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Error estimates for finite difference-quadrature schemes for
a class of nonlocal Bellman equations with variable diffusion
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Abstract. We derive error estimates for certain approximate solutions of

Bellman equations associated to a class of controlled jump-diffusion (Lévy)

processes. These Bellman equations are fully nonlinear degenerate integro-
PDEs interpreted in the sense of viscosity solutions. The approximate solutions

are generated by an implicit finite difference-quadrature scheme.

1. introduction

We are interested in deriving error estimates for finite difference-quadrature
schemes for fully nonlinear degenerate elliptic integro-partial differential equations
(integro-PDEs) of Bellman type. These equations are of the form

H
(
x, u(x), Du(x), D2u(x), u(·)

)
= 0 in Rd.(1.1)

The nonlocal feature of the equation is reflected by the presence of the term u(·),
where for any

(
x, r, p,X

)
∈ Rd×R×Rd×Sd and for any ‘sufficiently well behaved’

ϕ, the nonlinear functional H, the Hamiltonian, is defined as

H(x, r, p,X, ϕ(·)) = sup
θ∈Θ

{1
2
tr

[
aθ(x)X

]
+ bθ(x) · p + Iθϕ− cθ(x)r + fθ(x)

}
,

where the integral operator Iθ is defined as

(1.2) Iθ
(
ϕ
)
(x) =

∫
E

[
ϕ(x + ηθ(z))− ϕ(x)− 1|z|<1η

θ(z) ·Dϕ(x)
]
ν(dz).

We denote the set of d × d symmetric matrices X = (Xij), i, j = 1, 2, . . . , d
by S and Θ (the values of the admissible controls) is assumed to be a complete
separable metric space. We assume that the Rd×d-valued function aθ(x), the Rd-
valued functions bθ(x), ηθ(z) and the R-valued functions cθ, fθ are ‘sufficiently’
regular. In the sequel we will be primarily dealing with a specific form of the
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This research is supported by an Outstanding Young Investigators Award from the Research

Council of Norway.

c©0000 (copyright holder)

1



2 IMRAN H. BISWAS, ESPEN R. JAKOBSEN, AND KENNETH H. KARLSEN

Hamiltonian H and the assumptions on the ‘coefficients’ will become clear once
this form is revealed. In (1.2), ν(dz) is a given Radon measure on

E = RM\{0},

the so-called Lévy measure, which typically possesses a second order singularity at
the origin and some exponential decay property at infinity. We call (1.1) ‘degenerate
elliptic’ since we require the diffusion matrices aθ(x) merely to be nonnegative
definite. Additionally, we only require |ηθ| ≥ 0, so ηθ(z) can be zero for some z.

In view of this, in general we can not expect the equation (1.1) to have a smooth
solution in the classical sense and hence it is necessary to look for a weaker notion
of solution. Due to the fully nonlinear and degenerate structure of the problem,
a natural choice is to interpret the solution in the viscosity sense. The viscosity
solution theory for second order PDEs is now highly developed [4, 5, 14, 15] and
there has been a growing interest in the recent years in developing a similar theory
for integro-PDEs [1, 2, 3, 6, 11, 10, 12, 17, 18, 24].

Nonlocal equations such as (1.1) arise when one attempts to solve stochastic
optimal control problems with the dynamic programming approach [15]. Examples
include various types of portfolio optimization problems in which the risky asset
follows a jump-diffusion (Lévy) process possessing discontinuous sample paths, see
for example [10, 12, 11] and the references therein. The value function of such
a control problem is the unique viscosity solution of a Bellman equation of the
form (1.1). The regularity and growth properties of the value function depend on
the coefficients of the jump-diffusion process [17]. Herein we work with class of
problems for which the viscosity solutions are bounded and Lipschitz continuous.

In this paper we focus on finite difference-quadrature schemes for the nonlocal
equation (1.1) and their convergence properties. The main idea behind designing
such schemes is to replace the original controlled Markov process by a controlled
Markov chain (discrete in time). The value function of this discrete-time control
problem actually satisfies a dynamic programming principle which results in a finite
difference type approximation for the original Bellman equation. In principle, the
finite difference equation could be solved by various fixed point iterations.

There is a considerable amount of literature available addressing the issue of
convergence of approximate (numerical) solutions to second order PDEs in the
viscosity solution framework, see for example [4, 5, 9, 14, 15, 23]. But the question
of error estimate for numerical schemes, including finite difference schemes, is much
more difficult and remained open until the recent works by Krylov [22, 20, 21] and
Barles and Jakobsen [8, 16, 7].

The problem of error estimates for numerical schemes for fully nonlinear degen-
erate integro-PDEs is mostly an untouched area, except for the recent treatment
in [19]. In [19], adapting the methods of Krylov and Barles-Jakobsen, the authors
derive error estimates for a class of approximation schemes for (1.1). However, to
apply the results from [19] to a particular numerical scheme certain nontrivial con-
ditions have to be satisfied, conditions which could be heard to verify in general.
As a working example the authors consider an upwind finite difference-quadrature
scheme for the Bellman equation where the diffusion matrix aθ is independent of
the spatial variable x for each admissible control θ. It is not clear, from [19], what
happens if the diffusion matrix depends on the spatial variable.
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In this paper we allow the diffusion matrix to depend on the spatial variable x,
at least for a class of Hamiltonians, and give an error estimate for a finite difference-
quadrature scheme which, in some sense, is compatible with the structure of the
Hamiltonian H. Our work extends the results of Krylov [22] to a nonlocal setting.
We point out that with methods used herein we are not able to include the case
where the jump-vector ηθ in (1.2) depends explicitly on the spatial variable x.
However, this case as well as parabolic integro-PDEs will be analyzed in [13].

Throughout this paper we make the assumption that the Lévy measure ν(dz)
sitting inside the integral operator (1.2) is bounded and compactly supported. For
the general case where the Lévy measure can be unbounded and have unbounded
support, we do not directly discretize the integral operator as it is stated in (1.2).
In particular, when the Lévy measure has a second order singularity the origin, we
follow [19] and replace (1.1) by an approximate equation in which the singularity
has been replaced by an additional diffusion term. To be more precise, for small
r > 0 and R > 0 large enough we introduce the truncated domain {z : r < |z| < R}
and a truncated Lévy measure νr,R(dz):

νr,R(dz) = 1r<|z|<Rν(dz).

The next step would be to replace the measure ν(dz) in the integral operator Iθ

by νr,R(dz) and modify the diffusion coefficients to account for the singularity at
the origin (i.e., the infinite activity region of the Lévy process). We do not explain
this aspect in detail here, but refer instead to [19].

Under the assumption that the Lévy measure is bounded and compactly sup-
ported, we can alter the form of the Hamiltonian H without changing the equation
(1.1), possibly at the expense of changing bθ(x). Naming the new Hamiltonian by
F we write

F (x, r, p,X, ϕ(·)) = sup
θ∈Θ

{1
2
tr

[
aθ(x)X

]
+ bθ(x) · p + J θϕ− cθ(x)r + fθ(x)

}
where the integral operator J θ is defined as

J θ
(
ϕ
)
(x) =

∫
E

[
ϕ(x + ηθ(z))− ϕ(x)

]
ν(dz).

Then (1.1) takes the form,

F
(
x, u(x), Du(x), D2u(x), u(·)

)
= 0 in Rd.(1.3)

From now on (1.3) is going to be our focal point.
The remaining part of this paper is organized as follows: In Section 2 we

introduce some notation, the notion of viscosity solutions, and define the finite
difference-quadrature scheme. In Section 3 we prove existence, uniqueness, and
comparison properties for this scheme. Section 4 contains the heart of the mat-
ter and here we give the key estimate which leads to continuous dependence and
Lipschitz continuity results for the finite difference-quadrature scheme. Finally, in
Section 5 we use Krylov’s method of shaking the coefficients along with the results
of the previous sections to prove the final error estimate.

2. Preliminary material and the numerical scheme

We denote a point x ∈ Rd as x = (x1, x2, ..., xd). For any l ∈ Rd, we let Dlu
and D2

l u be the first and second order derivatives of a function u along the vector
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l, i.e.
Dlu = uxi li and D2

l u = uxixj lilj ,

where i and j run from 1 to d and the standard summation convention applies.
The space of bounded Lipschitz continuous functions on Rd is denoted by C1

b (Rd)
or simply as C1

b . For any a ∈ R, we define a± = a± = 1
2 (|a| ± a).

For each θ ∈ Θ and k = ±1,±2, . . . ,±d1, where d1 is a positive integer, we are
given vectors lk ∈ Rd, real-valued functions σθ

k(x), bθ
k(x), fθ(x), cθ(x) on Rd, and a

Rd-valued function ηθ(z) on RM , satisfying

lk = −l−k, σθ
k(x) = σθ

−k(x).

We make the following assumptions:
(A.1) There exist constants K > 1 and λ > 0 such that for all θ ∈ Θ∑

k

{
|lk|+ |σθ

k|C1
b

+ |bθ
k|C1

b

}
+ |cθ|C1

b
+ |fθ|C1

b
≤ K,

cθ ≥ λ, bθ
k ≥ 0 on Rd.

(A.2) ν is a positive Radon measure on E satisfying∫
E

ν(dz) < ∞ and
∫

E\B(0,K)

ν(dz) = 0.

(A.3) ηθ(z) is measurable in z and satisfies sup{|ηθ(z)| : 0 < |z| < K, θ ∈ Θ} ≤
K, where K is given in (A.1).

(A.4) σθ
k, bθ

k, cθ, fθ, ηθ are continuous in θ.

Next we are going to specify the structure of the diffusion matrix aθ(x) and
the drift vector bθ in terms of the functions introduced above:

σθ
ik(x) = likσθ

k(x),
(
σθ(x)

)
=

(
σθ

ik

)
i,k
∈ Rd×2d1 ,

aθ(x) =
1
2
σθ(σθ)T , bθ(x) =

∑
r

bθ
r(x)lr.

Now the integro-PDE (1.3) can be rewritten in the following form:

(2.1) sup
θ∈Θ

{
Lθu(x) + fθ(x) + J θu(x)

}
= 0,

where Lθ is defined as follows:

Lθu(x) = aθ
k(x)D2

lk
u(x) + bθ

k(x)Dlku(x)− cθ(x)u(x), aθ
k(x) =

1
2
(
σθ

k(x)
)2

.

As pointed out in the introduction, in general (2.1) does not possess classical solu-
tions and we need the weaker concept of viscosity solutions.

Definition 2.1. A function u ∈ USC(Rd) (u ∈ LSC(Rd)) is a viscosity sub-
solution (supersolution) of (2.1) if for every x ∈ Rd and φ ∈ C2(Rd) such that x is
a global maximizer (global minimizer) for u− φ,

sup
θ∈Θ

[
aθ

kD2
lk

φ + bθ
kDlkφ− cθu + J θφ + fθ(x)

]
≥ 0 (≤ 0) at x.

We say that u is a viscosity solution of (2.1) if u is simultaneously a subsolution
and supersolution of (2.1).
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As in the case of second order PDEs, it is possible to have a different but
equivalent definition in terms of the so-called semijets [14]. Then with the help
of the ’maximum principle for semi-continuous functions’ [14], suitably adapted to
integro-PDEs [17, 18], it is standard to prove existence, uniqueness, and regularity
results, even for singular measures ν [6, 25, 17, 19, 18]. The results we need for
this paper will be stated without proofs.

Theorem 2.1. Suppose assumptions (A.1),(A.2), and (A.3) hold.
(i) There exists unique viscosity solution u ∈ Cb(Rd) of equation (2.1) which

is hölder continuous, i.e., there are constants δ ∈ (0, 1] and C such that

|u(x)− u(y)| ≤ C|x− y|δ for all x, y ∈ Rd.

(ii) There exists a constant λ0 depending only on d, d1 and K such that if

λ > λ0,

then the viscosity solution u of (2.1) is Lipschitz continuous.
(iii) Let u,−v ∈ USCb(Rd). If u and v are viscosity sub- and supersolutions

of (2.1), respectively, then

u ≤ v in Rd.

In this paper we will work with Liptschitz solutions, so in the rest the paper
we assume that λ ≥ λ0, i.e., we replace assumption (A.1) by

(A.1’) Assume that assumption (A.1) holds and in addition that

cθ(x) > λ0,

where λ0 is defined in Theorem 2.1.

Next we describe the numerical scheme, which is based on finite differences
and numerical quadrature. First, we introduce two finite difference operators. For
h1, h2 > 0, l ∈ Rd, x ∈ Rd,

δh1,lu(x) =
u(x + h1l)− u(x)

h1
,

∆h1,lu(x) =
u(x + h1l)− 2u(x) + u(x− h1l)

h2
1

.

To discretize the integral operator in (2.1) we introduce a quadrature rule:

Ih2(f) =
∑

p∈h2ZM

f(p)kp, kp ≥ 0, kp = 0 for |p| > K,

where p ∈ h2ZM and kp ≥ 0 are the nodes and weights respectively. Since kp ≥ 0
this scheme is monotone. This assumption is quite natural since the measure ν is
positive; Of course, it is also needed for the analysis. Note that the sum is a finite
sum since kp = 0 for |p| > K, and this is natural since the measure ν has support
in |p| < K. We also require that the error satisfies

(2.2) |
∫

E

f(z)ν(dz)− Ih2(f)| ≤ ν(E)Lfh2,

for every Lipschitz function f with Lipschitz constant Lf .
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Many classical quadrature rules are of this form, the simplest example being
the Riemann sum approximation

Ih2(f) =
∑

p∈h2ZM

f(p)ν(p + [0, h2]M ).

Other examples include the Newton-Cotes quadratures of order less than 9, see
[19].

Now we are in a position to finally write down the numerical scheme for (2.1).
This implicit finite difference-quadrature scheme is given by

(2.3) sup
θ∈Θ

[
Lθ

h1
u + fθ(x) + J θ

h2
u
]

= 0 in Rd,

where

Lθ
h1

u = aθ
k∆h1,lku + bθ

kδh1,lku− cθu

J θ
h2

u = Ih2

(
u(x + ηθ(x, z))− u(x)

)
.

The scheme (2.1) is compatible with the structure of (2.1) in the sense that, for a
given four times continuously differentiable function g and for each θ ∈ Θ,

(2.4) |Lα
h1

g − Lθg|(x) ≤ N∗(h2
1 sup

BK(x)

|D4
xg|+ h1 sup

BK(x)

|D2
xg|

)
,

where N∗ is constant which only depends on K, d1, and BK(x) denotes the closed
ball of radius K centered at x. This relation is a simple consequence of Taylor’s
theorem.

3. Some basic properties of the scheme

In this section we prove the existence and uniqueness of solutions to the finite
difference-quadrature scheme (2.3).

Lemma 3.1. If assumptions (A.1), (A.2), (A.3) are satisfied, then there exists
a unique u ∈ Cb(Rd) solving (2.3).

Proof. For a constant ε > 0, define the nonlinear operator Gε on Cb(Rd) as
follows: For u ∈ Cb(Rd),

Gε[u](x) := u(x) + ε sup
θ∈Θ

[
aθ

k(x)∆h1,lku(x) + bθ
k(x)δh1,lku(x)− cθ(x)u(x)

+fθ(x) +
∑

p∈h2ZM

kp

(
u(x + ηθ(p))− u(x)

)]
.

Note that u ∈ Cb solves (2.3) if and only if it is a fixed point for Gε for some positive
ε. We write the expression for Gε in the following way,

Gε[u](x) = sup
θ∈Θ

[
wθ

k(x)u(x + h1lk) + wθ(x)u(x) + εfθ(x) +
∑

p∈h2ZM

εkpu(x + ηθ(p))
]
,

where wθ
k(x) = 2εh−2

1 aθ
k ≥ 0 and

wθ(x) = 1−
∑

k

wθ
k − εcθ − ε

∑
p∈h2ZM

kp.

Choose ε > 0 small enough so that wθ ≥ 0 and 1− ελ < 1. Observe that

0 ≤
∑

k

wθ
k + wθ + ε

∑
p∈h2ZM

kp = 1− εcθ ≤ 1− ελ.
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So using the property that a difference of sup’s is less than the sup of the difference,
for any two u, v ∈ Cb(Rd) we obtain∣∣Gε[u](x)−Gε[v](x)

∣∣ ≤ (1− ελ) sup
Rd

|u− v|.

Hence Gε is a contraction on the Banach space Cb(Rd) equipped with supremum
norm, and by applying Banach fixed point theorem we conclude that Gε has a
unique fixed point u ∈ Cb(Rd). �

For a given set of discretization parameters h1, h2 > 0, we denote the vector
(h1, h2) by h and the unique solution of the finite difference-quadrature scheme
(2.3) by vh. Next, we are going to prove the comparison principle for the scheme.

Lemma 3.2. Let u, v ∈ Cb(Rd) such that

sup
θ∈Θ

[
Lθ

h1
u + fθ(x) + J θ

h2
u
]
≤ sup

θ∈Θ

[
Lθ

h1
v + fθ(x) + J θ

h2
v
]

(3.1)

for all x ∈ Rd. Then
u ≥ v in Rd.

Proof. Let
m = sup

x∈Rd

(v − u).

We want to show that m ≤ 0. To this end, we argue by contradiction and assume
m > 0. Let (xn, δn) be a sequence of points in Rd+1 such that δn = v(xn)− u(xn)
and δn → m as n →∞.

Let wθ
k and wθ be defined as in the proof of Lemma 3.1. Set ε = 1 and define

w̄θ
k := wθ

k|ε=1 and w̄θ := wθ
k|ε=1 − 1. Then we have

sup
θ∈Θ

[
Lθ

h1
v(xn) + fθ(xn) + J θ

h2
v(xn)

]
= sup

θ∈Θ

[∑
k

w̄θ
k(xn)v(xn + h1lk) + w̄θ(xn)v(xn) +

∑
p

kpv(xn + η(p)) + fθ(xn)
]

≤ sup
θ∈Θ

[∑
k

w̄θ
k(xn)

(
u(xn + h1lk) + m

)
+ w̄θ(xn)

(
u(xn) + δn

)
+

∑
p

kp

(
u(xn + η(p)) + m

)
+ fθ(xn)

]
= sup

θ∈Θ

[
Lθ

h1
u(xn) + fθ(xn) + J θ

h2
u(xn) +

( ∑
p

kp +
∑

k

w̄θ
k

)
(m− δn)− cθδn

]
≤ sup

θ∈Θ

[
Lθ

h1
u(xn) + fθ(xn) + J θ

h2
u(xn)

]
+ N(h1, h2, d1,K,

∑
p

kp)(m− δn)− λ̄δn.

Sending n →∞ and using (3.1) we get

λ̄m ≤ 0

which contradicts m > 0. �

Since ± 1
λ supθ∈Θ |fθ|Cb

are super/sub solutions of (2.3) we get immediately

Corollary 3.3. If uh ∈ Cb(Rd) is the unique solution of (2.3), then

|uh|Cb
≤ 1

λ
sup
θ∈Θ

|fθ|Cb
.

This bound does not depend on h.
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4. Lipschitz continuity and continuous dependence estimates for the
finite difference-quadrature scheme

The following theorem is the most crucial estimate of this paper.

Theorem 4.1. Assume (A.1), (A.2), (A.3), (2.2) hold and let v(x) be the
unique solution of (2.3). Then there is a constant λ̄0 ∈ (0,∞), depending only on
K, d1, d, and the Levy measure ν, such that if

λ > λ̄0,

then there is a constant N , depending on the data, such that

|δε,±lv| ≤ N,

for every 0 < ε < h1 and l ∈ Rd with |l| ≤ K.

Proof. We start by introducing the notation hk = h1 for k = ±1,±2, . . . ,±d1,
h±(d1+1) = ε, l±(d1+1) = ±l. Moreover, we let r be an index running through
{±1,±2, . . . ,±(d1 + 1)} and k be an index running through {±1,±2, . . . ,±d1}.
Finally, we let

vr = δhr,lrv, v−r = (vr)−,

and
W (x) =

∑
r

(v−r )2.

As it is argued for in Krylov [22], to prove the theorem it is enough to show
that the newly introduced quantity W (x) is bounded. Note that trivially |W (x)| ≤

1
minr(hr)N |v|Cb

. We want to prove that for a big enough λ, |W (x)| can be bounded
independently of the parameters h1, h2, ε etc. To do this we introduce

V (x) = W (x)− δC(x)

where C(x) ∈ C2(Rd) is positive and satisfies

lim
|x|→∞

C(x) = ∞ and |∇C|Cb
+ |∇2C|Cb

≤ K.

It is clear that V (x) is bounded above and that there exists a point x0 ∈ Rd such
that V (x) attains its maximum at x0.

From equation (2.3) it follows that there is a sequence (θn) ⊂ Θ such that, at
x0,

lim
n→∞

[
aθn

k ∆h1,lkv + bθn

k δh1,lkv − cθnv + fθn +
∑

p

kp

(
v(x0 + ηθn(p))− v(x0)

)]
= 0.

Now, by assumptions (A.1), (A.2), (A.3) and Arzela-Ascoli’s theorem, there
exists a subsequence of (θn), which we do not bother to relabel, and functions
āk, b̄k, c̄, f̄ , η̄, satisfying assumptions (A.1), (A.2), (A.3), and(

āk, b̄k, c̄, f̄ , η̄
)

= lim
n→∞

(
aθn

k , bθn

k , cθn , fθn , ηθn

)
.

Obviously, at the point x0,

(4.1) āk∆h1,lkv + b̄kδh1,lkv − c̄v + f̄ +
∑

p

kp

(
v(x0 + η̄(p))− v(x0)

)
= 0,
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whereas at points of the form (x0 + hrlr) (and every other point) we have the
inequality

(4.2) āk∆h1,lkv+ b̄kδh1,lkv− c̄v+ f̄ +
∑

p

kp

(
v(x0 +hrlr + η̄(p))−v(x0 +hrlr)

)
≤ 0.

Subtracting (4.1) from (4.2) and dividing throughout by hr, we get

(4.3) āk∆hk,lkvr + I1r + I2r + I3r + I4r + I5r ≤ 0,

where

I1r = (δhr,lr āk)∆hk,lkv,

I2r = hr(δhr,lr āk)∆hk,lkvr,

I3r = (Thr,lr b̄k)δhk,lkvr + (δhr,lr b̄k)δhk,lkv,

I4r = −(δhr,lr c̄)v − (Thr,lr c̄)vr + δhr,lr f̄ ,

I5r =
∑

p∈h2ZM

kp

(
vr(x0 + η̄(p))− vr

)
.

Next, we multiply (4.3) by v−r and sum the result with respect to r. The main
step of the proof is to estimate the different terms in (4.3) as they appear after
multiplication with v−r and summation with respect to r. Except for the I5r-term,
these terms can be estimated as in Krylov [22] with obvious modifications (see
[13]). The result is that at x0,∑

r

v−r I4r ≥ −N(d1, d,K) + (λ− 2K)W,(4.4) ∑
r

v−r
[
āk∆hk,lkvr + I1r + I2r + I3r

]
≥ −N(d, d1,K)

(
V + 1

)
−O(δ).(4.5)

Now we estimate the “new” term v−r I5r:∑
r

v−r I5r =
( ∑

kp

)
(
∑

r

(v−r )2) +
∑

p

∑
r

kpv
−
r vr(x0 + η̄(p)).

By assumptions (A.2) and (2.2) (implying ν(E) = (
∑

p kp)),∑
r

v−r I5r = ν(E)W +
∑

p

∑
r

kpv
−
r vr(x0 + η̄(p))

≥ ν(E)W − 1
2

∑
p

∑
r

kp

[
(v−r )2 + v2

r(x0 + η̄(p))
]

=
ν(E)

2
W − 1

2

∑
p

(
kp

∑
r

v2
r(x0 + η̄(p))

)
.(4.6)

The next step is to estimate ∑
r

v2
r

(
x0 + η̄(p)

)
for each p. Note that, if vr

(
x0 + η̄(p)

)
≤ 0 then,

|vr

(
x0 + η̄(p)

)
| = v−r

(
x0 + η̄(p)

)
.

If vr

(
x0 + η̄(p)

)
> 0, then

0 > −vr

(
x0 + η̄(p)

)
= v−r

(
x0 + hrlr + η̄(p)

)
.
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Taking both possible situations into account we get

v2
r(x0 + η̄(p)) ≤

[(
v−r

)2(
x0 + η̄(p)

)
+

(
v−−r

)2(
x0 + hrlr + η̄(p)

)]
.

Summing with respect to r yields∑
r

v2
r

(
x0 + η̄(p)

)
≤

[ ∑
r

(
v−r

)2(
x0 + η̄(p)

)]
+

∑
r

(
v−−r

)2(
x0 + hrlr + η̄(p)

)
= W

(
x0 + η̄(p)

)
+

∑
r

(
v−−r

)2(
x0 + hrlr + η̄(p)

)
≤ W

(
x0 + η̄(p)

)
+

∑
r

W
(
x0 + hrlr + η̄(p)

)
≤ V (x0) + δC

(
x0 + η̄(p)

)
+

∑
r

[
V (x0) + δC

(
x0 + hrlr + η̄(p)

)]
= (2d1 + 3)V (x0) + δC

(
x0 + η̄(p)

)
+ δ

∑
r

C
(
x0 + hrlr + η̄(p)

)
.(4.7)

Combining (4.6) and (4.7) we conclude,∑
r

v−r I5r ≥− (d1 + 1)ν(E)V (x0)−
δ

2

∑
p

kpC
(
x0 + η̄(p)

)
− δ

2

∑
p

∑
r

kpC
(
x0 + hrlr + η̄(p)

)
.(4.8)

Combining (4.3), (4.4), (4.5), and (4.8), we get

λV ≤ N(d, d1,K, ν(E))
(
V + 1

)
+O(δ).

Taking λ ≥ N(d, d1,K, ν(E)) + 1 and sending δ ↓ 0, we get

W ≤ N(d1, d,K, ν(E)),

and the theorem is proved. �

As an application of the above theorem we get the following important re-
sult, namely the continuous dependence estimate for the finite difference-quadrature
equation (2.3):

Theorem 4.2. Let (σθ
k, bθ

k, cθ, fθ, ηθ, λ) and (σ̂θ
k, b̂θ

k, ĉθ, f̂θ, η̂θ, λ̂) be two sets of
coefficients satisfying assumptions (A.1), (A.2), (A.3), with λ̂ = λ > λ̄0 (defined
in Theorem 4.1) and ηθ = η̂θ. Assume (2.2) holds, and let u and û be the solutions
of (2.3) with coefficients (σθ

k, bθ
k, cθ, fθ, ηθ, λ) and (σ̂θ

k, b̂θ
k, ĉθ, f̂θ, η̂θ, λ̂) respectively.

Introduce the quantity

ε := sup
Rd,A,k

{
|σ̂θ

k − σθ
k|+ |b̂θ

k − bθ
k|+ |ĉθ − cθ|+ |f̂θ − fθ|

}
.

Then there exists a constant N , depending only on K, d, d1, and ν(E), such that

(4.9) |u− û| ≤ Nε in Rd.

We do not prove this theorem here since the proof is similar to the one given
by Krylov in [22], see also [13] for a proof in the case of parabolic integro-PDEs.
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5. Shaking of the coefficients and the final error estimate

In this section we use the method of shaking the coefficients, introduced by
Krylov [20, 21], to prove the desired error bound on |v − vh|, where the functions
v and vh are the solutions to (1.3) and (2.3) respectively.

Let S ⊂ B1 = {x ∈ Rd : |x| ≤ 1}. For ε > 0, let vε,S
h be the unique solution of

(5.1) sup
(θ,y)∈Θ×S

[
Lθ

h1
(x + εy)u(x) + fθ(x + εy) + J θ

h2
u
]

= 0

and vε,S be the unique viscosity solution of

sup
(θ,y)∈Θ×S

[
Lθ(x + εy)u(x) + fθ(x + εy) + J θu

]
= 0.

We have the following lemma:

Lemma 5.1. There is a constant N , depending only on d, d1,K, ν(E), such that
if assumptions (A.1), (A.2), (A.3), (2.2) are satisfied with λ > max(λ0, λ̄0) (λ0,
λ̄0 are defined in Theorems 2.1 and 4.1 respectively), then

|vε,S
h − vh| ≤ Nε,(5.2)

|vε,S − v| ≤ Nε.(5.3)

In particular, upon choosing S = y−x
|y−x| and ε = |x− y|, we have

|vh(x)− vh(y)| ≤ N |x− y|,

|vε,S
h (x)− vε,S

h (y)| ≤ N |x− y|.

Proof. Estimate (5.2) is a trivial consequence of (4.9) and for a proof of (5.3)
we refer to the appendix of [19]. �

Theorem 5.2 (Error estimate). If assumptions (A.1), (A.2), (A.3), (2.2), are
satisfied with λ > max(λ0, λ̄0) (λ0 and λ̄0 are defined in Theorems 2.1 and 4.1
respectively), then there is a constant N , depending on the data but not h, such
that

(5.4) |v − vh| ≤ N(h
1
2
1 + h2).

Proof. Since v, vh are bounded and the bound is independent of (h1, h2),
without loss of generality we can assume that h1, h2 ≤ 1. Let (ρε)ε>0 be a family
of standard mollifiers on Rd. Upon choosing S = B1, we denote vε,S

h by vε
h, vε,S by

vε, and define vε = ρε ∗ vε. Using the same techniques as in the proof of Theorem
7.4 of [19], we find vε to be a viscosity supersolution to (2.1), i.e., for each θ ∈ Θ

Lθ(x)vε + fθ(x) + J θvε ≤ 0.

Then from (2.4), (2.2), and properties of mollifiers we get

Lθ
h1

(x)vε + fθ + J θ
h2

vε ≤ N
(h2

1

ε3
+

h1

ε
+ h2

)
for all θ ∈ Θ. So vε + N

λ (h2
1

ε3 + h1
ε + h2) is a supersolution of the scheme (2.3), and

the comparison principle (Lemma 3.2) yields

vh ≤ vε +
N

λ0

(h2
1

ε3
+

h1

ε
+ h2

)
≤ v + N

(h2
1

ε3
+

h1

ε
+ h2 + ε

)
.
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Now choose ε = h
1
2
1 in the above inequality to get vh − v ≤ N(h

1
2
1 + h2).

Next we want to get a similar bound on v − vh. After a change of variable in
(5.1) we get, for each θ,

(5.5) Lθ
h1

(x)vε
h(x− εy) + fθ(x) + J θ

h2
vε

h(x− εy) ≤ 0.

Multiplying (5.5) by ρε(y) and integrating with respect y we get

Lθ
h1

(x)
(
vε

h ∗ ρε

)
+ fθ(x) + J θ

h2

(
vε

h ∗ ρε

)
≤ 0.

Once again by properties of mollifiers along with Lemma 5.1 and (2.2), (2.4) we
obtain

Lθ(x)
(
vε

h ∗ ρε

)
+ fθ(x) + J θ

(
vε

h ∗ ρε

)
≤ N

(h2
1

ε3
+

h1

ε
+ h2

)
for all θ ∈ Θ. So vε

h ∗ ρε + N
λ0

(h2
1

ε3 + h1
ε +h2

)
is a supersolution of equation (2.1) and

by the comparison principle (Theorem 2.1),

v ≤ vε
h ∗ ρε +

N

λ0

(h2
1

ε3
+

h1

ε
+ h2

)
.

By Lemma 5.1 and properties of mollifiers, we get

v ≤ vε
h ∗ ρε + N

(h2
1

ε3
+

h1

ε
+ h2

)
≤ vh + N

(h2
1

ε3
+

h1

ε
+ h2 + ε

)
.

Once again we replace ε by h
1
2
1 which yields v − vh ≤ N(h

1
2
1 + h2). �
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