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Abstract. We develop a general framework for finding error estimates for

convection-diffusion equations with nonlocal, nonlinear, and possibly degener-

ate diffusion terms. The equations are nonlocal because they involve fractional
diffusion operators that are generators of pure jump Lévy processes (e.g. the

fractional Laplacian). As an application, we derive continuous dependence es-

timates on the nonlinearities and on the Lévy measure of the diffusion term.
Estimates of the rates of convergence for general nonlinear nonlocal vanishing

viscosity approximations of scalar conservation laws then follow as a corollary.
Our results both cover, and extend to new equations, a large part of the known

error estimates in the literature.

1. Introduction

This paper is concerned with the following Cauchy problem:

(1.1)

{
∂tu(x, t) + div (f(u)) (x, t) = Lµ[A(u(·, t))](x) in QT := Rd × (0, T ),

u(x, 0) = u0(x), in Rd,

where u is the scalar unknown function, div denotes the divergence with respect to
(w.r.t.) x, and the operator Lµ is defined for all φ ∈ C∞c (Rd) by

Lµ[φ](x) :=

ˆ
Rd\{0}

φ(x+ z)− φ(x)− z ·Dφ(x)1|z|≤1 dµ(z),(1.2)

where Dφ denotes the gradient of φ w.r.t. x and 1|z|≤1 = 1 for |z| ≤ 1 and = 0
otherwise. Throughout the paper, the data (f,A, u0, µ) is assumed to satisfy the
following assumptions:

f = (f1, . . . , fd) ∈W 1,∞(R,Rd) with f(0) = 0,(1.3)

A ∈W 1,∞(R) is nondecreasing with A(0) = 0,(1.4)

u0 ∈ L∞(Rd) ∩ L1(Rd) ∩BV (Rd),(1.5)

and

µ is a nonnegative Radon measure on Rd \ {0} satisfying(1.6) ˆ
Rd\{0}

|z|2 ∧ 1 dµ(z) <∞,

where we use the notation a ∧ b = min{a, b}. The measure µ is a Lévy measure.

Remark 1.1.

(1) Subtracting constants to f and A if necessary, there is no loss of generality
in assuming that f(0) = 0 and A(0) = 0.
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(2) Our results also hold for locally Lipschitz-continuous nonlinearities f and A
since solutions will be bounded; see Remark 2.3 for more details.

(3) Assumption (1.6) and Taylor expansion reveals that Lµ[φ] is well-defined
for e.g. bounded C2 functions φ:

|Lµ[φ](x)| ≤ max
|z|≤1

|D2φ(x+ z)|
ˆ
0<|z|≤1

1

2
|z|2dµ(z) + 2‖φ‖L∞

ˆ
|z|>1

dµ(z)

where D2φ is the Hessian of φ. If in addition D2φ is bounded on Rd, then
so is Lµ[φ].

Under (1.6), Lµ is the generator of a pure jump Lévy process, and reversely,
any pure jump Lévy process has a generator of like Lµ (see e.g. [6, 54]). This
class of diffusion processes contains e.g. the α-stable process whose generator is the

fractional Laplacian − (−4)
α
2 with α ∈ (0, 2). It can be defined for all φ ∈ C∞c (Rd)

via the Fourier transform as

(−4)
α
2 φ = F−1 (| · |αFφ) ,

or in the form (1.2) with the following Lévy measure (see e.g. [6, 32]):

dµ(z) =
dz

|z|d+α
(up to a positive multiplicative constant).(1.7)

Many other Lévy processes/operators of practical interest can be found in e.g.
[6, 24]. Under assumption (1.4), Lµ[A(·)] is an example of a nonlinear nonlocal
diffusion operator. For recent studies of this and similar type of operators, we refer
the reader to [8, 9, 15, 19, 27] and the references therein.

Equation (1.1) appears in many different contexts such as overdriven gas detona-
tions [22], mathematical finance [24], flow in porous media [27], radiation hydrody-
namics [51, 52], and anomalous diffusion in semiconductor growth [57]. Equations
of the form (1.1) constitute a large class of nonlinear degenerate parabolic integro-
differential equations (integro-PDEs). Let us give some representative examples.
When A = 0 or µ = 0, (1.1) is the well-known scalar conservation law (see e.g. [25]
and references therein):

(1.8) ∂tu+ divf(u) = 0.

When A(u) = u, (1.1) is the so-called Lévy/fractal/fractional conservation law:

(1.9) ∂tu+ divf(u) = Lµ[u].

Equation (1.9) has been extensively studied since the nineties [1, 2, 3, 4, 5, 7, 10,
11, 12, 16, 17, 20, 21, 26, 28, 29, 30, 31, 32, 35, 37, 38, 39, 40, 41, 44, 48, 49, 50].
When A is nonlinear, (1.1) can be seen as a generalization of the following classical
convection-diffusion equation (possibly degenerate):

(1.10) ∂tu+ divf(u) = 4A(u);

see e.g. [13, 14, 18, 23] for precise references on (1.10). The case of nonlinear and
nonlocal diffusions has been studied in [27] in the setting of nonlocal porous me-
dia equations, and in [19] where a general L1-theory for (1.1) is developed along
with connections to Hamilton-Jacobi-Bellman equations of stochastic control the-
ory. Other interesting examples concern the class of nonsingular Lévy measures
satisfying

´
Rd\{0} dµ(z) < +∞. In that case, Lµ is a convolution operator and (1.1)

can be seen as a generalization of Rosenau’s models [42, 43, 47, 48, 55, 56] and
nonlinear radiation hydrodynamics models [51] of the respective forms

∂tu+ divf(u) = gµ ∗ u− u,(1.11)

∂tu+ divf(u) = gµ ∗A(u)−A(u),(1.12)
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where ∗ denotes the convolution product w.r.t. x and gµ ∈ L1(Rd) is nonnegative
with

´
Rd gµ(z)dz = 1.

Most of the results on such nonlocal convection-diffusion equations concern Equa-
tion (1.9) whose diffusion is linear. It is known that shocks can occur in finite
time [4, 28, 42, 43, 44, 48, 55], that weak solutions can be nonunique [2], and that
the Cauchy problem is well-posed with the notion of entropy solutions in the sense
of Kruzhkov [1, 41, 47, 55]. Results on nonlinear nonlocal diffusions can be found
in [51] where entropy solutions of (1.12) are studied. Very recently, the entropy
solution theory has been extended in [19] to cover the full problem (1.1) for general
singular Lévy measures and nonlinear A.

The purpose of the present paper is to develop an abstract framework for find-
ing error estimates for entropy solutions of (1.1). As applications, we focus in this
paper on continuous dependence estimates and convergence rates for vanishing vis-
cosity approximations. We refer the reader to [13, 18, 23, 46] and the references
therein for similar analysis on (1.10) and related local equations. As far as non-
local equations are concerned, continuous dependence estimates for fully nonlinear
integro-PDEs have already been derived in [36] in the context of viscosity solutions
of Bellman-Isaacs equations; see also [32, 34, 36] for error estimates on nonlocal van-
ishing viscosity approximations. To the best of our knowledge, there are only a few
results for nonlocal conservation laws. All the results we have found concern Equa-
tions (1.9), (1.11) and (1.12) for which we refer the reader to [1, 29, 32, 41, 47, 55]. A
large part of these error estimates concern convergence rates for vanishing viscosity
approximations. The only result we have found on continuous dependence estimates
appears in [41]; it concerns Equation (1.9) in the case of self-adjoint Lévy operators.
To finish with the bibliography, let us also refer the reader to [20, 21, 26, 30, 51]
for the related topic of error estimates for numerical approximations.

Our main result is stated in Lemma 3.1, and it compares the entropy solution u
of (1.1) with a general function v. Our main application consists in comparing u
with the entropy solution v of

(1.13)

{
∂tv + divg(v) = Lν [B(v)],

v(x, 0) = v0,

where the data set (g,B, v0, ν) is assumed to satisfy (1.3)–(1.6). We obtain explicit
continuous dependence estimates on the data stated in Theorems 3.3–3.4. Let
us recall that when B = 0 or ν = 0, (1.13) is the pure scalar conservation law
in (1.8). Equation (1.1) can thus be seen as a nonlinear nonlocal vanishing viscosity
approximation of (1.8) if A or µ vanishes. The rate of convergence is then obtained
as a consequence of Theorems 3.3–3.4, see Theorem 3.7.

It is natural to compare Theorems 3.3–3.4 and Theorem 3.7 with the known
error estimates for Equations (1.9), (1.11) and (1.12). One can see that a quite
important part of them are particular cases of our general results. We discuss
this point in Section 3 by giving precise examples. Let us mention that we also
give a simple example of Hamilton-Jacobi equations suggesting that Theorems 3.3–
3.4 are in some sense the “conservation laws’ versions” of the results in [36]; see
Example 3.2.

To finish, let us mention that in the case of fractional Laplacians of order α ≥ 1,
Theorems 3.3–3.4 can be improved by taking advantage of the homogeneity of the
measures in (1.7). In order not to make this paper too long, this special case
(including α < 1) is investigated in a second paper [3].

The rest of this paper is organized as follows. In Section 2 we list the notation
used throughout the paper; we also recall the notion of entropy solution to (1.1).
In Section 3, we state and discuss our main results. Sections 4–5 are devoted to the
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proofs of our main results; Section 4 states some preliminary results on the nonlocal
operator. For the reader’s convenience, some more or less known technical results
have been gathered in the Appendices.

2. Preliminaries

In this section we explain most of the notation used in the paper, and we give
the definition of entropy solutions of (1.1) along with a well-posedness result. For
the definitions of measures and BV -spaces, we refer to the books [33, 53].

2.1. Notation.

2.1.1. Vectors, sets and functions. Throughout the paper d ∈ N is a fixed dimen-
sion, T > 0 a fixed time, and (x, t) = (x1, . . . , xd, t) ∈ QT := Rd × (0, T ) is the
generic space-time variable. For all a, b ∈ R we let a ∧ b := min{a, b}, a ∨ b :=
max{a, b}, a+ := a ∨ 0, and a− := (−a) ∨ 0. For all m ∈ N, we let · and | · | denote
the Euclidean inner product and norm of Rm, while for a matrix A ∈ Rm×m, we use
the norm |A| = max{Aw : w ∈ Rm, |w| ≤ 1}. We let −E := {−w ∈ Rm : w ∈ E},
and denote the characteristic function of the set E by 1E .

By C∞ and C∞c we denote the spaces of infinitely differentiable functions and
infinitely differentiable functions with compact support. Moreover, for p ∈ [1,+∞],
Lp, W k,p, L1

loc, and D′ denote the Lebesgue and Sobolev spaces, the locally inte-
grable functions, and the Schwartz distributions respectively. Sometime we indicate
range and domain of the functions, e.g. C∞c (Rd,Rd).

The support of u ∈ D′ is denoted by suppu. The restriction of u to a set U is
denoted by u|U . By u ∗ v we mean the convolution of two functions u = u(x, t)

and v = v(x, t) w.r.t. to the space variable x. We let ∂tu, Dxu, and D2
xu denote

the partial derivative in time, the spatial gradient, and the spatial Hessian matrix
of u respectively. If there is no confusion, we write D instead of Dx. The derivative
of a one variable function u is written u′. The same notation is also used for
distributional derivatives.

2.1.2. Radon measures. Let µ be a nonnegative Radon measure on Rd \ {0}, i.e. a
measure µ : BRd\{0} → [0,+∞] which is finite on compact sets and where BRd\{0}
is the Borel σ-algebra of Rd \ {0}. As usual, µ is extended to a complete measure
to the (smallest) µ-completion of BRd\{0}:

BµRd\{0} := {E ⊆ Rd \ {0} s.t. there is Bi ∈ BRd\{0} (i = 1, 2)

with B1 ⊆ E ⊆ B2 and µ(B2 \B1) = 0}.

We say that u : Rd \ {0} → R is µ-measurable (µ-integrable) if for each real inter-

val I, u−1(I) ∈ BµRd\{0} (if in addition it is integrable w.r.t. µ). For the Lebesgue
measure we simply use the terminologies measurable, integrable, almost everywhere
(a.e.), etc.

Throughout the paper the Lebesgue measure of Rm is denoted by dw if w denotes
the generic variable of Rm. Its tensor product with µ is denoted by dµ(z) dw; note

that this is a well-defined nonnegative Radon measure on Bdµ(z) dw(Rd\{0})×Rm , since µ
is σ-finite.

Given another nonnegative Radon measure ν on Rd \ {0}, the total variation

of µ − ν is denoted by |µ − ν|. The positive and negative parts |µ−ν|±(µ−ν)2 are
denoted by (µ− ν)± respectively.
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2.1.3. BV -spaces. The space BV (Rd) of functions with bounded variation on Rd
is defined as the space of u ∈ L1

loc(Rd) such that Du is a (finite variation Radon)
measure Du : BRd → Rd. Let us recall that its total variation |Du| satisfies for
all B ∈ BRd ,
(2.1)

|Du|(B) = inf
B⊆U open

sup

{ˆ
Rd
udivφ dx : φ ∈ C∞c (Rd,Rd), |φ| ≤ 1, suppφ ⊂ U

}
.

The BV -semi-norm of u is defined as |u|BV (Rd) := |Du|(Rd) < +∞ .

2.1.4. Functions in L∞ ∩C(L1)∩L∞(BV ). Given u ∈ L∞(QT )∩C([0, T ];L1) we
denote by u(t) the function u(·, t) if there is no confusion. The C([0, T ];L1)-norm
of u is

‖u‖C([0,T ];L1) := max
{
‖u(t)‖L1(Rd) : t ∈ [0, T ]

}
.

The modulus of continuity (in time) of u ∈ C([0, T ];L1) is denoted by

ωu(δ) := max
{
‖u(t)− u(s)‖L1(Rd) : t, s ∈ [0, T ] s.t. |t− s| ≤ δ

}
, δ > 0.

Throughout the paper we say that

u ∈ L∞(QT ) ∩ C([0, T ];L1) ∩ L∞(0, T ;BV )

if for all t ∈ [0, T ], u(t) ∈ BV (Rd), and if the L∞(0, T ;BV )-semi-norm of u,

|u|L∞(0,T ;BV ) := sup
{
|u(t)|BV (Rd) : t ∈ [0, T ]

}
<∞.

The L1(0, T ;BV )-semi-norm of u is defined as

|u|L1(0,T ;BV ) :=

ˆ T

0

|u(t)|BV (Rd) dt.

Note that it is standard that t→ |u(t)|BV (Rd) is measurable since it is lower semi-
continuous; see e.g. [33].

2.2. Entropy formulation and well-posedness. Let us recall the formal com-
putations leading to the entropy formulation of (1.1). First we split Lµ into 3
parts:

(2.2) Lµ[φ](x) = Lµr [φ](x) + div (bµr φ) (x) + Lµ,r[φ](x)

for φ ∈ C∞c (Rd), r > 0, and x ∈ Rd, where

Lµr [φ](x) :=

ˆ
0<|z|≤r

φ(x+ z)− φ(x)− z ·Dφ(x) 1|z|≤1 dµ(z),(2.3)

bµr := −
ˆ
|z|>r

z1|z|≤1 dµ(z),(2.4)

Lµ,r[φ](x) :=

ˆ
|z|>r

φ(x+ z)− φ(x) dµ(z).(2.5)

Consider then the Kruzhkov [45] entropies | · −k|, k ∈ R, and entropy fluxes

(2.6) qf (u, k) := sgn (u− k) (f(u)− f(k)) ∈ Rd,

where we always use the following everywhere representative of the sign function:

(2.7) sgn (u) :=

{
±1 if ±u > 0,

0 if u = 0.

By (1.4) it is readily seen that for all u, k ∈ R,

(2.8) sgn (u− k) (A(u)−A(k)) = |A(u)−A(k)|,
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and we formally deduce from (2.2), (2.8), and the nonnegativity of µ that

sgn (u− k)Lµ[A(u)]

≤ Lµr [|A(u)−A(k)|] + div (bµr |A(u)−A(k)|) + sgn (u− k)Lµ,r[A(u)].

Let u be a solution of (1.1), and multiply (1.1) by sgn (u − k). Formal compu-
tations then reveals that

∂t|u− k|+ div (qf (u, k)− bµr |A(u)−A(k)|)
≤ Lµr [|A(u)−A(k)|] + sgn (u− k)Lµ,r[A(u)].

The entropy formulation in Definition 2.1 below consists in asking that u satisfies
this inequality for all entropy-flux pairs (i.e. for all k ∈ R) and all r > 0. Roughly
speaking one can give a sense to sgn (u−k)Lµ,r[A(u)] for bounded discontinuous u
thanks to (1.6). But since µ may be singular at z = 0, see Remark 1.1 (3), the
other terms have to be interpreted in the sense of distributions: Multiply by test
functions φ and integrate by parts to move singular operators onto test functions.
For the nonlocal terms this can be done by change of variables: First take (z, x, t)→
(−z, x, t) to see (formally) thatˆ

QT

φ div (bµr |A(u)−A(k)|) dxdt =

ˆ
QT

Dφ · bµ
∗

r |A(u)−A(k)|dxdt,

where µ∗ is the Lévy measure (i.e. it satisfies (1.6)) defined by

(2.9) µ∗(B) := µ (−B) for all B ∈ BRd\{0}.

In view of (2.3), we can take (z, x, t)→ (−z, x+ z, t) to find thatˆ
QT

φLµr [|A(u)−A(k)|] dxdt =

ˆ
QT

|A(u)−A(k)| Lµ
∗

r [φ] dxdt.

This leads to the following definition introduced in [19].

Definition 2.1. (Entropy solutions) Assume (1.3)–(1.6). We say that a func-
tion u ∈ L∞(QT ) ∩ C

(
[0, T ];L1

)
is an entropy solution of (1.1) provided that for

all k ∈ R, all r > 0, and all nonnegative φ ∈ C∞c (Rd+1),

(2.10)

ˆ
QT

|u− k| ∂tφ+
(
qf (u, k) + bµ

∗

r |A(u)−A(k)|
)
·Dφdxdt

+

ˆ
QT

|A(u)−A(k)| Lµ
∗

r [φ] + sgn (u− k)Lµ,r[A(u)]φ dxdt

−
ˆ
Rd
|u(x, T )− k|φ(x, T ) dx+

ˆ
Rd
|u0(x)− k|φ(x, 0) dx ≥ 0.

Remark 2.1.

(1) Under assumptions (1.3)–(1.6), the entropy inequality (2.10) is well-defined
independently of the a.e. representative of u. To see this note that µ∗ ob-
viously satisfies (1.6), and hence it easily follows that Lµ∗r [φ] ∈ C∞c (Rd+1).
Since sgn (u−k), qf (u, k), and A(u) belong to L∞ by (2.7) and (1.3)–(1.4),
it is then clear that all terms in (2.10) are well-defined except possibly the
Lµ,r-term. Here it may look like we are integrating Lebesgue measurable
functions w.r.t. a Radon measure µ. However, the integrand does have
the right measurability/integrability by Lemma 4.2. We therefore find that
since A(u) belongs to C([0, T ];L1), so does also Lµ,r[A(u)] and we are done.

(2) In the definition of entropy solutions, it is possible to consider functions u
only defined for a.e. t ∈ [0, T ] by taking test functions with compact support
in QT and adding an explicit initial condition, see e.g. [19].
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(3) One can check that classical solutions are entropy solutions, thus justifying
the formal computations leading to Definition 2.1. Moreover entropy so-
lution are weak solutions and hence smooth entropy solutions are classical
solutions. We refer the reader to [19] for the proofs.

Here is a well-posedness result from [19].

Theorem 2.2. (Well-posedness) Assume (1.3)–(1.6). There exists a unique en-
tropy solution u of (1.1). This entropy solution belongs to L∞(QT )∩C

(
[0, T ];L1

)
∩

L∞ (0, T ;BV ) and

(2.11)


‖u‖L∞(QT ) ≤ ‖u0‖L∞(Rd),

‖u‖C([0,T ];L1) ≤ ‖u0‖L1(Rd),

|u|L∞(0,T ;BV ) ≤ |u0|BV (Rd).

Moreover, if v is the entropy solution of (1.1) with v(0) = v0 for another initial
data v0 satisfying (1.5), then

(2.12) ‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd).

Remark 2.3. By the L∞-estimate in (2.11), all the results of this paper also holds
for locally Lipschitz-continuous nonlinearities (f,A). Simply replace the data (f,A)
by (f,A) 1[−M,M ] with M := ‖u0‖L∞(Rd).

3. Main results

Our first main result is a Kuznetsov type of lemma that measures the distance
between the entropy solution u of (1.1) and an arbitrary function v.

Let ε, δ > 0 and φε,δ ∈ C∞(Q2
T ) be the test function

φε,δ(x, t, y, s) := θδ(t− s) θ̄ε(x− y),(3.1)

where θδ(t) := 1
δ θ̃1

(
t
δ

)
and θ̄ε(x) := 1

εd
θ̃d
(
x
ε

)
are, respectively, time and space

approximate units with kernel θ̃n with n = 1 and n = d satisfying

(3.2) θ̃n ∈ C∞c (Rn), θ̃n ≥ 0, supp θ̃n ⊆ {|x| < 1}, and

ˆ
Rn
θ̃n(x) dx = 1.

Also recall that ωu(δ) is the modulus of continuity of u ∈ C
(
[0, T ];L1

)
.

Lemma 3.1 (Kuznetsov type Lemma). Assume (1.3)–(1.6). Let u be the entropy
solution of (1.1) and v ∈ L∞(QT )∩C

(
[0, T ];L1

)
with v(0) = v0. Then for all r > 0,
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ε > 0, and 0 < δ < T ,

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + εCθ̃ |u0|BV (Rd) + 2ωu(δ) ∨ ωv(δ)

−
¨
Q2
T

|v(x, t)− u(y, s)| ∂tφε,δ(x, t, y, s) dw

−
¨
Q2
T

(
qf (v(x, t), u(y, s)) + bµ

∗

r |A(v(x, t))−A(u(y, s))|
)
·Dxφ

ε,δ(x, t, y, s) dw

+

¨
Q2
T

|A(v(x, t))−A(u(y, s))| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw

−
¨
Q2
T

sgn (v(x, t)− u(y, s))Lµ,r[A(u(·, s))](y)φε,δ(x, t, y, s) dw

+

¨
Rd×QT

|v(x, T )− u(y, s)|φε,δ(x, T, y, s) dxdy ds

−
¨

Rd×QT
|v0(x)− u(y, s)|φε,δ(x, 0, y, s) dxdy ds

(3.3)

where dw := dx dtdy ds, and Cθ̃ := 2
´
Rd |x|θ̃d(x) dx.

Remark 3.2.

(1) The error in time only depends on the moduli of continuity of u and v
at t = 0 and t = T . Here we simply take the global-in-time moduli of
continuity ωu(δ) and ωv(δ), since this is sufficient in our settings.

(2) When A = 0 or µ = 0 this lemma reduces to the well-known Kuznetsov
lemma [46] for multidimensional scalar conservation laws.

(3) Notice that the Lµ∗r -term vanishes when r → 0, see Lemma 4.6.
(4) Lemma 3.1 has many applications. In this paper and in [3] we focus on con-

tinuous dependence results and error estimates for the vanishing viscosity
method. In a future paper, we will use the lemma to obtain error estimates
for numerical approximations of (1.1).

In this paper we apply Lemma 3.1 to compare the entropy solution u of (1.1)
with the entropy solution v of (1.13). This is our second main result , and we
present it in the two theorems below. The first focuses on the dependence on the
nonlinearities (with µ = ν) and the second one on the Lévy measure (with A = B).

Theorem 3.3. (Continuous dependence on the nonlinearities) Let u and v be the
entropy solutions of (1.1) and (1.13) respectively with data sets (f,A, u0, µ) and
(g,B, v0, ν = µ) satisfying (1.3)–(1.6). Then for all r2 > r1 > 0,

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞

+ |u0|BV (Rd)

√
cd T

ˆ
0<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(R)

+ |u0|BV (Rd) T

ˆ
r1<|z|≤r2

|z|dµ(z) ‖A′ −B′‖L∞(R)

+ |u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧1<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(R)

+ T

ˆ
|z|≥r2

‖u0(·+ z)− u0‖L1(Rd) dµ(z) ‖A′ −B′‖L∞(R),

(3.4)
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where cd = 4d2

d+1 .

Theorem 3.4. (Continuous dependence on the Lévy measure) Let u and v be
the entropy solutions of (1.1) and (1.13) respectively with data sets (f,A, u0, µ)
and (g,B = A, v0, ν) satisfying (1.3)–(1.6). Then for all r2 > r1 > 0,

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞

+ |u0|BV (Rd)

√
cd T ‖A′‖L∞(R)

ˆ
0<|z|≤r1

|z|2 d|µ− ν|(z)

+ |u0|BV (Rd) T ‖A′‖L∞(R)

ˆ
r1<|z|≤r2

|z|d|µ− ν|(z)

+ |u0|BV (Rd) T ‖A′‖L∞(R)

∣∣∣∣∣
ˆ
r1∧1<|z|≤r1∨1

z d(µ− ν)(z)

∣∣∣∣∣
+ T ‖A′‖L∞(R)

ˆ
|z|≥r2

‖u0(·+ z)− u0‖L1(Rd) d|µ− ν|(z),

(3.5)

where cd = 4d2

d+1 .

¿From Theorems 3.3 and 3.4 we can easily find a general continuous dependence
estimate when both A and µ are different from B and ν, respectively. E.g. we can
take an intermediate solution w of wt + div f(w) = Lµ[B(w)] and w(0) = u0, and
use the triangle inequality. Using this idea we can show that the following estimates
always have to hold:

Corollary 3.5. Let u and v be the entropy solutions of (1.1) and (1.13) respectively
with data sets (f,A, u0, µ) and (g,B, v0, ν) satisfying (1.3)–(1.6). Then

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞

+ C (T
1
2 ∨ T )

(√
‖A′ −B′‖L∞(R) +

√ˆ
Rd\{0}

|z|2 ∧ 1 d|µ− ν|(z)
)

(3.6)

where C only depends on d and the data. Moreover, if in additionˆ
Rd\{0}

|z| ∧ 1 dµ(z) +

ˆ
Rd\{0}

|z| ∧ 1 dν(z) <∞,

then we have the better estimate

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ‖f ′ − g′‖L∞

+ CT

(
‖A′ −B′‖L∞(R) +

ˆ
Rd\{0}

|z| ∧ 1 d|µ− ν|(z)
)
,

(3.7)

where C only depends on d and the data.

Outline of proof. To prove (3.6), we use Theorems 3.3 and 3.4 with r1 = 1 = r2
and the triangle inequality. We also use estimates like |a− b| ≤

√
|a|+ |b|

√
|a− b|,

|µ− ν| ≤ |µ|+ |ν| etc. To prove (3.7) we take r1 = 0 and r2 = 1. �

Remark 3.6.

(1) All these estimates hold for arbitrary Lévy measures µ, ν and even for
strongly degenerate diffusions where A,B may vanish on large sets. They
are consistent (at least for the |µ−ν| term) with general results for nonlocal
Hamilton-Jacobi-Bellman equations in [36]. When µ, ν have the special
form (1.7) (with possibly different α’s), then it is possible to use the extra
symmetry and homogeneity properties to obtain better estimates, see [3].
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(2) The optimal choice of the r1, r2 depends on the behavior of the Lévy mea-
sures at zero and infinity, see the discussion above and at the end of this
section for more details.

(3) In the special case of symmetric Lévy measures (µ = µ∗), the terms corre-
sponding to the cutting r1 ∧ 1 < |z| ≤ r1 ∨ 1 disappear.

Let us now consider the nonlocal vanishing viscosity problem

(3.8)

{
∂tu

ε + divf(uε) = εLµ[A(uε)],

uε(0) = u0,

i.e. problem (1.8) with a perturbation term εLµ[A(uε)]. When ε > 0 tend to zero, uε

is expected to converge toward the solution u of (1.8). As an immediate application
of Theorem 3.3 or 3.4, we have the following result:

Theorem 3.7 (Vanishing viscosity). Assume (1.3)–(1.6). Let u and uε be the
entropy solutions of (1.8) and (3.8) respectively. Then

‖u− uε‖C([0,T ];L1) ≤ C min
r2>r1>0

{
T

1
2 ε

1
2

√ˆ
0<|z|≤r1

|z|2 dµ(z)

+ Tε

[ˆ
r1<|z|≤r2

|z|dµ(z) +
∣∣∣ˆ
r1∧1<|z|≤r1∨1

z dµ(z)
∣∣∣+

ˆ
|z|≥r2

dµ(z)

]}
,

(3.9)

where C only depends on d, ‖u0‖L1(Rd)∩BV (Rd), ‖A′‖L∞(R).

Outline of proof. Note that u can be seen as the entropy solution of (1.1) withA = 0
and µ as Lévy measure. Hence we can estimate ‖u−uε‖C([0,T ];L1) from Theorem 3.3.
The error coming from the difference of the derivatives of the nonlinearities is equal
to ε ‖A′‖L∞(R). Inequality (3.9) then follows from (3.4). �

Corollary 3.8. Assume (1.3)–(1.6). Let u and uε be the entropy solutions of (1.8)
and (3.8) respectively. Then

‖u− uε‖C([0,T ];L1) ≤ C (T
1
2 ∨ T ) ε

1
2 ,

where C only depends on d and the data. Moreover, if in additionˆ
Rd\{0}

|z| ∧ 1 dµ(z) <∞,

then we have the better estimate

‖u− uε‖C([0,T ];L1) ≤ CTε,
where C depends on d and the data.

This corollary follows immediately from Theorem 3.7 or Corollary 3.5.

Remark 3.9.

(1) Our estimates are just as good or better than the standard O(ε
1
2 ) estimate

for the classical vanishing viscosity method ((1.10) with A(u) = ε u).
(2) Our estimates hold for arbitrary Lévy measures µ and even for strongly

degenerate diffusions where A may vanish on a large set! This is consistent
with general results for nonlocal Hamilton-Jacobi-Bellman equations [36].

(3) If the solutions are smoother, it is possible to obtain better estimates. Also
if µ is as in (1.7), the additional symmetry and homogeneity can be used to
obtain better estimates which can be proven to be optimal. See Example
3.3 below.

(4) Corollary 3.8 contains less information than Theorem 3.7 and is not strong
enough to get optimal results in all cases, e.g. in Example 3.3 with α ≥ 1.
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(5) The error estimates above trivially also holds for the more general vanishing
viscosity equation{

∂tu
ε + divf(uε) = Lν [B(uε)] + εLµ[A(uε)],

uε(0) = u0.

Further discussion. We now make a more precise comparison of the results above
with known estimates from the literature. We begin with continuous dependence
estimates and finish with convergence rates for vanishing viscosity approximations.

Let u and v denote the entropy solutions of (1.1) and (1.13), respectively. To
simplify, we take the same data sets (f,A, u0) = (g,B, v0) and we only allow the
Lévy measures µ and ν to be different. We also let C denote a constant only
depending on T, d and the data.

Example 3.1. Let us consider Equation (1.9), i.e. A(u) = u. Let us also consider
the class of Lévy operators satisfying{´

Rd\{0} |z|
2 ∧ |z|dµ(z) < +∞,

µ = µ∗.

For such kind of equations, the following continuous dependence estimate on the
Lévy measure has been established in [41]:

‖u− v‖C([0,T ];L1) ≤ C
ˆ
0<|z|≤1

|z|2 d|µ− ν|(z) + C

ˆ
|z|>1

|z|d|µ− ν|(z).

This estimate follows from Theorem 3.4 by taking r1 = 1 and r2 = +∞ in (3.5).

Example 3.2. Consider the following one-dimensional Hamilton-Jacobi-Bellman
equation

Ut + f(Ux) = Lµ[U ]

with initial data U0(x) :=
´ x
−∞ u0(y) dy. This particular equation is related to

the nonlocal conservation law (1.8), its solution U(x, t) =
´ x
−∞ u(y, t) dy where u

solves (1.8), see [19]. It is also an example of an integro-PDE for which the general
theory of [36] applies, and this theory allows us to establish the following continuous
dependence estimate on the Lévy measure:

sup
R×[0,T ]

|U − V | ≤ C
√ˆ

R\{0}
|z|2 ∧ 1 d|µ− ν|(z),

where V (x, t) :=
´ x
−∞ v(y, t) dy. (This result is a version of Theorem 4.1 (in [36])

which follows from Theorem 3.1 by setting p0, . . . , p4, ps = 0 and ρ = |z| ∧ 1 in
(A0)). Since

sup
R×[0,T ]

|U − V | ≤ ‖u− v‖C([0,T ];L1),

this estimate also follows from (3.6) in Corollary 3.5 when (A, f, u0) = (B, g, v0).

Let us now compare Theorem 3.7 with known convergence rates. We keep the
same notation for u, uε and O(·) as in Theorem 3.7.

Example 3.3. Let us consider the case where A(uε) = uε and Lµ = −(−4)
α
2 ,

α ∈ (0, 2). Then the following optimal rates have been derived in [1, 29]:

(3.10) ‖u− uε‖C([0,T ];L1) =


O
(
ε

1
α

)
if α > 1,

O (ε | ln ε|) if α = 1,

O (ε) if α < 1.
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Let us explain how these results can be deduced from (3.9). First we use (1.7) to
explicitly compute the integrals in (3.9) and obtain

‖u− uε‖C([0,T ];L1) = O

 min
r2>r1>0


√
ε
r2−α1

2− α
+ ε

ˆ r2

r1

dτ

τα
+ ε r−α2


 .

We then deduce (3.10) by taking r1 = ε
1
α and r2 = +∞ if α > 1, r1 = ε and r2 = 1

if α = 1, and r1 = 0 and r2 = 1 if α < 1.

Example 3.4. Let us consider the class of Lévy operators where dµ(z) = gµ(z) dz
for 0 ≤ gµ ∈ L1(Rd) such that

´
Rd gµ(z) dz = 1. This corresponds to problem

(1.11)–(1.12) since we may write

Lµ[uε] = gµ ∗ uε − uε (∗ is the convolution in space).

The following optimal rate of convergence has been derived in [47, 55]:

‖u− uε‖C([0,T ];L1) = O(ε).

This result also follows from (3.9) by taking r1 = r2 = 0.

4. Auxiliary results concerning Lµ

Before proving our main results in the next section, we state and prove some
results concerning Lµ that will be needed.

Lemma 4.1. Assume (1.6) and r > 0. Then for all φ ∈ C∞c (Rd),

‖Lµr [φ]‖L1(Rd) ≤
ˆ
0<|z|≤r

|z|2 dµ(z) ‖φ‖W 2,1(Rd).

Proof. Recall that µ is σ-finite as nonnegative Radon measure, hence the product
measure of µ and the Lebesgue measure is a well-defined nonnegative Radon mea-
sure for which Fubini’s theorem applies. Using in addition Taylor’s formula with
integral remainder, we find that

‖Lµr [φ]‖L1(Rd)

=

ˆ
Rd

∣∣∣∣∣
ˆ
0<|z|≤r

φ(x+ z)− φ(x)− z ·Dφ(x) 1|z|≤1 dµ(z)

∣∣∣∣∣dx,
≤
ˆ
0<|z|≤r∧1

ˆ 1

0

|z|2 (1− τ)

ˆ
Rd
|D2φ(x+ τz)|dxdτ dµ(z)

+

ˆ
1<|z|≤r∨1

ˆ 1

0

|z|
ˆ
Rd
|Dφ(x+ τz)|dxdτ dµ(z),

≤
ˆ
0<|z|≤r∧1

|z|2 dµ(z) ‖D2φ‖L1(Rd,Rd×d)

+

ˆ
1<|z|≤r∨1

|z|dµ(z) ‖Dφ‖L1(Rd,Rd) (by the change of variable x→ x+ τ z),

≤
ˆ
0<|z|≤r

|z|2 dµ(z) ‖φ‖W 2,1(Rd).

The proof is complete. �

Lemma 4.2. Assume (1.6), and let r > 0 and u ∈ L1(Rd). Then Lµ,r[u] is a
well-defined function in L1(Rd). Moreover,

(i) for a.e. x ∈ Rd, Lµ,r[u](x) =
´
|z|>r u(x+ z)− u(x) dµ(z),

(ii) ‖Lµ,r[u]‖L1(Rd) ≤ 2‖u‖L1(Rd)
´
|z|>r dµ(z),
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(iii) if u ∈ L1(Rd) ∩BV (Rd) and r2 > r1 > 0,

‖Lµ,r1 [u]‖L1(Rd) ≤ |u|BV (Rd)

ˆ
r1<|z|≤r2

|z|dµ(z)

+

ˆ
|z|>r2

‖u(·+ z)− u‖L1(Rd) dµ(z).

Remark 4.3. The precise statement of (i) is the following: For each a.e. repre-
sentative of u and for a.e. x ∈ Rd, z → u(x + z) − u(x) is µ-integrable and x →´
|z|>r u(x + z) − u(x) dµ(z) is an a.e. representative of Lµ,r[u]. This is not trivial

since it is not immediately clear that z → u(x+ z)− u(x) is µ-measurable when u
is Lebesgue measurable but not Borel measurable.

Proof. We start by proving that

(4.1) (z, x) ∈
(
Rd \ {0}

)
× Rd → (u(x+ z)− u(x)) 1|z|>r is dµ(z) dx-measurable

(where we still denote by u an a.e. representative of u). It suffices to prove
the measurability of v(z, x) := u(x + z), since all the other terms are obviously
measurable. Let us first assume that u is a simple function. We want to show
that for each real interval I, v−1(I) is an element of the (smallest) dµ(z) dx-

completion Bdµ(z) dx(Rd\{0})×Rd of B(Rd\{0})×Rd , see the definition in Section 2.1.2. It

suffices to prove it for u = 1E where E ∈ BdxRd is a Lebesgue measurable set,
i.e. when there are B1, B2 ∈ BRd s.t. B1 ⊆ E ⊆ B2 and

´
B2\B1

dx = 0. Now

let vi denote the function (z, x) → 1Bi(x + z) (i = 1, 2). We have to distin-
guish between four cases according to whether I contains the values 0 and/or 1.
Since the proof is very similar in all cases, we do it for only one case, 0 ∈ I
and 1 /∈ I. In that case v−1(I) = {(z, x) s.t. z 6= 0 and x+ z /∈ E} and v−1i (I) =

{(z, x) s.t. z 6= 0 and x+ z /∈ Bi} (i = 1, 2). This implies that v−12 (I) ⊆ v−1(I) ⊆
v−11 (I), where v−1i (I) ∈ B(Rd\{0})×Rd (i = 1, 2). Moreover, by the monotone con-
vergence theorem and Fubini,¨

v−1
1 (I)\v−1

2 (I)

dµ(z) dx = sup
n≥1

ˆ
Rd

ˆ
|z|> 1

n

1B2\B1
(x+ z) dµ(z) dx

= sup

{ˆ
|z|> 1

n

dµ(z)

ˆ
B2\B1

dx : n ≥ 1

}
= 0.

This shows that v−1(I) ∈ Bdµ(z) dx(Rd\{0})×Rd and hence v is measurable when u is a
simple function. Measurability in the general case then follows since any Lebesgue
measurable function u is the pointwise limit of simple functions.

Now simple computations show thatˆ
Rd

ˆ
|z|>r

|u(x+ z)− u(x)|dµ(z) dx

=

ˆ
|z|>r

‖u(·+ z)− u‖L1(Rd) dµ(z) ≤ 2

ˆ
|z|>r

dµ(z)︸ ︷︷ ︸
<+∞ by (1.6)

‖u‖L1(Rd).

By Fubini’s theorem, the function z → (u(x + z) − u(x)) 1|z|>r is µ-integrable for

a.e. x ∈ Rd, and x → Lµ,r[u](x) :=
´
|z|>r u(x + z) − u(x) dµ(z) is well-defined

in L1(Rd). This completes the proofs of (i) and (ii). When u is in addition BV ,
‖u(· + z) − u‖L1(Rd) ≤ |u|BV (Rd) |z| – see e.g. Lemma A.2, and (iii) follows easily
from the computations above. �

In the next result, we establish a Kato type inequality for Lµ,r[A(u)].
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Lemma 4.4. Assume (1.4) and (1.6). Then for all u ∈ L1(Rd), k ∈ R, r > 0,
and φ ∈ C∞c (Rd),ˆ

Rd
sgn (u− k)Lµ,r[A(u)]φ dx ≤

ˆ
Rd
|A(u)−A(k)| Lµ

∗,r[φ] dx.

Proof. Notice first that A(u) is L1 by (1.4), and hence Lµ,r[A(u)] is well-defined
in L1 by Lemma 4.2. Easy computations then reveal thatˆ

Rd
sgn (u− k)Lµ,r[A(u)]φ dx,

=

ˆ
Rd

ˆ
|z|>r

sgn (u(x)− k)
(
A(u(x+ z))−A(u(x))

)
φ(x) dµ(z) dx

by Lemma 4.2,

=

ˆ
Rd

ˆ
|z|>r

sgn (u(x)− k){
(A(u(x+ z))−A(k))− (A(u(x))−A(k))

}
φ(x) dµ(z) dx,

≤
ˆ
Rd

ˆ
|z|>r

(
|A(u(x+ z))−A(k)| − |A(u(x))−A(k)|

)
φ(x) dµ(z) dx by (2.8),

=

ˆ
Rd

ˆ
|z|>r

|A(u(x+ z))−A(k)|φ(x) dµ(z) dx︸ ︷︷ ︸
=:I

−
ˆ
Rd

ˆ
|z|>r

|A(u(x))−A(k)|φ(x) dµ(z) dx︸ ︷︷ ︸
=:J

.

Notice that the integrands above are dµ(z) dx–integrable by similar arguments as
in the proof of Lemma 4.2.

By the respective changes of variable (z, x)→ (−z, x+ z) and (z, x)→ (−z, x),
we find that

I =

ˆ
Rd

ˆ
|z|>r

φ(x+ z) |A(u(x))−A(k)|dµ∗(z) dx,

J =

ˆ
Rd

ˆ
|z|>r

φ(x) |A(u(x))−A(k)|dµ∗(z) dx

Here measure µ∗ in (2.9) appear because of the relabelling of z. This measure has
the same properties as µ. Hence we can conclude thatˆ

Rd
sgn (u− k)Lµ,r[A(u)]φ dx ≤ I − J =

ˆ
Rd
|A(u)−A(k)| Lµ

∗,r[φ] dx,

and the proposition follows. �

The next lemma is a consequence of the Kato inequality, and it plays a key role
in the doubling of variables arguments throughout this paper and in the uniqueness
proof of [1, 19].

Lemma 4.5. Assume (1.4) and (1.6), and let u, v ∈ L∞(QT ) ∩ C([0, T ];L1),
0 ≤ ψ ∈ L1(Rd × (0, T )2), and r > 0. Then¨

Q2
T

sgn (u(y, s)− v(x, t))

·
(
Lµ,r[A(u(·, s))](y)− Lµ,r[A(v(·, t))](x)

)
ψ(x− y, t, s) dw ≤ 0.
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Proof. Note that

sgn (u(y, s)− v(x, t))
(
A(u(y + z, s))−A(u(y, s))

)
− sgn (u(y, s)− v(x, t))

(
A(v(x+ z, t))−A(v(x, t))

)
= sgn (u(y, s)− v(x, t))

·
{(
A(u(y + z, s))−A(v(x+ z, t))

)
−
(
A(u(y, s))−A(v(x, t))

)}
≤ |A(u(y + z, s))−A(v(x+ z, t))| − |A(u(y, s))−A(v(x, t))|

where these functions are both defined. By Lemma 4.2 (i) and an integration w.r.t.
1|z|>r dµ(z), we find that for all (t, s) ∈ (0, T )2 and a.e. (x, y) ∈ R2d,

sgn (u− v)
(
Lµ,r[A(u(·, s))](y)− Lµ,r[A(v(·, t))](x)

)
≤
ˆ
|z|>r

|A(u(y + z, s))−A(v(x+ z, t))| − |A(u(y, s))−A(v(x, t))| dµ(z).

After another integration, this time w.r.t. ψ(x− y, t, s) dw, we then get that

¨
Q2
T

sgn (u− v)
(
Lµ,r[A(u(·, s))](y)− Lµ,r[A(v(·, t))](x)

)
ψ dw

≤
¨
Q2
T

ˆ
|z|>r

|A(u(y + z, s))−A(v(x+ z, t))| ψ(x− y, t, s) dµ(z) dw

−
¨
Q2
T

ˆ
|z|>r

|A(u(y, s))−A(v(x, t))| ψ(x− y, t, s) dµ(z) dw,

=: I + J.

Note that the dµ(z) dw-measurability of the integrands above follow from argu-
ments like the ones used in the proof of (4.1). Integrability of I and J then follows
since ‖A(u)‖C([0,T ];L1) ≤ ‖A′‖L∞‖u‖C([0,T ];L1) (A is Lipschitz-continuous and 0 at
0) and by Fubini (note the convolution integrals in x and y)

I, J ≤
(
‖A(u)‖C([0,T ];L1) + ‖A(v)‖C([0,T ];L1)

)
‖ψ‖L1(Rd×(0,T )2)

ˆ
|z|>r

dµ(x).

To conclude, we change variables, (z, x, t, y, s)→ (−z, x+ z, t, y + z, s) in I and
(z, x, t, y, s)→ (−z, x, t, y, s) in J , to find that

I =

¨
QT

ˆ
|z|>r

|A(u(y, s))−A(v(x, t))| ψ(x+ z − (y + z), t, s) dµ∗(z) dw,

J = −
¨
QT

ˆ
|z|>r

|A(u(y, s))−A(v(x, t))| ψ(x− y, t, s) dµ∗(z) dw.

It follows that I + J = 0 and the proof is complete. �

Lemma 4.6. Under the assumptions of Lemma 3.1,

I =

¨
Q2
T

|A(v(x, t))−A(u(y, s))| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw ≤ Cε
ˆ
0<|z|≤r

|z|2 dµ(z),

where Cε > 0 does not depend on r > 0.
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Proof. Easy computations show that

Lµ
∗

r [φε,δ(x, t, ·, s)](y)

= θδ(t− s)
ˆ
0<|z|≤r

θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y) 1|z|≤1 dµ∗(z)

= θδ(t− s)
ˆ
0<|z|≤r

θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) 1|z|≤1 dµ(z)

= θδ(t− s)Lµr [θ̄ε](x− y),

and by Fubini (there are again convolution integrals in I!),

I ≤
¨
Q2
T

|A(u(y, s))−A(v(x, t))| θδ(t− s)
∣∣Lµr [θ̄ε](x− y)

∣∣ dw

≤
(
‖A(u)‖L1(QT ) + ‖A(v)‖L1(QT )

)
‖θδ Lµr [θ̄ε]‖L1(Rd+1)

≤ T‖A′‖L∞
(
‖u‖C([0,T ];L1) + ‖v‖C([0,T ];L1)

)
‖θδ Lµr [θ̄ε]‖L1(Rd+1).

By classical properties of approximate units (Lemma A.1 in the appendix) and
Lemma 4.1,

‖θδ Lµr [θ̄ε]‖L1(Rd+1) = ‖θδ‖L1(R)︸ ︷︷ ︸
=1

‖Lµr [θ̄ε]‖L1(Rd)

≤ 1

2
‖θ̄ε‖W 2,1(Rd)

ˆ
0<|z|≤r

|z|2 dµ(z),

and the proof is complete since θ̄ε ∈ C∞c (Rd) in (3.1) does not depend on r > 0.
�

5. Proofs of the main results

The proofs of this section use the so-called doubling of variables technique of
Kruzhkov [45] (see also [1, 19] for nonlocal equations) along with ideas from [46].
It consists in considering u as a function of the new variables (y, s) and using the
approximate units φε,δ in (3.1) as test functions. For brevity, we do not specify the
variables of u = u(y, s), v = v(x, t) and φε,δ = φε,δ(x, t, y, s) when the context is
clear. Moreover, the Lebesgue measure dx dtdy ds is denoted by dw.

5.1. Proof of Lemma 3.1. Let (x, t) ∈ QT be fixed and u = u(y, s), k = v(x, t),
and φ(y, s) := φε,δ(x, t, y, s). The entropy inequality for u (see (2.10)) then takes
the form ˆ

QT

|u− v| ∂sφε,δ +
(
qf (u, v) + |A(u)−A(v)| bµ

∗

r

)
·Dyφ

ε,δ dy ds

+

ˆ
QT

|A(u)−A(v)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dy ds

+

ˆ
QT

sgn (u− v)Lµ,r[A(u(·, s))](y)φε,δ dy ds

−
ˆ
Rd
|u(y, T )− v(x, t)|φε,δ(x, t, y, T ) dy

+

ˆ
Rd
|u0(y)− v(x, t)|φε,δ(x, t, y, 0) dy ≥ 0.

We integrate this inequality w.r.t. (x, t) ∈ QT , noting that qf in (2.6) is symmetric,
and that ∂sφ

ε,δ = −∂sφε,δ and Dyφ
ε,δ = −Dxφ

ε,δ by (3.1). Consequently we find
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that

I1 + · · ·+ I5

:=

¨
Q2
T

|u− v| ∂sφε,δ︸ ︷︷ ︸
=−∂tφε,δ

+

(
qf (u, v)︸ ︷︷ ︸
=qf (v,u)

+|A(u)−A(v)| bµ
∗

r

)
· Dyφ

ε,δ︸ ︷︷ ︸
=−Dxφε,δ

dw

+

¨
Q2
T

|A(u)−A(v)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw

+

¨
Q2
T

sgn (u− v)Lµ,r[A(u(·, s))](y)φε,δ dw

−
¨
QT×Rd

|u(y, T )− v(x, t)|φε,δ(x, t, y, T ) dx dt dy

+

¨
QT×Rd

|u0(y)− v(x, t)|φε,δ(x, t, y, 0) dxdtdy ≥ 0.

(5.1)

Note that the terms in the inequality above are well-defined since they are all
essentially of the form of convolution integrals of L1-functions. See Lemmas 4.1
and 4.2 and the discussions in the proofs of Lemmas 4.5 and 4.6 for more details.

A classical computation from [46] reveals that

I4 + I5−
¨

Rd×QT
|u(y, s)− v(x, T )|φε,δ(x, T, y, s) dxdy ds︸ ︷︷ ︸

=:Iv4

+

¨
Rd×QT

|u(y, s)− v0(x)|φε,δ(x, 0, y, s) dxdy ds︸ ︷︷ ︸
=:Iv5

≤ −‖u(T )− v(T )‖L1(Rd) + ‖u0 − v0‖L1(Rd)

+ εCθ̃ |u0|BV (Rd) + 2ωu(δ) ∨ ωv(δ),

(5.2)

where Cθ̃ is as in Lemma 3.1. For the readers convenience we sketch the proof
in Section B.1 in the appendix. Lemma 3.1 now follows from (5.1) and the above
estimates on I4 and I5.

5.2. Proof of Theorem 3.3. We adapt ideas from [36] to the current entropy
solution setting by considering the region where A′ ≥ B′ and its complementary.
Let E± be sets satisfying

(5.3)


E± ∈ BR;

∪±E± = R and ∩± E± = ∅;
R \ supp(A′ −B′)∓ ⊆ E±.

For all u ∈ R, we define

A±(u) :=

ˆ u

0

A′(τ) 1E±(τ) dτ,

B±(u) :=

ˆ u

0

B′(τ) 1E±(τ) dτ,

C±(u) := ±(A±(u)−B±(u)).

(5.4)

We will need the following two technical lemmas.

Lemma 5.1. Under the assumptions of Theorem 3.3,

(i) A = A+ +A− and B = B+ +B−;
(ii) A±, B±, C± satisfy (1.4);
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(iii)
∑
± |C±(u)|L1(0,T ;BV ) ≤ ‖A′ −B′‖L∞(R) |u|L1(0,T ;BV );

(iv) for all z ∈ Rd \ {0},∑
±
‖C±(u(·+ z, ·))− C±(u)‖L1(QT ) ≤ ‖A

′ −B′‖L∞(R) ‖u(·+ z, ·)− u‖L1(QT ).

We prove these Lemmas after the proof of Theorem 3.3.

Proof of Theorem 3.3. Let us divide the proof into several steps.

1. We argue as in the beginning of the proof of Lemma 3.1 changing the roles of u
and v. We fix (y, s) and take k = u(y, s) and φε,δ = φε,δ(x, t, y, s) in the entropy
inequality for v = v(x, t) to find that

¨
Q2
T

|v − u| ∂tφε,δ +
(
qg(v, u) + |B(v)−B(u)| bµ

∗

r

)
·Dxφ

ε,δ dw

+

¨
Q2
T

|B(v)−B(u)| Lµ
∗

r [φε,δ(·, t, y, s)](x) dw

+

¨
Q2
T

sgn (v − u)Lµ,r[B(v(·, t))](x)φε,δ dw

−
¨

Rd×QT
|v(x, T )− u(y, s)|φε,δ(x, T, y, s) dx dy ds

+

¨
Rd×QT

|v0(x)− u(y, s)|φε,δ(x, 0, y, s) dx dy ds ≥ 0.

Then we add this inequality and inequality (3.3) in Lemma 3.1,

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + εCθ̃ |u0|BV (Rd) + 2ωu(δ) ∨ ωv(δ)

+

¨
Q2
T

(qg − qf )(v, u) ·Dxφ
ε,δ dw︸ ︷︷ ︸

=:I1

+

¨
Q2
T

|B(v)−B(u)| Lµ
∗

r [φε,δ(·, y, t, s)](x) dw︸ ︷︷ ︸
=:I2

+

¨
Q2
T

|A(v))−A(u)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw︸ ︷︷ ︸
=:I′2

+

¨
Q2
T

(
|B(v)−B(u)| − |A(v)−A(u)|

)
bµ
∗

r ·Dxφ
ε,δ dw︸ ︷︷ ︸

=:I3

+

¨
Q2
T

sgn (v − u)
(
Lµ,r[B(v(·, t))](x)− Lµ,r[A(u(·, s))](y)

)
φε,δ dw︸ ︷︷ ︸

=:I4

,

(5.5)

where r, ε > 0, 0 < δ < T , and Cθ̃ > 0 only depends on the kernel θ̃d from (3.2).
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2. It is standard to estimate I1 (cf. e.g. [25, 46] ), and I2 + I ′2 can be estimated by
Lemma 4.6,

I1 ≤ |u0|BV (Rd) T ess-supR |f ′ − g′|,(5.6)

I2 + I ′2 ≤ Cε
ˆ
0<|z|≤r

|z|2 dµ(z),(5.7)

where Cε does not depend on r > 0. For the sake of completeness, the proof of
(5.6) is given in Appendix B Section B.3. Now we focus on I3 and I4.

3. Cutting w.r.t. E±. We split I3 and I4 into four new terms using the sets E±,
see (5.3)–(5.4). By Lemma 5.1 (i), I4 can be written as

I4 =
∑
±

¨
Q2
T

sgn (v − u)
(
Lµ,r[B±(v(·, t))](x)− Lµ,r[A±(u(·, s))](y)

)
φε,δ dw.

By Lemma 5.1 (ii), we can apply twice Lemma 4.5 with B+ and A− instead of A,
followed by the definitions of C±, see (5.4), to show that

I4 ≤
¨
Q2
T

sgn (v − u)Lµ,r
[
B+(u(·, s))−A+(u(·, s))

]
(y)φε,δ dw

+

¨
Q2
T

sgn (v − u)Lµ,r
[
B−(v(·, t))−A−(v(·, t))

]
(x)φε,δ dw

=

¨
Q2
T

sgn (u− v)Lµ,r
[
C+(u(·, s))

]
(y)φε,δ dw

+

¨
Q2
T

sgn (v − u)Lµ,r
[
C−(v(·, t))

]
(x)φε,δ dw

=: I+4 + I−4 .(5.8)

Note that it is crucial to have u in the first term and v in the second – otherwise
we will not be able to apply the Kato inequality later on!

We now consider I3. By (2.8), Lemma 5.1 (i)–(ii), the formulaDxφ
ε,δ = −Dyφ

ε,δ,
and the definitions D+ = Dy and D− = Dx, it follows that(

|B(v)−B(u)| − |A(v)−A(u)|
)
Dxφ

ε,δ

= sgn (u− v)
{

(A(u)−B(u))− (A(v)−B(v))
}
Dyφ

ε,δ

=
∑
±

sgn (u− v)
{
± (A±(u)−B±(u))∓ (A±(v)−B±(v))

}
D±φ

ε,δ

=
∑
±
|C±(u)− C±(v)|D±φε,δ.

We can then rewrite I3 as

(5.9) I3 =
∑
±

¨
QT

|C±(u)− C±(v)| bµ
∗

r ·D±φε,δ dw︸ ︷︷ ︸
=:I±3

.

4. Cutting w.r.t. z. We decompose Lµ,r into two new terms using a new cutting
parameter r1 > r. Let µ = µ1 + µ||z|>r1 for

µ1 := µ|0<|z|≤r1 ,
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and note that by (2.5), Lµ,r = Lµ1,r + Lµ,r1 . Then

I+4 =

¨
Q2
T

sgn (u− v)Lµ1,r[C+(u(·, s))](y)φε,δ dw︸ ︷︷ ︸
=:I+5

+

¨
Q2
T

sgn (u− v)Lµ,r1 [C+(u(·, s))](y)φε,δ dw.

(5.10)

Since C+ satisfies (1.4) by Lemma 5.1 (ii) and µ1 clearly satisfies (1.6), we can
apply the Kato type inequality in Lemma 4.4 (with k = v(x, t) and A = C+) to
show that

I+5 =

ˆ
QT

ˆ
QT

sgn (u(y, s)− v(x, t))Lµ1,r[C+(u(·, s))](y)φε,δ dy dsdxdt

≤
ˆ
QT

ˆ
QT

|C+(u(y, s))− C+(v(x, t))| Lµ
∗
1 ,r[φε,δ(x, t, ·, s)](y) dy dsdxdt.

Adding I+3 in the form (5.9) then gives
(5.11)

I+3 + I+5 ≤
¨
Q2
T

|C+(u)− C+(v)|
(
bµ
∗

r ·Dyφ
ε,δ + Lµ

∗
1 ,r[φε,δ(x, t, ·, s)](y)

)
dw.

Now easy computations show that

Dyφ
ε,δ = −θδ(t−s)Dθ̄ε(x−y), Lµ

∗
1 ,r[φε,δ(x, t, ·, s)](y) = θδ(t−s)Lµ1,r[θ̄ε](x−y).

Hence by adding and subtracting z ·Dθ̄ε(x− y), we get that

bµ
∗

r ·Dyφ
ε,δ + Lµ

∗
1 ,r[φε,δ(x, t, ·, s)](y)

= θδ(t− s)
ˆ
r<|z|≤r1

θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) dµ(z)

+ θδ(t− s)Dθ̄ε(x− y) ·

(
−bµ

∗

r +

ˆ
r<|z|≤r1

z dµ(z)

)
︸ ︷︷ ︸

=sgn (r1−1)
´
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

,

(5.12)

where the last equality comes from (2.4) and the change of variable z → −z. We
insert (5.12) into (5.11) and combine the resulting inequality with (5.10),

I+3 + I+4 ≤¨
Q2
T

|C+(u)− C+(v)|

· θδ(t− s)
ˆ
r<|z|≤r1

θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) dµ(z) dw

+

¨
Q2
T

|C+(u)− C+(v)|

· θδ(t− s)Dθ̄ε(x− y) · sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z) dw

+

¨
Q2
T

sgn (u− v)Lµ,r1 [C+(u(·, s))](y)φε,δ dw

=: J+
1 + J+

2 + J+
3 .

(5.13)



CONTINUOUS DEPENDENCE ESTIMATES FOR INTEGRO-PDES 21

Similar arguments show that we can bound I−3 + I−4 (see (5.8)–(5.9) ) as follows,

I−3 + I−4 ≤¨
Q2
T

|C−(v)− C−(u)|

· θδ(t− s)
ˆ
r<|z|≤r1

θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y) dµ(z) dw

−
¨
Q2
T

|C−(v)− C−(u)|

· θδ(t− s)Dθ̄ε(x− y) · sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z) dw

+

¨
Q2
T

sgn (v − u)Lµ,r1 [C−(v(·, t))](x)φε,δ dw︸ ︷︷ ︸
≤
˜
Q2
T

sgn (v−u)Lµ,r1 [C−(u(·,s))](y)φε,δ dw by Lemma 4.5

=: J−1 + J−2 + J−3 .

(5.14)

5. L1 ∩BV -regularity. It remains to estimate J±i for i = 1, . . . , 3 in (5.13)–(5.14).
For J±1 and J±2 , we use Fubini and integrate by parts to take advantage of the BV -
regularity of the entropy solution u. After some computations given in Appendix B
(see Lemma B.1), we find that

|J±1 | ≤
1

2ε

ˆ
Rd
|Dθ̃d|dx

ˆ
r<|z|≤r1

|z|2 dµ(z) |C±(u)|L1(0,T ;BV ),

|J±2 | ≤

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ |C±(u)|L1(0,T ;BV ),

and hence∑
±

(J±1 + J±2 ) ≤ 1

2ε

ˆ
Rd
|Dθ̃d|dx

ˆ
r<|z|≤r1

|z|2 dµ(z)
∑
±
|C±(u)|L1(0,T ;BV )

+

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣∑
±
|C±(u)|L1(0,T ;BV ).

By Lemma 5.1 (iii) and a priori estimates for u, cf. (2.11), we see that

∑
±

(J±1 + J±2 ) ≤ 1

2ε

ˆ
Rd
|Dθ̃d|dx |u|L1(0,T ;BV )︸ ︷︷ ︸

≤|u0|BV (Rd) T

ˆ
r<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(R)

+ |u|L1(0,T ;BV )︸ ︷︷ ︸
≤|u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(R).(5.15)

Let us now estimate J+
3 in (5.13). Easy computations (see the proofs of Lem-

mas 4.5–4.6 ) show that

J+
3 ≤ ‖θδ θ̄ε‖L1(Rd+1) ‖Lµ,r1 [C+(u)]‖L1(QT ).
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By Lemma A.1, ‖θδ θ̄ε‖L1(Rd+1) = ‖θδ‖L1(R) ‖θ̄ε‖L1(Rd) = 1, and then we can use
Lemma 4.2 (iii) to find that

J+
3 ≤

ˆ T

0

(ˆ
r1<|z|≤r2

|C+(u(·, s))|BV (Rd) |z|dµ(z)

+

ˆ
|z|>r2

‖C+(u(·+ z, s))− C+(u(·, s))‖L1(Rd) dµ(z)

)
ds

for all r2 > r1. Since C+(u) ∈ L∞ ∩ C([0, T ];L1) ∩ L∞(0, T ;BV ), (z, s) →
‖C+(u(·+z, s))−C+(u(·, s))‖L1(Rd) and s→ |C+(u(·, s))|BV (Rd) are continuous and
lower semi-continuous functions respectively and hence Borel measurable. They are
thus dµ(z) ds-measurable, and we may change the order of the integration to find

J+
3 ≤

ˆ
r1<|z|≤r2

|z|dµ(z) |C+(u)|L1(0,T ;BV )

+

ˆ
|z|>r2

‖C+(u(·+ z, ·))− C+(u)‖L1(QT ) dµ(z).

We get a similar estimates for J−3 and find by Lemma 5.1 (iii)–(iv) and (2.11) that∑
±
J±3 ≤

ˆ
r1<|z|≤r2

|z|dµ(z)
∑
±
|C±(u)|L1(0,T ;BV )

+

ˆ
|z|>r2

∑
±
‖C±(u(·+ z, ·))− C±(u)‖L1(QT ) dµ(z),

≤ |u0|BV (Rd) T

ˆ
r1<|z|≤r2

|z|dµ(z) ‖A′ −B′‖L∞(Rd)

+

ˆ
|z|>r2

‖u(·+ z, ·))− u‖L1(QT )︸ ︷︷ ︸
≤T ‖u0(·+z)−u0‖L1(Rd)

dµ(z) ‖A′ −B′‖L∞(Rd).(5.16)

The last inequality (under the bracket) comes from (2.12) applied to the solu-
tion u(·+ z, ·) of (1.1) with initial data u0(·+ z).

6. Conclusion. By (5.8)–(5.9) and (5.13)–(5.14), I3+I4 ≤
∑
±
∑3
i=1 J

±
i . Therefore

we may estimate (5.5) by (5.6)–(5.7) and (5.15)–(5.16). For all r2 > r1 > r > 0,
ε > 0, and T > δ > 0, we find that

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ess-supR |f ′ − g′|

+ εCθ̃ |u0|BV (Rd) + 2ωu(δ) ∨ ωv(δ) + Cε

ˆ
0<|z|≤r

|z|2 dµ(z)

+
1

2ε

ˆ
Rd
|Dθ̃d|dx |u0|BV (Rd) T

ˆ
r<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(Rd)

+ |u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(Rd)

+ |u0|BV (Rd) T

ˆ
r1<|z|≤r2

|z|dµ(z) ‖A′ −B′‖L∞(Rd)

+ T

ˆ
|z|>r2

‖u0(·+ z)− u0‖L1(QT ) dµ(z) ‖A′ −B′‖L∞(Rd),

(5.17)

where Cε > 0 does not depend on r > 0.
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To finish, we first pass to the limit as r → 0 in (5.17). By the dominated
convergence theorem, the result is equivalent to setting r = 0 in each term, and in
particular the term Cε

´
0<|z|≤r |z|

2 dµ(z) vanishes. Secondly, we pass to the limit

as δ → 0 to get rid of the term 2ωu(δ)∨ ωv(δ). Finally, we optimize the remaining

terms w.r.t. ε > 0 by using the formula minε>0

(
ε a+ b

ε

)
= 2
√
ab (for a, b ≥ 0).

This gives us the following continuous dependence estimate: F or all r2 > r1 > 0,

‖u− v‖C([0,T ];L1) ≤ ‖u0 − v0‖L1(Rd) + |u0|BV (Rd) T ess-supR |g′ − f ′|

+ 2

√
1

2
Cθ̃

ˆ
Rd
|Dθ̃d|dx |u0|2BV (Rd) T

ˆ
0<|z|≤r1

|z|2 dµ(z) ‖A′ −B′‖L∞(R)

+ |u0|BV (Rd) T

ˆ
r1<|z|≤r2

|z|dµ(z) ‖A′ −B′‖L∞(R)

+ |u0|BV (Rd) T

∣∣∣∣∣
ˆ
r1∧1<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ ‖A′ −B′‖L∞(R)

+ T

ˆ
|z|≥r2

‖u0(·+ z)− u0‖L1(Rd) dµ(z) ‖A′ −B′‖L∞(R),

(5.18)

where θ̃d is an arbitrary approximate unit (3.2) and Cθ̃ = 2
´
Rd |x| θ̃d(x) dx by

Lemma 3.1.
Let θ̃d = θn where {θn}n∈N is a sequence of kernels s.t. θn satisfies (3.2), θn →

ωd
−11|·|<1 in L1, and

´
Rd |Dθn|dx→ ωd

−1|1|·|<1|BV (Rd). Here ωd is the volume of

the unit ball in Rd. Note that the BV -semi-norm of the indicator function of the
unit ball is equaled to the surface area of the unit sphere, i.e. |1|·|<1|BV (Rd) = dωd.
Moreover, we have

ˆ
Rd
|x||θn(x)|dx→ 1

ωd

ˆ
|x|<1

|x|dx =
d

d+ 1
.

The proof of (3.4) is then complete after passing to the limit as n → +∞ in
(5.18). �

Let us now prove Lemma 5.1.

Proof of Lemma 5.1. The proofs of (i)–(ii) are easy and left to the reader. Let us
prove (iii)–(iv). We differentiating (5.4), C ′± = ±(A′±−B′±) = ±(A′−B′) 1E± a.e.,
and use (5.3) to see that

(5.19) C ′± = (A′ −B′)± a.e..

Since u(t) ∈ L1(Rd) ∩ BV (Rd) for fixed t ∈ (0, T ), there is {φn}n∈N ⊂ C∞(Rd) ∩
W 1,1(Rd) s.t. φn → u(t) in L1 and

´
Rd |Dφn|dx → |u(t)|BV (Rd), see e.g. Theorem

2 in Section 5.2 of [33]. Since C± satisfy (1.4), it follows that C±(φn)→ C±(u(t))
in L1. Moreover, by lower semi-continuity of the BV -semi-norm,∑
±
|C±(u(t))|BV (Rd) ≤

∑
±

lim inf
n→+∞

ˆ
Rd
|DC±(φn)|dx ≤ lim inf

n→+∞

ˆ
Rd

∑
±
|DC±(φn)|dx.

Since φn is smooth and C± is Lipschitz-continuous, we can use the chain rule
and (5.19) to show that∑

±
|DC±(φn)| = |A′ −B′|(φn) |Dφn| ≤ ‖A′ −B′‖L∞(R) |Dφn| a.e..
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In the limit as n→ +∞, one thus gets∑
±
|C±(u(t))|BV (Rd)

≤ ‖A′ −B′‖L∞(R) lim
n→+∞

ˆ
Rd
|Dφn|dx = ‖A′ −B′‖L∞(R) |u(t)|BV (Rd).

An integration w.r.t. t ∈ (0, T ) now completes the proof of (iii).
We now prove (iv). Since C± is Lipschitz-continuous, it can be written as the

integral of its derivative. This implies for a.e. (x, t) ∈ QT ,∑
±
|C±(u(x+ z, t))− C±(u(x, t))|

= |u(x+ z, t)− u(x, t)|
∑
±

∣∣∣ ˆ 1

0

C ′±
(
(1− τ)u(x, t) + τ u(x+ z, t)

)
dτ
∣∣∣

≤ |u(x+ z, t)− u(x, t)|
ˆ 1

0

|A′ −B′|
(
(1− τ)u(x, t) + τ u(x+ z, t)

)
dτ by (5.19),

≤ ‖A′ −B′‖L∞(R) |u(x+ z, t)− u(x, t)| .

The proof of (iv) is complete by integrating w.r.t. (x, t) ∈ QT . �

5.3. Proof of Theorem 3.4. We argue step by step as in the proof of Theorem 3.3.
This time, E± are taken such as

(5.20)


E± ∈ BR;

∪±E± = R and ∩± E± = ∅;
Rd \ supp(µ− ν)∓ ⊆ E±.

Let µ± and ν± denote the restrictions of µ and ν to E±. It is clear that

(5.21)


µ =

∑
± µ± and ν =

∑
± ν±,

±(µ± − ν±) = (µ− ν)±,

µ±, ν±, and ± (µ± − ν±) all satisfy (1.6).

Proof of Theorem 3.4.

1. We apply Lemma 3.1 with A = B, but different Lévy measures µ and ν, along
with the entropy inequality for v to show that for all r, ε > 0, 0 < δ < T

‖u(T )− v(T )‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + εCθ̃ |u0|BV (Rd) + 2ωu(δ) ∨ ωv(δ)

+

¨
Q2
T

(qg − qf )(v, u) ·Dxφ
ε,δ dw

+

¨
Q2
T

|A(v)−A(u)| Lν
∗

r [φε,δ(·, y, t, s)](x) dw

+

¨
Q2
T

|A(v))−A(u)| Lµ
∗

r [φε,δ(x, t, ·, s)](y) dw

+

¨
Q2
T

|A(v)−A(u)|
(
bν
∗

r − bµ
∗

r

)
·Dxφ

ε,δ dw︸ ︷︷ ︸
=:I3

+

¨
Q2
T

sgn (v − u)
(
Lν,r[A(v(·, t))](x)− Lµ,r[A(u(·, s))](y)

)
φε,δ dw︸ ︷︷ ︸

=:I4

,

(5.22)
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where Cε > 0 does not depend on r > 0. Except for I3 and I4, the other terms
were estimated in the proof of Theorem 3.3.

2. Cutting w.r.t. E±. We use the notation introduced in (5.20). We apply
Lemma 4.5 twice with ν+ and µ− instead of µ, along with linearity of Lµ,r in
µ, see (2.3), to see that

I4 =
∑
±

¨
Q2
T

sgn (v − u)
(
Lν±,r[A(v(·, t))](x)− Lµ±,r[A(u(·, s))](y)

)
φε,δ dw

≤
¨
Q2
T

sgn (v − u)
(
Lν+,r[A(u(·, s))](y)− Lµ+,r[A(u(·, s))](y)

)
φε,δ dw

+

¨
Q2
T

sgn (v − u)
(
Lν−,r[A(v(·, t))](x)− Lµ−,r[A(v(·, t))](x)

)
φε,δ dw

=

¨
Q2
T

sgn (u− v)Lµ+−ν+,r[A(u(·, s))](y)φε,δ dw

+

¨
Q2
T

sgn (v − u)L−(µ−−ν−),r[A(v(·, t))](x)φε,δ dw

=: I+4 + I−4 .(5.23)

Again, it is crucial to have u in I+4 and v in I−4 in order to use Kato’s inequality
later on.

Let us now consider I3. By (2.4) and (2.9), bµr and µ∗ are linear w.r.t µ. Easy
computations using (5.21) then leads to(

bν
∗

r − bµ
∗

r

)
·Dxφ

ε,δ =
∑
±
b±(µ±−ν±)

∗

r ·D±φε,δ

where D+ = Dy and D− = Dx, and hence

I3 =
∑
±

¨
QT

|A(u)−A(v)| b±(µ±−ν±)
∗

r ·D±φε,δ dw =: I+3 + I−3 .

3. Cutting w.r.t. z. The computations of this step are similar to the ones in the
proof of Theorem 3.3. For the reader’s convenience, we estimate I−3 +I−4 , the terms
that was left to the reader in the preceding proof.

For any measure µ̃ we let µ̃1 = µ̃|0<|z|≤r1 and write µ̃ = µ̃1 + µ̃||z|>r1 for r1 > r.

Then

I−4 ≤
¨
QT

sgn (v − u)L−(µ−−ν−)1,r[A(v(·, t))](x)φε,δ dw︸ ︷︷ ︸
=:I−5

+

¨
QT

sgn (v − u)L−(µ−−ν−),r1 [A(v(·, t))](x)φε,δ dw.

Recall that −(µ− − ν−)1 is a positive Lévy measure by (5.21), so we can apply
Lemma 4.4 with −(µ− − ν−)1 instead of µ and k = u(y, s) to find that

I−5 ≤
¨
Q2
T

|A(v)−A(u)| L−(µ−−ν−)
∗
1 ,r[φε,δ(·, t, y, s)](x) dw

and

I−3 + I−5 ≤¨
Q2
T

|A(v)−A(u)|
(
b−(µ−−ν−)

∗

r ·Dxφ
ε,δ + L−(µ−−ν−)

∗
1 ,r[φε,δ(·, t, y, s)](x)

)
dw.
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Easy computations then leads to

L−(µ−−ν−)
∗
1 ,r[φε,δ(·, t, y, s)](x)

= θδ(t− s)
ˆ
r<|z|≤r1

θ̄ε(x− y − z)− θ̄ε(x− y) d(ν− − µ−)(z),

and we can rewrite the nonlocal operator as follows,

b−(µ−−ν−)
∗

r ·Dxφ
ε,δ + L−(µ−−ν−)

∗
1 ,r[φε,δ(·, t, y, s)](x)

= θδ(t− s)
ˆ
r<|z|≤r1

θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y) d(ν− − µ−)(z)

− θδ(t− s)Dθ̄ε(x− y) ·

(
−b−(µ−−ν−)

∗

r +

ˆ
r<|z|≤r1

z d(ν− − µ−)(z)

)
︸ ︷︷ ︸

=sgn (r1−1)
´
r1∧(1∨r)<|z|≤r1∨1

z d(ν−−µ−)(z)

.

Compare this expression with (5.12) that appear when I+3 and I+4 are considered.
We add the different estimates and find that for all r1 > r,

I−3 + I−4

≤
¨
Q2
T

|A(u)−A(v)| θδ(t− s)

·
ˆ
r<|z|≤r1

θ̄ε(x− y − z)− θ̄ε(x− y) + z ·Dθ̄ε(x− y) d(ν− − µ−)(z) dw

−
¨
Q2
T

|A(u)−A(v)| θδ(t− s)Dθ̄ε(x− y)

· sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(ν− − µ−)(z) dw

+

¨
Q2
T

sgn (v − u)L−(µ−−ν−),r1 [A(v(·, t))](x)φε,δ dw︸ ︷︷ ︸
≤
˜
Q2
T

sgn (v−u)L−(µ−−ν−),r1 [A(u(·,s))](y)φε,δ dw by Lemma 4.5

= J−1 + J−2 + J−3 .

Similar arguments also lead to

I+3 + I+4

≤
¨
Q2
T

|A(u)−A(v)|θδ(t− s)

·
ˆ
r<|z|≤r1

θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) d(µ+ − ν+)(z) dw

+

¨
Q2
T

|A(u)−A(v)| θδ(t− s)Dθ̄ε(x− y)

· sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(µ+ − ν+)(z) dw

+

¨
Q2
T

sgn (u− v)L(µ+−ν+),r1 [A(u(·, s))](y)φε,δ dw,

=: J+
1 + · · ·+ J+

3 .
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4. L1∩BV -regularity. We estimate J±i (i = 1, . . . , 3). By (B.1) of Lemma B.1 and
(2.11), it follows that∑
±
J±1 ≤

1

2ε

ˆ
Rd
|Dθ̃d|dx |u0|BV (Rd) T ‖A′‖L∞(R)

ˆ
r<|z|≤r1

|z|2 d
∑
±
±(µ± − ν±)︸ ︷︷ ︸

=|µ−ν| by (5.21)

(z).

Note now that
∑
±(µ± − ν±) = µ− ν, and hence∑

±
J±2 =

¨
Q2
T

|A(u)−A(v)| θδ(t− s)Dθ̄ε(x− y)

· sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(µ− ν)(z) dw.

An other application of (B.2) of Lemma B.1 and (2.11), can be used to see that∑
±
J±2 ≤ |u0|BV (Rd) T ‖A′‖L∞(R)

∣∣∣∣ˆ
r1∧(1∨r)<|z|≤r1∨1

z d(µ− ν)(z)

∣∣∣∣.
Finally, we use again Lemma 4.2 (iii) and (2.12) to show that∑

±
J±3 ≤ |u0|BV (Rd) T ‖A′‖L∞(Rd)

ˆ
r1<|z|≤r2

|z|d|µ− ν|(z)

+ T ‖A′‖L∞(R)

ˆ
|z|≥r2

‖u0(·+ z)− u0‖L1(Rd) d|µ− ν|(z).

5. Conclusion. The rest of the proof is the same as for Theorem 3.3; i.e. we use
the estimates on J±i to estimate I3 + I4 ≤

∑3
i=1

∑
± J
±
i in (5.22) and pass to limit

and/or optimizes w.r.t. the parameters r, ε, δ > 0. The proof is complete. �

Appendix A. Properties of approximate units and BV -functions

The results in this section are quite classical, see e.g. [13, 33, 53].

Lemma A.1. Assume (1.6) and let φε,δ be defined as in Lemma 3.1. Then for
all ε, δ > 0

(i) ‖θδ‖L1(R) = ‖θ̄ε‖L1(Rd) = 1,

(ii)
´
Rd |Dθ̄ε|dx ≤

1
ε ‖Dθ̃d‖L1(R).

Lemma A.2. Let u ∈ L1(Rd) ∩BV (Rd). Then for all h ∈ Rd,ˆ
Rd
|u(x+ h)− u(x)|dx ≤ |h| |u|BV (Rd).

Lemma A.3. Let u ∈ L1(Rd) ∩ BV (Rd) and q : R→ Rd be Lipschitz-continuous.
Then for all φ ∈ C∞c (Rd),

(A.1)

∣∣∣∣ˆ
Rd
q(u) ·Dφdx

∣∣∣∣ ≤ ess-supR |q′|
ˆ
Rd
|φ|d|Du|(x).

Moreover, if η : R→ R is Lipschitz-continuous, then η(u) ∈ BV (Rd) with

|Dη(u)| ≤ ‖η′‖L∞(R) |Du|.

Let us give a short proof of the last lemma for the reader’s convenience. Re-
member that | · | denotes the total variation measure of a Radon measure (see the
definition in (2.1)).
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Proof. Let us prove (A.1). For all n ∈ N, define φn := u∗ θ̄ 1
n
∈ C∞(Rd)∩W 1,1(Rd)

where θ̄ 1
n

is the approximate unit in (3.1). Also assume θ̃d in (3.2) is even. By

classical results on approximate units, φn → u in L1 as n → +∞. Moreover, for
all x ∈ Rd,

|Dφn(x)| =
∣∣∣∣ˆ

Rd
θ̄ 1
n

(x− y) dDu(y)

∣∣∣∣
≤
ˆ
Rd
θ̄ 1
n

(x− y) d|Du(y)| =
ˆ
Rd
θ̄ 1
n

(y − x) d|Du(y)|,

since θ̄ 1
n

is nonnegative and even. It then follows that

In : =

∣∣∣∣ˆ
Rd
q(φn) ·Dφdx

∣∣∣∣
=

∣∣∣∣ˆ
Rd
φ q′(φn) ·Dφn dx

∣∣∣∣ by integration by parts and the chain rule,

≤ ess-supR |q′|
ˆ
Rd
|φ| |Dφn|dx,

≤ ess-supR |q′|
ˆ
Rd
|φ(x)|

ˆ
Rd
θ̄ 1
n

(y − x) d|Du|(y) dx.

Since |Du| is σ-finite as finite Radon measure, the product measure dxd|Du|(y) is
well-defined and Fubini’s theorem applies. After changing the order of the integra-
tion, we find that

In ≤ ess-supR|q′|
ˆ
Rd
|φ| ∗ θ̄ 1

n
(y) d|Du|(y).

Again by classical results on approximate units, |φ| ∗ θ̄ 1
n
→ |φ| uniformly on Rd,

and hence

lim sup
n→+∞

In ≤ ess-supR|q′|
ˆ
Rd
|φ|d|Du|(y).

Finally since q(φn) converges to q(u) in L1
loc, we also have that

lim
n→+∞

In =

∣∣∣∣ˆ
Rd
q(u) ·Dφdx

∣∣∣∣ ,
and the proof of (A.1) is complete.

To prove the assertion for η(u), we repeat the above arguments with η instead
of q. The result is that for all φ ∈ C∞c (Rd,Rd),∣∣∣∣ˆ

Rd
η(u) div φdx

∣∣∣∣ ≤ ‖η′‖L∞(R)

ˆ
Rd
|φ|d|Du|(y),

and we may conclude from Riesz’s representation theorem [33, Section 1.8 Theo-
rem 1] that η(u) ∈ BV (Rd). Moreover, by (2.1) , we see that for all B ∈ BRd

|Dη(u)|(B) ≤ ‖η′‖L∞(R) inf {|Du|(U) s.t. U open, B ⊆ U} .

Finally, by classical regularity properties of Radon (Borel) measures [33, 53], the
infimum above is equaled to |Du|(B) and the proof is complete. �

Appendix B. Technical results and computations

B.1. Proof of (5.2). We start by estimating I4. Since

−|u(y, T )− v(x, t)| ≤ |u(y, T )− u(x, T )| − |u(x, T )− v(x, T )|+ |v(x, T )− v(x, t)|,
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and φε,δ is nonnegative,

I4 = −
¨
QT×Rd

|u(y, T )− v(x, t)|φε,δ(x, t, y, T ) dxdtdy

≤ −
¨
QT×Rd

|u(x, T )− v(x, T )|φε,δ(x, t, y, T ) dxdtdy

+

¨
QT×Rd

|u(y, T )− u(x, T )|φε,δ(x, t, y, T ) dx dtdy

+

¨
QT×Rd

|v(x, T )− v(x, t)|φε,δ(x, t, y, T ) dxdtdy

=: J1 + J2 + J3.

By Lemma A.1,

J1 = −
ˆ
Rd
|u(x, T )− v(x, T )|

ˆ T

0

θδ(t− T )

ˆ
Rd
θ̄ε(x− y) dy︸ ︷︷ ︸

=1

dtdx

= −‖u(T )− v(T )‖L1(Rd)

ˆ 0

−Tδ
θ̃1(τ) dτ.

By the change of variables (x, t, y)→ (x, t, x− y),

J2 =

ˆ
QT

θδ(t− T ) θ̄ε(y)

ˆ
Rd
|u(x− y, T )− u(x, T )|dxdy dt,

≤ |u(T )|BV (Rd)

ˆ
QT

θδ(t− T ) |y| θ̄ε(y) dy dt by Lemma A.2,

≤ |u0|BV (Rd)

ˆ 0

−Tδ
θ̃1(τ) dτ

ˆ
Rd
|y| 1

εd
θ̃d

(y
ε

)
dy by (2.11),

= ε

ˆ
Rd
|y| θ̃d(y) dy︸ ︷︷ ︸
=:

C
θ̃
2

|u0|BV (Rd)

ˆ 0

−Tδ
θ̃1(τ) dτ.

Finally, we see that

J3 =

ˆ
QT

|v(x, t)− v(x, T )| θδ(t− T )

ˆ
Rd
θ̄ε(x− y) dy dxdt,

≤
ˆ T

T−δ
θδ(t− T )

ˆ
Rd
|v(x, t)− v(x, T )|dxdt since supp θδ ⊆ [−δ, δ] by (3.2),

≤ ωv(δ)
ˆ 0

−Tδ
θ̃1(τ) dτ.

We conclude that

I4 ≤
(
−‖u(T )− v(T )‖L1(Rd) +

Cθ̃
2
ε |u0|BV (Rd) + ωv(δ)

) ˆ 0

−Tδ
θ̃1(τ) dτ.

Starting from

−|u(y, s)− v(x, T )| ≤ |u(y, s)− u(x, s)| − |u(x, T )− v(x, T )|+ |u(x, s)− u(x, T )|,

similar reasoning leads to

Iv4 ≤
(
−‖u(T )− v(T )‖L1(Rd) +

Cθ̃
2
ε|u0|BV (Rd) + ωu(δ)

) ˆ +T
δ

0

θ(τ) dτ.
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Hence, I4+Iv4 ≤ −‖u(T )−v(T )‖L1(Rd)+
Cθ̃
2 ε |u0|BV (Rd)+ωu(δ)∨ωv(δ) when T

δ > 1
and we finish the proof of (5.2) by estimating I5 + Iv5 with similar arguments.

B.2. Estimates of the singular nonlocal parts.

Lemma B.1. Assume (1.4) and (1.6). Let u, v ∈ L∞(QT ) ∩ C([0, T ];L1) ∩
L∞(0, T ;BV ), φε,δ be as in Lemma 3.1, and r1 > r > 0. Then∣∣∣∣∣

¨
Q2
T

|A(v(x, t))−A(u(y, s))|

· θδ(t− s)
ˆ
r<|z|≤r1

θ̄ε(x− y ± z)− θ̄ε(x− y)∓ z ·Dθ̄ε(x− y) dµ(z) dw

∣∣∣∣∣(B.1)

≤ 1

2ε

ˆ
Rd
|Dθ̃d|dx

ˆ
r<|z|≤r1

|z|2 dµ(z) |A(u)|L1(0,T ;BV ).

and ∣∣∣∣∣
¨
Q2
T

|A(v(x, t))−A(u(y, s))|

· θδ(t− s)Dθ̄ε(x− y) · sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z) dw

∣∣∣∣∣(B.2)

≤
∣∣∣ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)
∣∣∣ |A(u)|L1(0,T ;BV ).

Proof. We start by proving (B.1) in the + case. Similar arguments give the proof
also in the − case. From Taylor’s formula with integral remainder,

θ̄ε(x− y + z)− θ̄ε(x− y)− z ·Dθ̄ε(x− y) =

ˆ 1

0

(1− τ)D2θ̄ε(x− y + τ z) z · z dτ.

Let I denote the integral in the left-hand side of (B.1). By Fubini’s theorem,

(B.3) I =

¨
(0,T )2

ˆ
r<|z|≤r1

ˆ 1

0

θδ(t− s) (1− τ)

·
ˆ
Rd

ˆ
Rd
|A(v(x, t))−A(u(y, s))|D2θ̄ε(x− y + τ z) z · z dy dx︸ ︷︷ ︸

=:J

dτ dµ(z) dtds.

The dτ dµ(z) dw-integrability of the integrands follows from similar arguments as
in the proof of Lemma 4.2. Note that ηk(A(u(·, s))) = |k −A(u(·, s))| ∈ BV with

|Dηk(A(u(·, s))| ≤ |DA(u(·, s))|

for any k ∈ R by Lemma A.3 and L1 ∩BV regularity of A(u(·, s)). Integration by
parts w.r.t. y (for fixed z, x, t, s), then leads to

|J | =
∣∣∣∣ˆ

Rd

ˆ
Rd
Dθ̄ε(x− y + τ z) · z z · dDηA(v(x,t))(A(u(·, s)))(y) dx

∣∣∣∣ ,
≤ |z|2

ˆ
Rd

ˆ
Rd
|Dθ̄ε(x− y + τ z)|d|DA(u(·, s))|(y) dx.

We change the order of integration (using Fubini) and use Lemma A.1 to see that

|J | ≤ |z|2 |A(u(s))|BV (Rd)

ˆ
Rd
|Dθ̄ε(x)|dx ≤ |z|2 |A(u(s))|BV (Rd)

1

ε

ˆ
Rd
|Dθ̃d|dx,
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and then from (B.3) that

|I| ≤ 1

ε

ˆ
Rd
|Dθ̃d|dx

·
¨

(0,T )2

ˆ
r<|z|≤r1

ˆ 1

0

θδ(t− s) (1− τ) |z|2 |A(u(s))|BV (Rd) dτ dµ(z) dtds.

Let us recall that the integrand above is dτ dµ(z) dtds-measurable since s →
|u(s)|BV (Rd) is lower semi-continuous. By Fubini we then integrate first w.r.t. t

and use that
´ T
0
θδ(t− s) dt ≤ 1 to see that

|I| ≤ 1

ε

ˆ
Rd
|Dθ̃d|dx

ˆ 1

0

(1− τ) dτ

ˆ
r<|z|≤r1

|z|2dµ(z)

ˆ T

0

|A(u(s))|BV (Rd) ds,

and the proof of (B.1) is complete.

We prove (B.2) by similar arguments. Define

(B.4) q(v, u) := |v − u| sgn (r1 − 1)

ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z),

and note that it is Lipschitz-continuous. Again we denote by I the integral of the
left-hand side of (B.2). By Fubini’s theorem,

(B.5) I =

¨
(0,T )2

θδ(t−s)
ˆ
Rd

ˆ
Rd
Dθ̄ε(x− y) · q(A(v(x, t), A(u(y, s))) dy dx︸ ︷︷ ︸

=:J

dtds.

For fixed (x, t), q(A(v(x, t), ·) is Lipschitz-continuous and we may use (A.1) and
integration by parts in y to see that

|J | ≤ ess-supR2 |qu|
ˆ
Rd

ˆ
Rd
θ̄ε(x− y) d|DA(u(·, s))|(y) dx,

where ess-supR2 |qu| denotes the Lipschitz constant of q w.r.t. its second variable
u. Changing the order of integration, we find that

J ≤ |A(u(s))|BV (Rd) ess-supR2 |qu|,

and hence by (B.5) and integrating first w.r.t. t, we get that

(B.6) |I| ≤ ess-supR2 |qu|
ˆ T

0

|A(u(s))|BV (Rd) ds.

The proof of (B.2) is now complete since by (B.4),

ess-supR2 |qu| =

∣∣∣∣∣
ˆ
r1∧(1∨r)<|z|≤r1∨1

z dµ(z)

∣∣∣∣∣ .
�

B.3. Proof of (5.6). It remains to prove (5.6) from the proof of Theorem 3.3.
Recall that u is the entropy solution to (1.1) and that I1 is defined in (5.5). We
want to prove that

I :=

¨
Q2
T

(qg − qf )(v(x, t), u(y, s)) · θδ(t− s)Dθ̄ε(x− y) dw

≤ |u0|BV (Rd) T ess-supR |f ′ − g′|.

Define

q(v, u) := (qg − qf )(v, u) = sgn (v − u) {(g(v)− g(u))− (f(v)− f(u))}
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(see Definition 2.6). Since f, g are Lipschitz-continuous, q will be so too, and I
will satisfy (B.5) with A(u) = u and new flux q. Arguing word by word as in the
preceding proof from (B.5) until (B.6) using also (2.11), we find that

|I| ≤ ess-supR2 |qu|
ˆ T

0

|u(s)|BV (Rd) ds ≤ |u0|BV (Rd) T ess-supR2 |qu|.

The proof is complete since ess-supR2 |qu| ≤ ess-supR |f ′ − g′| by definition.
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Boston, 2001.



34 N. ALIBAUD, S. CIFANI, AND E. R. JAKOBSEN
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