general Lévy setting. In this



SWITCHING SYSTEMS 9

section we provide results for the general Lévy case. The analysis mainly follow [47]
but we have to overcome additional non-trivial technical difficulties due to the fact
that the state evolution has discontinuous sample paths. The classical approach is
to prove that the value function is the unique viscosity solution of the underlying
Bellman equation is via dynamic programming principle. In [47] the authors use
this approach but with a canonical choice of the underlying probability space, the
Wiener space C0

(
[t, T ] : Rn

)
.

In the case of stochastic evolutions driven by Lévy processes, the canonical sam-
ple space consists of all Rk+m-valued cádlág functions on [t, T ] starting at 0. This
space equipped with a complete separable metric, the so called Skorohod metric,
is called the Skorohod space and is denoted by D[t, T ]. The Skorohod space, its
defining topology and analysis of probability measures on this space is way more
complicated than the Wiener space and one is required to be careful while drawing
conclusions on technical grounds. For more information about the Skorohod space
we refer to [16].

3.1. The Canonical Sample Space. For the problem (3.1), the canonical sample
space Ωt,s, 0 ≤ t < s ≤ T , is defined as

Ωt,s = D[t, s] =
{
w ∈ cadlag

(
[t, s]; Rk+m

)}
.

Let Ft,s denote the Borel σ-algebra on Ωt,s (with the Skorohod topology). We will
use the convention that Ωt,T = Ωt and Ft,T ≡ Ft.

The next issue is to ensure the existence of a probability measure and a com-
patible Lévy process which will be our candidate for driving the dynamics. We
would like to recall that a Lévy process is characterized by its distribution, which
is infinitely divisible in nature and equivalently characterized by its characteristic
triplet

(
γ,A, ν

)
, where γ is the drift of the process, A being the co-variance matrix,

and ν is the so-called Lévy measure. To this end, we define a positive Lévy measure
ν′ on Rk+m and a (k +m)× (k +m) covariance matrix I ′ as follows

ν′(G) = ν(Pm(G)); I ′ =
(
Ik×k 0

0 0

)
where G ⊂ Rk+m is a Borel set and Pm : Rk × Rm → Rm is the usual projection.
For the characteristic triplet (0, I ′, ν′), there exists a probability measure Pt and a
compatible Lévy process Xt(s) taking values in Rk+m with the same characteristic
triplet. In view of the Lévy-Ito decomposition, Xt = (Wt(·), N(dw, ds)) where
Wt(·) is a k-dimensional Brownian motion and N(dw, ds) could be considered as
a Poisson random measure on Rm\{0}. The probability measure Pt is the one
induced by the random variable Xt(T ). For more on existence and related topics
on Lévy processes we refer to [16, 41].

Once we have made the choice for (Pt, Xt(·)), we choose the driving Lévy process
Xs(·), for s > t, in the following manner:

Xs(r) := Xt(s)−Xt(r)

which is also a Lévy process starting at s, thanks to the generic properties of
Lévy processes and that the probability measure on Ωs has been chosen as the one
induced by Xs(T ).
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Next, we address some technical issues and verify some assertions so that we can
argue along the lines of [47]. For any τ ∈ (t, T ) (deterministic) and ω ∈ Ωt define

ω1 := ω |[t,τ−] (τ−signifies the left limits),

ω2 := (ω − ωτ ) |[τ,T ],

π(ω) := (ω1, ω2).

The map π : Ωt → Ωt,τ ×Ωτ,T is well defined. Next, we prove the following lemma:

Lemma 3.1. For any τ ∈ (t, T ) (deterministic),

Pt ({ω ∈ Ωt : ω is discontinuous at τ}) = 0.

Proof. Let Ω1 be the sample paths of the Lévy process Xt(·), i.e.,

Ω1 =
{
Xt(·, ω) : ω ∈ Ωt

}
.

Then Pt(Ω1) = Pt(Xt(T )(Ωt)) = 1, and therefore

Pt({ω ∈ Ωt : ω is discontinuous at τ}) = Pt({ω is discontinuous at τ}
⋂

Ω1) = 0,

where the last equality follows by stochastic continuity of the Lévy process Xt. �

Now, π−1 : Ωt,τ × Ωτ,T → Ωt is the following map

π−1(ω1, ω2) =

{
ω1(s) if s ∈ [t, τ),
ω2(s) + ω1(τ) if s ∈ [τ, T ].

The map π−1 generates the paths in Ωt which are continuous at τ . This fact, along
with the independence of increments of Lévy processes, implies that

Pt = Pt,τ ⊗ Pτ .

With all the technical preparations being completed, we can now finally claim
that there exists a unique solution Yt,x(·) to the SDE (3.1) for any 4-tuple (t, x, a(·), ζ(·)) ∈
[0, T )× Rn ×Ad(t)× U(t), i.e.,

Yt,x(s) = x+
∫ s

t

b(r, Yt,x(r), a(r), ζ(r))dr +
∫ s

t

σ(r, Yt,x(r), a(r), ζ(r))dWr

+
∫ s

t

∫
Rm\{0}

η(r, Yt,x(r−), a(r−), ζ(r−); z)dÑ(dr, dz)

which also mean that, by the canonical choice of the driving process on Ωτ for any
τ ∈ (t, s], we have

Yt,x(s) = Yt,x(τ) +
∫ s

τ

b(r, Yt,x(r), a(r), ζ(r))dr +
∫ s

τ

σ(r, Yt,x(r), a(r), ζ(r))dW ′r

+
∫ s

τ

∫
Rm\{0}

η(r, Yt,x(r−), a(r−), ζ(r−); z)dÑ ′(dr, dz),

where (W ′, Ñ ′) is the canonical driving process on Ωτ . Thereby arguing along the
lines as in [27], we have the following Markov property:

Lemma 3.2. For any bounded continuous function ϕ, any ξ(·) =
(
a(·), ζ(·)

)
∈

Ad(t)× U(t), and any τ ∈ [s, T ] (deterministic),

Et,x[ϕ(Yt,x(τ), ξ(τ))|Ft,s] = Es,Yt,x(s)[ϕ(Yt,x(τ), ξ ◦ π−1(τ))], Pt,s a.s.(3.2)



SWITCHING SYSTEMS 11

3.2. The dynamic programming principle. To derive the dynamic program-
ming principle we need the following continuity properties of the value functions:

Lemma 3.3. Assumption (A.1) – (A.4) hold. Then there exists a constant C > 0,
such that for all t ∈ [0, T ], x1, x2 ∈ Rn and d ∈ A,

|V d(x1)| ≤ C and |V d(t, x1)− V d(t, x2)| ≤ C|x1 − x2|.

The proof uses Lipschitz continuity and boundedness of the data, moment es-
timates for the stochastic processes, and Gronwall’s inequality. We do not give
the proof here; the proof can be pieced together combining arguments from [40]
(controlled jump-diffusions) and [47] (optimal switching for pure diffusions).

Next, we prove the dynamic programming principle. The proof is similar to the
one in [47] except that we are working in the Skorohod space (not in C0).

Theorem 3.4 (Dynamic Programming Principle). Suppose that assumptions (A.1)
– (A.4) hold. Let V (t, x) = (V d(t, x))d∈A be the value function of the optimal
switching problem. Then for (t, x, d) ∈ [0, T )× Rn ×A and s ∈ (t, T ],

V d(t, x) = inf
ξ(·)=(a(·),ζ(·))∈Ad(t)×U(t)

E
[ ∫ s

t

f(r, Y ξ(·)t,x (r), a(r), ζ(r))dr

(3.3)

+ V a(s)(s, Y ξ(·)t,x (s)) +
∑
τi<s

k(di, di−1)
]
,

where
{
τi, di

}
is the elaborated form of a(·).

Proof. Let the right hand side of (3.3) be W (t, x). Then for every ε > 0, there
exists ξ̂(·) = (â(·), ζ̂(·)) ∈ Ad(t)× U(t) such that

W (t, x) + ε ≥ E
[
V â(s)(s, Y ξ̂(·)t,x (s)) +

∫ s

t

f(r, Y ξ̂(·)t,x (r), â(r))dr(3.4)

+
∑
τ̂i<s

k(d̂i, d̂i−1)
]

where â(·) =
{
τ̂i, d̂i

}
. Moreover, from the definition V (t, x) we have for every

(s, z, b) ∈ [0, T ]× Rn ×A that there exists ξs,z,b(·) ∈ Ab[s, T ]× U [s, T ] such that

V b(s, z) ≥ Jbs,z
(
ξs,z,b(·)

)
− ε.

Next, by uniform continuity in x of V b uniformly in b (Lemma 3.3) we can choose
a partition

{
Bi, i ≥ 1

}
of Rn such that each of Bi is a Borel set satisfying

|V b(s, x1)− V b(s, x2)| ≤ ε, for all b ∈ A, x1, x2 ∈ Bi.

Furthermore, by x-uniform continuity of Jdt,x(ξ(·)) uniformly in ξ(·) ∈ A(t) × U(t)
(essentially Lemma 3.3), we may also assume that

|Jdt,x1
(ξ(·))− Jdt,x2

(ξ(·))| ≤ ε for all d ∈ A, ξ(·) ∈ Ad × U(t), x1, x2 ∈ Bi.
(3.5)

Now we fix an βi ∈ Bi for each i ≥ 1 and define a control ξ̃(r) ∈ Ad × U(t) as
follows:

ξ̃(r) =

{
ξ̂(r), r ∈ [t, s),∑
i≥1

∑m
j ξs,βi,j(r)χBi(Y

ξ̂(·)
t,x (s))χ{ã(s)=j}(s), r ∈ [s, T ].
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From the definition we immediately conclude that ξ̃(·) ∈ Ad×U(t), and from (3.4)
– (3.5) we get

Jdt,x(ξ̃(·)) = E
[ ∫ s

t

f(r, Y ξ̂(·)t,x (r), â(r))dr +
∑
τ̂j<s

k(d̂j , d̂j−1)

+
∫ T

s

f(r, Y ξ̃(·)t,x (r), ξ̃(r))dr +
∑

T≥τ̃j≥s

k(d̃j , d̃j−1) + g(Y ξ̃(r)t,x (T ))
]

︸ ︷︷ ︸P
i

P
j J

j

s,Y
ξ̂(·)
t,x (s)

(ξs,βi,j)χBi (Y
ξ̂(·)
t,x (s))χâ(s)=j(s)

≤ E
[ ∫ s

t

f(r, Y ξ̂(·)t,x , ξ̂(r))dr +
∑
τ̂j<s

k(d̂j , d̂j−1) + V
â(s)
t,x (Y ξ̂(·)t,x (s)) + 2ε

]
≤W (t, x) + 3ε.

This implies

V d(t, x) ≤W (t, x).

To get the opposite inequality we argue using the Markov property (3.2). From the
definition of V d(t, x) there exists ξ̄(·) ∈ Ad(t)× U(t) such that

V d(t, x) + ε ≥ Jdt,x(ξ̄(·)).(3.6)

We split Jdt,x(ξ̄(·)) into two parts, one on [t, s] and one on (s, T ]. By Lemma 3.2
the second part can be estimated as follows:

E
{∫ T

s

f(r, Y ξ̄(·)t,x (r), ξ̄(r))dr +
∑

T≥τ̄j≥s

k(d̄j , d̄j−1) + g(Y ξ̄(·)t,x (T ))
}

= E
{
E
[ ∫ T

s

f(r, Y ξ̄(·)t,x (r), ξ̄(r))dr +
∑

T≥τ̄j≥s

k(d̄j , d̄j−1) + g(Y ξ̄(·)t,x (T ))
∣∣∣Ft,s]}

= E
(
J
ξ̄(s)

s,Y
ξ̄(·)
t,x (s)

(
ξ̄(·;π−1

(
ω1, ω2)

)))
≥ EV ā(s)(s, Y ξ̄(·)t,x (s)).

By this inequality, the definition of W , and (3.6) we get

V d(t, x) + ε ≥W (t, x),

and this completes the proof of the Theorem. �

Recall that, for W : [0, T ] × Rn 7→ RM and (t, x) ∈ [0, T ] × Rn, the switching
operators Md are defined as follows

MdW (t, x) = min
d6=d̃

{
W d(t, x) + k(d, d̃)

}
.

As a consequence of the dynamic programming principle we have

Theorem 3.5. Suppose that assumptions (A.1) – (A.4) hold. Then the value
function V (t, x) satisfies the following properties,

i) For any (t, x, d) ∈ [0, T ]× Rn ×A

V d(t, x) ≤MdV (t, x),(3.7)
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ii) If for some (t, x, d) ∈ [0, T ] × Rn × A, (3.7) fails to hold with an equality,
then there exists s0 ∈ (t, T ], such that

V d(t, x) = inf
ζ(·)∈U(t)

E
[ ∫ s

t

f(r, Yt,x(r), d, ζ(r))dr + V d(s, Yt,x(s))
]
,(3.8)

for all s ∈ [t, s0] where Yt,x(·) is the solution of (3.1) with the control
pair (d, ζ(·)).

The proof of this theorem is very similar to the ones in [21] and [47]. We choose
to outline the proof here mainly because of its importance to derive the underlying
system of IPDEs.

Proof. We prove i). For every d, d̃ ∈ A, d 6= d̃ and ã ∈ Ad̃ we define a(·) ∈ Ad by

d̃i−1 = di, d0 = d, τ̃i−1 = τi, τ0 = t.

Note that τ0 = τ1 = t. Let ã(·) =
{
d̃i, τ̃i

}
and a(·) =

{
di, τi

}
, then

V d(t, x) ≤ Jdt,x(a(·), ζ(·)) = J d̃t,x(ã(·), ζ(·)) + k(d, d̃)

for all ã(·) ∈ Ad̃ and ζ(·) ∈ U(t). Hence V d(t, x) ≤ V d̃(t, x) + k(d, d̃) and i) follows.
To prove ii) we first observe that if {di; 1 ≤ i ≤ i0} ⊂ A with i0 ≥ 2 and

di 6= di+1 for some 1 ≤ i ≤ i0 then by (3.7) and the definition of M,

V di0 (t, x) +
i0−1∑
i=1

k(di, di−1) ≥Mdi0−1V (t, x) +
i0−2∑
i=1

k(di, di−1)(3.9)

≥ V di0−1(t, x) +
i0−2∑
i=1

k(di, di−1) ≥ · · · ≥ Md1V (t, x).

Next we observe that the inequality “≤” follows from Theorem 3.4 if the controller
chooses not to switch, and therefore we only have to prove the “≥” inequality.
We use contrapositive argument starting by assuming the contrary: There exists a
δ > 0 and sequences sp → t, εp > 0 such that

V d(t, x) + εp < inf
ζ(·)∈U(t)

E
[ ∫ sp

t

f(r, Yt,x(r), d, ζ(·))dr + V d(sp, Yt,x(sp))
]
,(3.10)

MdV (t, x)− V d(t, x) = δ.(3.11)

On the other hand, by definition there exists ξp(·) = (ap(·), ζp(·)) ∈ Ad(t) × U(t)
such that,

V d(t, x) + εp ≥ E
[ ∫ sp

t

f(r, Y ξp(·)
t,x (r), ξp(r))dr + V ap(sp)(sp, Y

ξp(·)
t,x (sp))(3.12)

+
∑

t≤τp,j<sp

k(dp,j , dp,j−1)
]
.

Define B =
{
t ≤ τp,1 < sp

}
, and note that by (3.10) and (3.12) we must have

E
[
χB
]
> 0, and 0 > I1 + I2 + I3,(3.13)

where

I1 := E
[ ∫ sp

t

[
f(r, Y ap(·),ζp(·)

t,x (r), ap(·), ζp(·))− f(r, Y d,ζp(·)
t,x (r), d, ζp(·))

]
dr
]

(3.14)
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= o(1)E[χB ],

I2 := E
[
V ap(sp)(sp, Y

ap(·),ζp(·)
t,x (sp))− V d(sp, Y

d,ζp(·)
t,x (sp))

]
(3.15)

= E
(
V ap(s)(sp, x)χB

)
− V d(sp, x)E

(
χB
)

+ o(1)E
(
χB
)
,

I3 := E
( ∑
t≤τp,j<sp

k(dp,j , dp,j−1)
)
.(3.16)

The derivation of (3.14) and (3.15) can be made rigorous using the regularity of
V and f , moment estimates on Y and Gronwall’s inequality. Now we use (3.13) –
(3.16), (3.9), and (3.11) to conclude that as sp → t,

0 > I1 + I2 + I3 ≥
[
o(1) +MdV (sp, x)− V d(sp, x)

]
E
(
χB
)
≥ [δ + o(1)]E

(
χB
)
,

which is a contradiction. �

In view of Theorem 3.5, it is now quite easy to prove that the value function
V of the optimal switching problem solves a system of nonlocal quasi-variational
inequalities. For every d ∈ A, (t, x, r, px, X, z) ∈ [0, T ]×Rn ×RM ×Rn × Sn ×Rm
and smooth function ϕ we define

F d(t, x, r, p,X, ϕ(t, ·))

:= inf
α∈U

{1
2

Tr
[
σ(t, x; d, α)TXσ(t, x; d, α)

]
+ b(t, x; d, α).p+ f(t, x; d, α)

+
∫

Rm\{0}

{
ϕ(t, x+ η(t, x, z; d, α))− ϕ(t, x)− η(t, x, z; d, α).Dxϕ(t, x)

}
ν(dz)

}
.

We have the following result.

Theorem 3.6. Suppose that assumptions (A.1) – (A.4) hold. Then the value
function V (t, x) of the optimal switching problem is the unique viscosity solution of
the following system of non-local variational inequalities:

max
{
− ∂tV d(t, x)− F d

(
t, x, V d(t, x), DV d(t, x), D2V d(t, x), V d(t, ·)(3.17)

;V d(t, x)−MdV (t, x)
}

= 0 in [0, T )× Rn

with

V d(T, x) := g(x).(3.18)

Proof. The proof is an immediate consequence of Theorem 3.5 and Dynkin’s lemma
for Jump-Diffusion processes (see, e.g., [39]). We only prove that V (t, x) is a super-
solution, the proof for V being a subsolution is similar. Let (t, x, d) ∈ (0, T )×Rn×A
and note that if

V d(t, x) =MdV (t, x),

then (3.17) holds. Otherwise, there exists s0 > t such that (3.8) holds for all
s ∈ (t, s0]. Let us introduce the following notation:

F d(α; t, x, r, p,X, ϕ(t, ·))

:=
1
2

Tr
[
σ(t, x; d, α)TXσ(t, x; d, α)

]
+ b(t, x; d, α).p+ f(t, x; d, α)

+
∫

Rm\{0}

{
ϕ(t, x+ η(t, x, z; d, α))− ϕ(t, x)− η(t, x, z; d, α).Dxϕ(t, x)

}
ν(dz).
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If ϕ ∈ C1,2[(0, T ) × Rn], V d − φ has a global minima at (t, x), and V d(t, x) =
ϕ(t, x), then by (3.8) and Dynkin’s lemma we have

V d(t, x) = inf
ζ(·)∈U(t)

E
[ ∫ s

t

f(r, Yt,x(r), d, ζ(r))dr + V d(s, Yt,x(s))
]
,

≥ inf
ζ(·)∈U(t)

E
[ ∫ s

t

f(r, Yt,x(r), d, ζ(r))dr + ϕ(s, Yt,x(s))
]

= φ(t, x) + inf
ζ(·)∈U(t)

E
[ ∫ s

t

ϕr(r, Yt,x(r))

+ F d
(
ζ(r); r, Yt,x(r), ϕ(r, Yt,x(r)), Dϕ(r, Yt,x(r), D2ϕ(r, Yt,x(r)), ϕ(r, ·))

)
dr
]
.

We may rewrite this inequality as

inf
ζ(·)∈U(t)

E
[ 1
s− t

∫ s

t

ϕr(r, Yt,x(r))

+ F d
(
ζ(r); r, Yt,x(r), ϕ(r, Yt,x(r)), Dϕ(r, Yt,x(r), D2ϕ(r, Yt,x(r)), ϕ(r, ·))

)
dr
]
≤ 0,

so by letting s ↓ t and using the moment estimates for solutions of the SDE (3.1),
we get

∂tϕ(t, x) + inf
ζ(·)∈U(t)

F d(ζ(t+); t, x, ϕ,Dϕ,D2ϕ,ϕ(t, ·)) ≤ 0,

which is equivalent to

−∂tϕ(t, x)− F d(t, x, ϕ(t, x), Dϕ(t, x), D2ϕ(t, x), ϕ(t, ·)) ≥ 0.

Hence V is a supersolution of (3.17). �

Remark. The system of variational inequalities (3.17)-(3.18) is a terminal value
problem, which easily can be converted to an initial value problem. Once we do
that, any result derived for (1.1) applies to the above system as well. Therefore,
the system (3.17)-(3.18) has a unique solution which is the value function V (t, x)
and satisfies the regularity estimate in Theorem 2.5.

4. Comparison principle, Perron’s method, and existence of solutions

We start this section with the proof of the comparison principle, cf. Theorem
2.2. This result is the backbone of any viscosity solution theory. The basic idea
of the proof is same as the pure PDE case, i.e., to reduce the problem to the
scalar case using a no-loop argument and then follow the usual approach to get
the final result. In the proof we will need the so-called maximum principle for
semicontinuous functions, suitably adapted to the nonlocal system. This result
along with the no-loop argument is summarized in the following lemma:

Lemma 4.1. Let u ∈ USC([0, T ] × Rn; RM ) be a subsolution of (1.1) and û ∈
LSC([0, T ] × Rn; RM ) be a supersolution of another variant of (1.1) (for exam-
ple, the system (5.1)) where the operators Lα,βi , J α,βi are respectively replaced by
L̂α,βi , Ĵ α,βi satisfying the same assumptions. Let φ(t, x, y) ∈ C1,2

p [0, T ] × R2n be
bounded from below and denote

Ψi(t, x, y) := ui(t, x)− ûi(t, y)− φ(t, x, y).
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If D := supi,t,x,y Ψi(t, x, y) exists finitely and there is a (maximum) point (i′, t0, x0, y0)
∈ I × (0, T )× R2n such that ψi′(t0, x0, y0) = D, then there exists i0 ∈ I such that
D := Ψi0(t0, x0, y0) and ûi0(t0, x0) <Mi0 û(t0, x0).

Furthermore, if in neighborhood of (t0, x0, y0), there are continuous functions
h0 : [0, T ]× R2n → R, h, ĥ : Q̄T → Sn such that h0(t0, x0, y0) > 0 and

D2φ ≤ h0(t, x, y)
(

I −I
−I I

)
+
(
h(t, x) 0

0 ĥ(t, y)

)
,

then for each κ ∈ (0, 1) there are a, b ∈ R and X,Y ∈ Sn satisfying

a− b = φt(t0, x0, y0)

and (
X 0
0 −Y

)
≤ 2h0(t0, x0, y0)

(
I −I
−I I

)
+
(
h(t0, x0) 0

0 ĥ(t0, y0)

)
such that

a+ sup
α∈Ai0

inf
β∈Bi0

[
Lα,βi0 (t0, x0, u

i0 , Dxφ(t0, x0, y0), X)

− J α,βi0,κ
(t0, x0, Dxφ(t0, x0, y0), φ(t0, ·, y0))

− J α,β,κi0
(t0, x0, Dxφ(t0, x0, y0), ui0(t0, ·))

]
≤ 0,

b+ sup
α∈Ai0

inf
β∈Bi0

[
L̂α,βi0 (t0, y0, û

i0 ,−Dyφ(t0, x0, y0), Y )−

Ĵ α,βi0,κ
(t0, y0,−Dyφ(t0, x0, y0),−φ(t0, x0, ·))

− Ĵ α,β,κi0
(t0, y0,−Dyφ(t0, x0, y0), ûi0(t0, ·))

]
≥ 0.

The first part of the above Lemma follows exactly in the same way as Lemma
A.2 in [9]. Once we have the first part, then for the supersolution it says that at
the point (t0, x0, y0) we can ignore the term ûi0 −Mi0 û, and then the second part
follows as a consequence of Theorem 2.2 of [33].

Proof of Theorem 2.2. For constants λ, θ, γ, ε > 0 we define the following (test)
function:

φ(t, x, y) = eλt
θ

2
|x− y|2 + eλt

ε

2 + γ

(
|x|2+γ + |y|2+γ

)
(4.1)

on [0, T ]× Rn × Rn. We double the variables defining for i ∈ I,

Ψi(t, x, y) = ui(t, x)− vi(t, y)− φ(t, x, y)− δσt

T
− ε̄

T − t
,

where 0 < δ < 1, ε̄ > 0, and

σ0 = sup
i,x,y

{
ui(0, x)− vi(0, y)− φ(0, x, y)− ε̄

T

}+

σ = sup
i,t,x,y

{
ui(t, x)− vi(t, y)− φ(t, x, y)− ε̄

T − t
}
− σ0.

The main step of this proof is to derive an upper bound on σ + σ0 by deriving a
positive upper bound on σ. Note that if σ ≤ 0 then we can take 0 as the upper
bound and we are done; therefore we will assume in the following that σ > 0. By
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the upper semicontinuity of ui − vi, the growth assumptions, and the penalization
term, there exists (i0, t0, x0, y0) ∈ I × [0, T )× Rn × Rn such that

Ψi0(t0, x0, y0) = sup
i,t,x,y

Ψi(t, x, y).

The assumption that σ > 0 forces t0 6= 0, so that 0 < t0 < T . Since,

Ψi0(t0, x0, y0) ≥ sup
i,t,x,y

{
ui(t, x)− vi(t, y)− φ(t, x, y)− ε̄

T − t
}
− δσ

=σ0 + (1− δ)σ > σ0,

while on the other hand t0 = 0 would imply Ψi0(t0, x0, y0) ≤ σ0.
Now we are in a position apply the maximum principle for semicontinuous func-

tions adapted to the present non-local system, i.e Lemma 4.1. By this lemma, for
each 0 < κ ≤ 1 there are numbers pt and qt, symmetric matrices X and Y , and an
index i0 such that

pt − qt =
δσ

T
+

ε̄

(T − t0)2
+ φt(t0, x0, y0)

and

pt − qt ≤ sup
α∈Ai0

inf
β∈Bi0

[
Lα,βi0 (t0, y0, v

i0 ,−Dyφ(t0, x0, y0), Y )(4.2)

− J α,βi0,κ
(t0, y0,−Dyφ(t0, x0, y0),−φ(t0, x0, ·))

− J α,β,κi0
(t0, y0,−Dyφ(t0, x0, y0), vi0(t0, ·))

]
− sup
α∈Ai0

inf
β∈Bi0

[
Lα,βi0 (t0, x0, u

i0 , Dxφ(t0, x0, y0), X)

− J α,βi0,κ
(t0, x0, Dxφ(t0, x0, y0), φ(t0, x0, ·))

− J α,β,κi0
(t0, x0,−Dxφ(t0, x0, y0), vi0(t0, ·))

]
with (

X 0
0 −Y

)
≤ 2eλt0θ

(
I −I
−I I

)
+ εeλt0(1 + γ)

(
|x0|γI 0

0 |y0|γI

)
.(4.3)

The upper bound on σ will be obtained from (4.2). We start by estimating the
right hand side of (4.2). First note that

Li0(t0, x0, u
i0 , Dxφ(t0, x0, y0), X)− Li0(t0, y0, v

i0 ,−Dyφ(t0, x0, y0), Y )

=
[
Tr(ai0(x0, t0)X − ai0(x0, t0)Y )

]
+
[
bi0Dxφ(t0, x0, y0) + bi0(t0, y0)Dyφ(t0, x0, y0)

]
+
[
ci0(t0, y0)vi0(t0, y0)− ci0(t0, x0)ui0(t0, x0)

]
+
[
fi0(t0, y0)− fi0(t0, x0)

]
,

and

Dyφ(t0, x0, y0) = −θeλt0(x0 − y0) + εeλt0y0|y0|γ ,

Dyφ(t0, x0, y0) = θeλt0(x0 − y0) + εeλt0x0|x0|γ .

By the definition of φ, inequality (4.3), assumptions (A.1), (A.3), and standard
computations,

Tr[ai0(x0, t0)X − ai0(x0, t0)Y ] ≤ K1e
λt0
{
θ|x0 − y0|2 + ε(1 + |x0|2+γ + |y0|2+γ)

}
.

(4.4)
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Note that σ > 0 implies that ui0(t0, x0) − vi0(t0, y0) > 0, so by (A.2), (A.3), and
the growth assumptions on u, v we easily see that

bi0(t0, x0)Dxφ(t0, x0, y0) + bi0(t0, y0)Dyφ(t0, x0, y0)(4.5)

≤ K2e
λt0(θ|x0 − y0|2 + ε(1 + |x0|2+γ + |y0|2+γ)),

ci0(t0, y0)vi0(t0, y0)− ci0(t0, x0)ui0(t0, x0) ≤ K3(1 + |x0|2 + |y0|2)|x0 − y0|,(4.6)

fi0(t0, y0)− fi0(t0, x0) ≤ K4|x0 − y0|.(4.7)

By (A.1) and (A.4) it follows that

Ji0,k(t0, x0, Dxφ(t0, x0, y0);φ(t0, ·, y0))(4.8)

− Ji0,k(t0, y0,−Dyφ(t0, x0, y0);−φ(t0, x0, ·)) = O(κ).

Using the fact that (t0, x0, y0) is a maximum point of Ψi0 we have,∫
κ≤|z|≤1

[
ui0(t0, x0 + η(t0, x0, z))− ui0(t0, x0)− η(t0, x0, z)Dxφ(t0, x0, y0)

− vi0(t0, y0 + η(t0, y0, z)) + vi0(t0, y0)− η(t0, y0, z)Dyφ(t0, x0, y0)
]
ν(dz)

≤
∫
κ≤|z|≤1

[
φ(t0, x0 + η(t0, x0, z), y0 + η(t0, y0, z))− φ(t0, x0, y0)

− (x0 + η(t0, x0, z), y0 + η(t0, y0, z))Dx,yφ(t0, x0, y0)
]
ν(dz)

≤ K6e
λt0
{
ε(1 + |x0|2+γ + |y0|2+γ) + θ|x0 − y0|2

}
.

(4.9)

In a similar manner we also have∫
1≤|z|

[
ui0(t0, x0 + η(t0, x0, z))− ui0(t0, x0)

− vi0(t0, y0 + η(t0, y0, z)) + vi0(t0, y0)
]
ν(dz)

≤ K7e
λt0
[
θ|x0 − y0|2 + ε(1 + |x0|2+γ + |y0|2+γ)

]
.(4.10)

Combining the different above estimates (4.4)-(4.10) and using (4.2) we have,
δσ

T
+ λeλt0

(
θ|x0 − y0|2 +

ε

2 + γ
(|x0|2+γ + |y0|2+γ)

)
≤ C1e

λt0
(
θ|x0 − y0|2 + ε(1 + |x0|2+γ + |y0|2+γ)

)
+ C2(1 + |x0|2 + |y0|2)|x0 − y0|+O(κ).

Notice that the point (t0, x0, y0) does not depend on κ, so after letting κ→ 0 and
rearranging the terms with the choice λ = max

{
(2 + γ)C1, 2C2

}
+ 2 we get

δσ

T
≤ C3(1 + |x0|+ |y0|)2|x0 − y0| − eλt0θ|x0 − y0|2

− C4εe
λt0(1 + |x0|+ |y0|)2+γ +O(ε).

After a maximization on the right-hand side of the above inequality with respect
to |x0 − y0| we obtain

δσ

T
≤ C5

(1 + |x0|+ |y0|)4

eλt0θ
− C4εe

λt0(1 + |x0|+ |y0|)2+γ +O(ε).
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Now choose γ = 6 and maximize the right-hand side of the above inequality with
respect to (1 + |x0|+ |y0|) and let δ → 1; the result is

σ ≤ TC 1
θ2ε

+O(ε).

We estimate σ0 using the Lipschitz continuity of u(0, x) and v(0, x),

σ0 ≤ max
i
|(ui(0, ·)− vi(0, ·))+|0 + sup

x,y

(
K|x− y| − θ

2
|x− y|2

)
(4.11)

=
K2

2θ
.

where we have also used the fact that ui(0, ·) ≤ vi(0, ·) and maximization of with
respect to |x− y| in the first line. Therefore, for all t ∈ [0, T ), x ∈ Rn, and i ∈ I,

ui(t, x)− vi(t, x)− ε̄

T − t
− 1

4
ε|x|8 ≤ σ + σ0 ≤ TC

1
θ2ε

+O(ε) +
K2

2θ
,

and letting ε̄→ 0, θ →∞ for a fixed ε gives

ui(t, x)− vi(t, x)− 1
4
ε|x|8 ≤ O(ε).

Finally, letting ε→ 0 concludes the theorem. �

Now we turn to the existence of viscosity solutions of the system of IPDEs (1.1);
we will use Perron’s method as developed by Ishii [28] and its adaptation to the
scalar nonlocal equations by Alvarez & Tourin [1]. Different from [1], we face a
system of equations and an unbounded Lévy measure ν.

Proof of Theorem 2.3. We only prove existence since uniqueness follows from the
comparison principle. Define v(t, x) = (v1, v2, . . . , vM ) as

vi(t, x) = sup
{
ui(t, x) : u = (u1, u2, . . . , ui, ..., uM ) is a subsolution of (1.1)

}
for each i ∈ I. Next, let v∗ and v∗ denote the upper and lower semi-continuous
envelopes of v(t, x):

v∗,i(t, x) = lim
r↓0

sup{vi(s, y) : (s, y) ∈ Br(t, x) ∩ [0, T )× Rn},

and vi∗(t, x) = −(−vi(t, x))∗. From the definition it is clear that

ū ≤ v∗, v∗ ≤ v̄, and v∗ ≤ v∗.
We want to show that v∗ and v∗ are respectively sub- and supersolutions of (1.1).

Then we are done, since by the comparison principle

v∗ ≤ v∗,
and hence v∗ = v∗ = v is the sought after (continuous) viscosity solution of (1.1).

We now prove that v∗ is subsolution of (1.1). First, we check that the initial
condition is satisfied using a barrier argument. For every z ∈ Rn and ε > 0, define

Ψi
z,ε(x) = gi(z) + Li

(
|x− z|2 + ε

) 1
2 ,

where Li is the Lipschitz constant of gi(x). It follows that

Ψi
z,ε(x) ≥ gi(x) for all x, z ∈ Rn, i ∈ I, ε > 0.

A simple computation now shows that there is a constant Aε ≥ 0 such that

U iz,ε(t, x) := Aεt+ Ψi
z,ε(x)
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is a continuous supersolution to (1.1). Therefore, by the comparison principle,

vi(t, x) ≤ U iz,ε(t, x) for all x, z ∈ Rn, i ∈ I, ε > 0,

and hence v∗,i(t, x) ≤
(
U iz,ε

)∗(t, x) = U iz,ε(t, x). So the initial condition follows
after setting t = 0 and minimizing w.r.t. z, ε:

v∗,i(0, x) ≤ inf
ε,z
U iz,ε(0, x) = inf

ε,z
Ψi
z,ε(x) = gi(x).

Next, we want to show that subslolution condition for the system of equations holds.
For each i ∈ I and (t, x) ∈ (0, T ) × Rn there exists a sequence (tp, xp, up(tp, xp))
such that

lim
p→∞

(
tp, xp, u

i
p(tp, xp)

)
= (t, x, v∗,i(t, x)),

and up is a subsolution for each p ∈ N. Now if φ ∈ C1,2 and v∗,i − φ has a strict
global maximum at (t, x) ∈ [0, T ) × Rn, then there will be a sequence (sp, yp) of
global maxima of uip − φ (for p large enough) such that

lim
p→∞

(
sp, yp, u

i
p(sp, yp)

)
=
(
t, x, v∗,i(t, x)

)
.

Again if p is large enough, sp > 0 and the definition of subsolution gives

max
(
φt(sp, yp) + sup

α∈Ai
inf
β∈Bi

{
Lα,βi (sp, yp, uip(sp, yp), Dφ(sp, yp), D2φ(sp, yp))

−J α,βi φ(sp, ·)
}

;uip(sp, yp)−Miup(sp, yp)
)
≤ 0.

Passing to the limit p→∞ and using the regularity of φ, v∗ and the continuity of
the equation, we get

max
(
φt(t, x) + sup

α∈Ai
inf
β∈Bi

{
Lα,βi (t, x, v∗,i(t, x), Dφ(t, x), D2φ(t, x))

−J α,βi φ(t, ·)
}
, v∗,i(t, x)−Miv∗(t, x)

)
≤ 0.

This completes the proof that v∗ is a subsolution.
Next we prove that v∗ is a supersolution of (1.1). We start by checking the initial

condition. For z ∈ Rn and ε > 0, let

Φiz,ε(x) = gi(z)− L
(
|x− z|2 + ε

) 1
2 and V iε,z(t, x) = −Aεt+ Φiz,ε(x),

where L = maxi{Li} and Aε is a constant to be determined later. Note that

Φiz,ε(x) ≤ gi(x) for all x, z, ε,

and since gi −Mig ≤ 0 by assumption (A.2), we see that

V iε,z(t, x)−MiVε,z(t, x) ≤ 0.

Now it is straightforward to see that there is a constant Aε such that Vε,z is a
subsolution to (1.1). Therefore, by the definition of v(t, x),

V iε,z(t, x) ≤ vi(t, x) for all t, x, z, ε.

It follows that V iε,z(t, x) ≤ vi∗(t, x) and hence the initial condition holds because

vi∗(0, x) ≥ sup
ε,z

V iε,z(0, x) = sup
ε,z

Φiz,ε(x) = gi(x).

We continue with proving that the system of equations is satisfied. Assume by
contradiction that v∗ is not a supersolution. Then there are (i, t, x) ∈ I×(0, T )×Rn
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and φ ∈ C1,2
p satisfying vi∗ = φ at (t, x), vi∗−φ has a global strict minimum at (t, x),

and

max
{
φt + sup

α∈Ai
inf
β∈Bi

{
Lα,βi (t, x, vi∗(t, x), Dφ(t, x), D2φ(t, x))(4.12)

− J α,βi φ(t, ·)
}
, vi∗(t, x)−Miv∗(t, x)

}
< 0.

Let us prove that vi∗(t, x) < v̄i(t, x). By the definition of v∗, vi∗(t, x) ≤ v̄i(t, x), so
if by contradiction this equality is not strict, then φ(t, x) = vi∗(t, x) = v̄i(t, x). But
then v̄i − φ has a global minimum at (t, x), and since v̄ is a supersolution,

max
{
φt(t, x) + sup

α∈Ai
inf
β∈Bi

{
Lα,βi (t, x, v̄i(t, x), Dφ(t, x), D2φ(t, x))

−J α,βi φ(t, ·)
}
, v̄i(t, x)−Miv̄(t, x)

)}
≥ 0.

Now v̄i(t, x) = vi∗(t, x) and −Miv̄(t, x) ≤ −Miv∗(t, x), so this is a contradiction to
(4.12) and the inequality is strict. By continuity of φ, v̄ it immediately follows that
there are constants ε1, δ1 ≥ 0 such that

φ+ ε1 ≤ v̄ in Bδ1(t, x) ⊂ QT .

Therefore, by (4.12), continuity of the equation, regularity of φ and lower semi-
continuity of v∗, there exist two constants ε2, δ2 ≥ 0 such that

max
{

(φ+ ε)t + sup
α∈Ai

inf
β∈Bi

{
Lα,βi (s, y, (φ+ ε)(s, y), D(φ+ ε)(s, y), D2(φ+ ε)(s, y))

(4.13)

− J α,βi (φ+ ε)(t, ·)
}
, (φ(s, y) + ε)−Miv∗(s, y)

)}
≤ 0

for all (s, y) ∈ Bδ2(t, x) ⊂ QT and 0 ≤ ε ≤ ε2.
Since (t, x) is a strict minimum point of vi∗ − φ, there are constants ε3 ≥ 0 and

δ0 ≤ min(δ1, δ2) such that vi∗ − φ > ε3 on ∂Bδ0(t, x). Now set ε0 = min(ε1, ε2, ε3)
and define

wj = v∗,j if j 6= i, wi =

{
max(φ+ ε0, v

∗,i) on Bδ0(t, x)
⋂
Q̄T ,

v∗,i elsewhere.

Note that w is upper semicontinuous. We will prove that w is a subsolution of
(1.1). For j 6= i,

wj −Mjw = v∗,j −Mjw ≤ v∗,j −Mjv∗ ≤ 0,

and the subsolution inequalities hold as in the first part of the proof. For j = i and
(s, y) ∈ Bδ0(t, x)

⋂
Q̄T ,

wi(s, y)−Miw(s, y) ≤ max
{
φ(s, y) + ε0 −Miv∗, vi,∗(s, y)−Miv∗(s, y)

}
≤ max

{
φ(s, y) + ε0 −Miv∗(s, y), vi,∗(s, y)−Miv∗(s, y)

}
≤ 0,

where we have used (4.13) and the fact that v∗ is a subsolution. Outside the region
Bδ0(t, x)

⋂
Q̄T , it trivially holds that wi(s, y) − Miw(s, y) ≤ 0. Take (s, y) ∈

[0, T ) × RN and ψ ∈ C1,2
p such that wi(s, y) = ψ(s, y) and wi − ψ has a strict

a global maximum at (s, y). Depending on whether wi = v∗,i or φ + ε0 = wi at
(s, y), either vi∗−ψ or φ+ ε0−ψ has a global maximum here. In the first case, the
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subsolution inequality involving the test function ψ is a consequence of v∗ being a
subsolution. In the other case,

∂tφ(s, y) ≥ ∂tψ(s, y), Dφ(s, y) = Dψ(s, y), D2φ(s, y) ≤ D2ψ(s, y),

φ(s, y + ηα,β(s, y, z))− φ(s, y) ≤ ψ(s, y + ηα,β(s, y, z))− ψ(s, y),

and hence (4.13) implies that

ψt(s, y) + sup
α∈Ai

inf
β∈Bi

{
Lα,βi (s, y, ψ(s, y), Dψ(s, y), D2ψ(s, y))− J α,βi ψ(s, ·)

}
≤ 0.

This completes the proof that w is a viscosity subsolution of (1.1).
We can now conclude the proof since w is a subsolution satisfying

wi∗(t, x) ≥ sup{φ(t, x) + ε0, v
i
∗(t, x)} = φ(t, x) + ε0 ≥ vi∗(t, x) + ε0,

i.e., wi(s, y) > vi(s, y) for some (s, y) thereby contradicting the definition of v. �

5. Continuous dependence estimate and regularity properties

In this section

σ̂α,βi (t, x), b̂α,βi (t, x), ĉα,βi (t, x), f̂α,βi (t, x), η̂α,βi (t, x, z), ν̂(dz),

will denote another set of coefficients/Lévy measure satisfying assumptions (A.1)
– (A.4). We define the operators L̂α,βi and Ĵ α,βi in the obvious way, and consider
the new initial value problem

max
[
∂tu

i(t, x) + sup
α∈Ai

inf
β∈Bi

{
L̂α,βi (t, x, ui(t, x), Dui(t, x), D2ui(t, x))(5.1)

− Ĵ α,βi (ui)(t, ·)};ui −Miu
]

= 0 in QT ,

ui(0, x) = ĝi(x) in RN ,

and ĝ =
(
ĝi(x)

)
i

satisfies (A.2).
The objective is to estimate the difference between the viscosity solutions of (1.1)

and (5.1) in terms of the difference between the “nonlinearities” and the initial con-
ditions. Such continuous dependence estimates are important in themselves, as they
quantify the stability properties of viscosity solutions, and have many important
consequences and uses. One immediate consequence is Lipschitz continuity in the
spatial variable of a viscosity solution, and with some additional reasoning also
Hölder continuity in time. Another (recent) application concerns their relevance in
Krylov’s method of shaking the coefficients, which is used in numerical analysis of
convex fully-nonlinear PDEs, see for example [37, 10].

Let us now state the continuous dependence estimate.

Theorem 5.1. Suppose that (A.1)–(A.4) hold for both sets of coefficients. Let
u,−û ∈ USCb(Q̄T ; RM ) be respectively sub- and supersolutions of (1.1) and (5.1)
satisfying

|Dui(0, x)| ≤ K, |Dûi(0, x)| ≤ K for all i ∈ I.
Then there exists a constant C, depending on the data, such that for all j ∈ I,

uj − ûj ≤ max
i

[
|(ui − ûi)+(0, ·)|0 + T sup

α,β

(
|fi − f̂i|0 + |u|0 ∨ |û|0|ci − ĉi|0

)
(5.2)

+CT
1
2 sup
α,β

{
|σi − σ̂i|0 + |bi − b̂i|0 +

∣∣ ∫ |η̄i|2|ν − ν̂|(dz)∣∣ 1
2

0
+
∣∣ ∫ |ηi − η̂i|2ν̄(dz)

∣∣ 1
2

0

}]
,
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where ν̄ = max(ν, ν̂) and |η̄i|2 = max(|ηi|2, |η̂i|2).

Proof. The proof is essentially a refined version of the proof of the comparison
principle. We begin by introducing the quantities:

Ψi(t, x, y) = ui(t, x)− ûi(t, y)− φ(t, x, y)− δσ

T
t− ε̄

T − t
,

where δ, ε̄ ∈ (0, 1), φ(t, x, y) is defined at (4.1) and γ is chosen to be 0, and

σ0 = sup
i,x,y

{
ui(0, x)− ûi(0, y)− φ(0, x, y)− ε̄

T

}+

σ = sup
i,t,x,y

{
ui(t, x)− ûi(t, y)− φ(t, x, y)− ε̄

T − t

}
− σ0.

From the semicontinuity of u, û and the growth properties of φ along with the
penalization term ε̄

T−t , there exists (i0, t0, x0, y0) ∈ I × [0, T )× R2n such that

Ψi0(t0, x0, y0) = sup
i,t,x,y

Ψ(t, x, y).

We are interested in deriving a positive upper bound on σ; therefore, without
loss of generality, we may assume that σ > 0. This implies that t0 > 0, and we
may apply Lemma 4.1. Hence we can choose i0 so that, ûi0(t0, y0) <Mi0 û(t0, y0)
and for each κ ∈ (0, 1) there exist two symmetric matrices X and Y satisfying

φt(t0, x0, y0) +
δσ

T
+

ε̄

(T − t)2
(5.3)

≤ sup
α∈Ai0

inf
β∈Bi0

[
L̂α,βi0 (t0, y0, û

i0(t0, x0, y0),−Dyφ(t0, x0, y0), Y )

− Ĵ α,βi0,κ
(t0, y0,−Dyφ(t0, x0, y0),−φ(t0, x0, ·))

− Ĵ α,β,κi0
(t0, y0,−Dyφ(t0, x0, y0), ûi0(t0, ·))

]
− sup
α∈Ai0

inf
β∈Bi0

[
Lα,βi0 (t0, x0, u

i0(t0, x0, y0), Dxφ(t0, x0, y0), X)

− J α,βi0,κ
(t0, x0, Dxφ(t0, x0, y0), φ(t0, ·, y0))

− J α,β,κi0
(t0, x0, Dxφ(t0, x0, y0), ui0(t0, ·))

]
,

where the symmetric matrices X and Y will satisfy(
X 0
0 −Y

)
≤ 2eλt0θ

(
I −I
−I I

)
+ 2εeλt0

(
I 0
0 I

)
.(5.4)

Relation (5.4) along with (A.1)-(A.4) and standard computations yield

Tr(ai(t0, x0)X)− Tr(âi(t0, y0)Y )

≤ K1e
λt0
(
θ|x0 − y0|2 + θ|σ − σ̂|20 + ε(1 + |x0|2 + |y0|2)

)
,

b̂i(t0, y0)Dyφ(t0, x0, y0) + bi(t0, x0)Dxφ(t0, x0, y0)

= b̂i(t0, y0)(θeλt0(y0 − x0) + εeλt0y0) + bi(t0, x0)(θeλt0(x0 − y0) + εeλt0x0)

≤ K2e
λt0
{
θ|bi − b̂i|20 + θ|x0 − y0|2 + ε(1 + |x0|2 + |y0|2)

}
,

|ĉi(t0, y0)ûi(t0, y0)− ci0(t0, x0)ui(t0, x0)|+ |f̂i(t0, y0)− fi(t0, x0)|
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≤ |ui|0 ∨ |ûi|
(
|ĉi − ci|0 +K|x0 − y0|

)
+ (|fi − f̂i|0 +K|x0 − y0|).

We now turn to the non-local terms. First, observe that

J α,βi,κ (t0, x0, Dxφ(t0, x0, y0), φ(t0, ·, y0))

− J α,βi,κ (t0, y0,−Dyφ(t0, x0, y0),−φ(t0, x0, ·)) ≤ (θ + ε)eλt0O(κ).

Exploiting the fact that (t0, x0, y0) is a point of maximum of Ψi0(t, x, y) we get∫
κ≤|z|≤1

{
ui0(t0, x0 + ηi0(t0, x0, z))− ui0(t0, x0)− ηi0 .Dxφ(t0, x0, y0)

}
ν(dz)

−
∫
κ≤|z|≤1

{
ûi0(t0, y0 + η̂i0(t0, y0, z))− ûi0(t0, y0)− η̂i0 .Dyφ(t0, x0, y0)

}
ν̂(dz)

≤
∫
κ≤|z|≤1

eλt0 |ηi0(t0, x0, z)− η̂i0(t0, y0, z)|2ν̄(dz)

+
∫
κ≤|z|≤1

εeλt0
(
|ηi0 |2 + |η̂i0 |2

)
ν̄(dz)

+ (θ + ε)
∫
κ≤|z|≤1

max
(
|ηi0 |2, |η̂i0 |2

)
|ν − ν̂|(dz)

≤ K4θe
λt0
{
|x0 − y0|2 +

∣∣ ∫
B(0,1)

|ηi0 − η̂i0 |2ν̄(dz)
∣∣
0

+
∫
B(0,1)

max
(
|ηi0 |2, |η̂i0 |2

)
|ν − ν̂|(dz)

}
+K5εe

λt0(1 + |x0|2 + |y0|2),

where ν̄ = max(ν, ν̂). Once again using that (t0, x0, y0) is a point of maximum for
Ψi0 , along with standing assumptions, we obtain∫

|z|≥1

{
ui0(t0, x0 + ηi0(t0, x0, z))− ui0(t0, x0)

}
ν(dz)

−
∫
|z|≥1

{
ûi0(t0, y0 + η̂i0(t0, y0, z))− ûi0(t0, y0)

}
ν̂(dz)

≤ θeλt0K6

(
|x0 − y0|2 +

∫
|z|≥1

|ηi0 − η̂i0 |2ν̄(dz)

+
∫
|z|≥1

max
(
|ηi0 |2, |η̂i0 |2

)
|ν − ν̂|(dz)

)
+ εeλt0K6(1 + |x|20 + |y0|2).

Now by (5.3), the above estimates, and the form of φt(t0, x0, y0), it follows that

λ
[
eλt0θ|x0 − y0|2 + eλt0ε(|x0|2 + |y0|2)

]
+
δσ

T
+

ε̄

(T − t)2

≤ C1e
λt0θmax

i∈I
sup

αAi,β∈Bi

{
|σi − σ̂i|20 + |bi − b̂i|20 +

∣∣ ∫ |ηi − η̂i|2ν̄(dz)
∣∣
0

+
∣∣ ∫ max

(
|ηi|2, |η̂i|2

)
|ν − ν̂|(dz)

∣∣
0

}
+ |u|0 ∨ |û|0 sup

i,α,β
|ci − ĉi|0 + sup

i,α,β
|fi − f̂i|0

+ C2e
λt0θ|x0 − y0|2 + C3|x0 − y0|+ C4e

λt0ε(1 + |x0|2 + |y0|2) +O(κ),

where the constants only depend on the data. In the above relation the point
(t0, x0, y0) is independent of κ, so we can let κ → 0 and ignore the term O(κ).
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Next, we choose λ = 2 max(C1, C2, C3, C4) + 1, which gives us

δσ

T
≤ C1e

λt0θmax
i∈I

sup
αAi,β∈Bi

{
|σi − σ̂i|20 + |bi − b̂i|2 +

∣∣ ∫ |ηi − η̂i|2ν̄(dz)
∣∣
0

+
∣∣ ∫ max

(
|ηi|2, |η̂i|2

)
|ν − ν̂|(dz)

∣∣
0

}
+ |u|0 ∨ |û|0 sup

i,α,β
|ci − ĉi|0 + sup

i,α,β
|fi − f̂i|0

+ C3|x0 − y0| − eλt0θ|x0 − y0|2 +O(ε).

After a maximization with respect to in |x0 − y0| and sending δ → 1, we obtain

σ

T
≤ C1e

λt0θmax
i∈I

sup
αAi,β∈Bi

{
|σi − σ̂i|20 + |bi − b̂i|2(5.5)

+
∣∣ ∫ |ηi − η̂i|2ν̄(dz)

∣∣
0

+
∣∣ ∫ max

(
|ηi|2, |η̂i|2

)
|ν − ν̂|(dz)

∣∣
0

}
+ |u|0 ∨ |û|0 sup

i,α,β
|ci − ĉi|0 + sup

i,α,β
|fi − f̂i|0 +

C2

4θeλt0
+O(ε).

Next we estimate σ0 using the Lipschitz continuity of u(0, x) and û(0, x),

σ0 ≤ max
i
|(ui(0, ·)− ûi(0, ·))+|0 + sup

x,y

(
K|x− y| − θ

2
|x− y|2

)
(5.6)

= max
i
|(ui(0, ·)− ûi(0, ·))+|0 +

K2

2θ
.

Therefore adding (5.5) and (5.6) and minimizing w.r.t. θ leads to

σ + σ0 ≤ CT
1
2 max
i∈I

sup
αAi,β∈Bi

{
|σi − σ̂i|0 + |bi − b̂i|

+
∣∣ ∫ |ηi − η̂i|2ν̄(dz)

∣∣ 1
2

0
+
∣∣ ∫ max

(
|ηi|2, |η̂i|2

)
|ν − ν̂|(dz)

∣∣ 1
2

0

}
+ T |u|0 ∨ |û|0 sup

i,α,β
|ci − ĉi|0 + T sup

i,α,β
|fi − f̂i|0

+ max
i
|(ui(0, ·)− ûi(0, ·))+|0 +O(ε).

For every (t, x) ∈ [0, T )× Rn,

ui(t, x)− ûi(t, x)− ε|x|2 − ε̄

T − t
≤ σ + σ0,

so the proof is complete since (5.2) follows from the two last estimates if we send
ε, ε̄→ 0. �

As a simple consequence of the continuous dependence estimate, we have the
Lipschitz continuity in the x-variable of the viscosity solution of (1.1).

Lemma 5.2. Assume that (A.1) – (A.4) hold, and let u ∈ Cb(QT ; RM ) be the
unique viscosity solution of (1.1). Then there is a constant L, depending only the
data (and T ), such that

|ui(t, x+ h)− ui(t, x)| ≤ L|h|

for all h ∈ Rn, (t, x) ∈ [0, T )× Rn, and i ∈ I.
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Proof. For all i ∈ I and α ∈ Ai, β ∈ Bi, define(
σ̂i, b̂i, ĉi, f̂i, η̂i

)
(t, x) :=

(
σi, bi, ci, fi, ηi

)
(t, x+ h)

with ν̂ = ν and û(0, x) = u(0, x+ h). By uniqueness, û = u(t, x+ h) is the unique
viscosity solution of (5.1) and then the rest of the proof is just a consequence of
Theorem 5.1, once we observe that the right-hand side of (5.2) can be estimated
by L|h| with the constant L depending only the data. �

Next, we prove a Hölder continuity result in the time variable. Remember that
the data are only continuous in time and thus, as in the scalar case, the equation
induces some extra regularity in time on the solution.

Lemma 5.3. Assume that (A.1) – (A.4) hold, and let u(t, x) be the unique viscosity
solution of (1.1). Then there is a constant C, depending only on the data and T ,
such that

|ui(t, y)− ui(t′, y)| ≤ C(1 + |y|)|t− t′| 12 ,

for all y ∈ Rn and t, t′ ∈ [0, T ).

Proof. Without loss of generality we may assume that t′ = 0 and |t| ≤ 1 (since
solutions are bounded). For y ∈ Rn, define

ψi(s, x) = λL
[
eDs|x− y|2 + γs(1 + |y|2)

]
+Ks+ λ−1L+ ui(0, y),

for all (s, x) ∈ QT and i ∈ I, with L being the Lipschitz constant defined in Lemma
5.2 and D, γ are constants to be chosen later. Observe that

∂sψi(s, x) = λL
[
DeDs|x− y|2 + γ(1 + |y2|)

]
+K,

Lα,βi (s, x,Dψi, D2ψi)− J α,βi (ψi(s, ·))
≥ −λLN0e

Ds
(
(1 + |x|2) + |x− y|(1 + |x|)

)
−K,

for all α, β. Therefore,

∂sψi(s, x) + sup
α

inf
β

[
Lα,βi (s, x,Dψi, D2ψi)− J α,βi (ψi(s, ·))

]
≥ 0

for all s, x whenever D and γ are chosen large enough. Furthermore,

ψi(0, x) = λL|x− y|2 + λ−1L+ ui(0, y)

≥ L|x− y|+ ui(0, y) ≥ ui(0, x), ∀x ∈ Rn.

We conclude that ψ = (ψ1, ψ2, ..., ψM ) is a supersolution of (1.1), and hence the
comparison principle yields

ui(t, y) ≤ λLγ(1 + |y|2)t+Kt+ λ−1L+ ui(0, y).

Upon minimizing the right-hand side with respect to λ along with |t| ≤ 1, we obtain

ui(t, y)− ui(0, y) ≤ N(1 + |y|)t 1
2 .

The other inequality follows in a similar manner. �

In view of Lemmas 5.2 and 5.3, the proof of Theorem 2.5 is now concluded.
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