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Abstract

This report explores estimation of association hypothesis marginals in multitarget tracking
when in a multihypothesis setting. The work builds upon the recent results in multitarget
tracking where the algorithm loopy belief propagation (LBP) for single-hypothesis cases
has seen much success. There are two contributions in this report. The first is a
novel factor graph representation of the joint multihypothesis association hypothesis
posterior. The second contribution are two algorithms that both are based on loopy belief
propagation. The first algorithm uses total probability in conjunction with hypothesis-
conditionend LBP and estimation of associated likelihood, and is called LBP-PHD. The
second method is the main, theoretical result in the report and is an LBP algorithm
running directly on the full multihypothesis association graph with novel, specialized
message definitions that are derived in this report and efficient to compute and store in
memory, and is called MH-LBP.

Results show that both algorithms perform well with high correlation with the exact
marginals for the majority of the cases. The MH-LBP algorithm shows less variance
than LBP-PHD, but results also show that much error can be attributed to the estimated
likelihood, which shows promise for LBP-PHD if a better likelihood estimation method
can be derived. MH-LBP fails to converge for exactly one case, and it is speculated
whether this is related to the underlying Bethe free energy of the multihypotheis factor
graph.
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Sammendrag

Denne rapporten utforsker estimering av assosiasjons-hypotese-marginaler i målføl-
ging av flere mål under målfølging med flere hypoteser. Arbeidet bygger på resultater
i målfølging av flere mål hvor algoritmen "loopy belief propagation" (LBP) i enkelhy-
potesetilfeller har vært svært suksessfull. Det er to hovedforskningsbidrag i denne rap-
porten. Det første bidraget er en ny faktorgrafrepresentasjon av simultan-multihypotese-
assosiasjons-posterioren. Det andre bidraget er to algoritmer for marginalestimering
som begge er basert på LBP. Den første algortimen bruker total sannsynlighet sammen
med hypotesebetinget LBP og estimering av assosiert målingssannsynlighettetthet, og
kalles LBP-PHD. Den andre er hovedteoriresultatet i rapporten og er en LBP-algoritme
som kjører direkte på den fulle multihypotese-assosiasjonsgrafen med nye, spesialiserte
meldingsdefinisjoner som er utledet i denne rapporten og som er effektive å kjøre og
lagre i minnet, og kalles MH-LBP.

Resultater viser at begge algoritmer estimerer med god ytelse og høy korrelasjon
med de eksakte marginalene i flertallet av tilfellene. MH-LBP-algoritmen har mindre
varians enn LBP-PHD, men resultater viser også at mye feil kommer fra estimering av
målingssannsynlighettettheten, noe som viser potensiale for LBP-PHD dersom en mer
nøyaktig metode for å estimere denne kan utledes. MH-LBP klarer ikke å konvergere
i nøyaktig ett tilfelle, og det spekuleres i om dette kan være relatert til “Bethe free
energy”-funksjonen til multihypotese-faktorgrafen
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Introduction and preliminaries



1 | Introduction

A critical component to any autonomous system is the ability to understand its surround-
ings, also called situational awareness. In an automotive setting, this means e.g. to
detect and act based on other surrounding cars. In a maritime setting, this might be an
autonomous ferry that wishes to cross a canal busy with traffic. The problem of detec-
tion, estimation and prediction of the state of external vessels in this sense is referred
to as target tracking, and is commonly divided into Single-target tracking (STT) and
Multitarget tracking (MTT).

Single-target tracking is, as the name suggests, the objective of tracking a single target.
Although far from a trivial task, the assumption that there is only one target makes what is
called data association, i.e., to associate measurements of the target, usually as a position,
significantly easier. For this to give the “correct” estimate, however, no other targets can
be competing for the received measurements. In other words, it is possible to run multiple
single-target trackers in parallel as long as the targets are sufficiently far from each other
to not interfere. The more complex problem of multitarget tracking allows for multiple
targets to compete for the same measurements, and makes data association considerably
more complex. In the following text, only multitarget tracking will be considered.

In order to do data association in multitarget tracking, one needs to build what is
called association hypotheses that associates measurements to the track of a given target,
which refers to the estimated trajectory that the true target follows. As time progresses,
the number of possible hypotheses that can be made from the measurements that one
receives each time step grows exponentially. This makes naive enumeration of all of
them infeasible from a computational perspective. By introducing some assumptions
about what associations are valid to make, a particular structure in the data association
problem is revealed, which is the key result and novelty that the following report will
investigate. By combining the particular structure with some approximations, solutions
close to the true solution can be calculated with considerably less computations, which
allows for multitarget tracking data association for online purposes.
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1.1 Related work

The use of probabilistic graphs for inference in robotics and autonomous systems has
seen rapid increase the last decades. The earliest work are on two representations
called Markov random fields [1]–[3] and Bayesian networks [4], [5], where the main
difference lies in their representation abilities of the underlying probability density. A
major breakthrough in the usefulness of probabilistic graph modelling can be traced
back to the work of Pearl [4] which first described the efficient inference method Belief
propagation (BP) on probabilistic graphs with tree structure which introduces the concept
of message passing between nodes. The Kalman smoother, from the famous and widely
used Kalman filter [6], can be interpreted as doing BP on these types of probabilistic
trees under Markov and linear Gaussian assumptions about the state and measurements

The present work takes the more common approach in multitarget tracking of using
factor graphs, a third graph representation first presented by Kschischang et. al in [7],
to efficiently approximate a solution to the data association problem. Early work in this
field was done by Chen, Cetin et. al in [8]–[11] where they use message passing for find
the optimal association hypothesis by using the max-product algorithm, a close relative
of BP that finds the argmax of a joint distribution instead of marginalizing it.

More recent work by Williams et. al in [12], [13] augments the data association
problem by overparameterizing of association variables which allows for formulating a
bipartite matching graph and applies Loopy belief propagation (LBP) to efficiently and
quickly compute approximate association marginals that can be used in a MTT filter, such
as in [14]. Together with Vontobel in [15] they prove that this graphical representation
exhibits certain properties that guarantees convergence of LBP, a particularly desirable
property. In one of their latest work [16] they do approximate marginalization on an
association graph similar to the one in [13] generalized for multiscan. They derive a
BP-like algorithm based on a convex approximation to the exact, nonconvex Bethe free
energy of the graph for better and more robust performance.

In the work by Meyer, Braca et. al [17] they embedded the data association method
presented in [13] in a factor graph representation of the joint track state posterior in a
multisensor setting and uses LBP to approximate the marginal track state posteriors. They
later extend this method with estimation of unknown, time-varying model parameters
[18] and the presence of an unknown number of targets [19].

Lastly, in the maritime setting, Gaglione et al. proposes a method for multisensor-
multitarget tracking by constructing a suitably devised factor graph and use LBP for
approximate inference in [20]. In [21] the same authors uses BP to perform data fusion
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of radar and AIS (Automatic Identification System) data.

1.2 Contribution and motivation

A common denominator in all the applications of factor graphs for data association
mentioned in Chapter 1.1 is that they are used in a single-hypothesis setting. The novelty
in the present work is to propose two different approaches that generalize the approximate
data association method presented in [13] to a multihypothesis setting.

The motivation for this is twofold. The first is the computational benefits, as LBP
has been shown to compute good approximations to the association marginals in the
aforementioned work with a fraction of the computations needed for an exact solution.
The second reason is for track management in the MTT filter Poisson multi-Bernoulli
mixture (PMBM) that was first presented in [14] by Williams et. al. Inside the PMBM
framework, new tracks are initialized for every measurement that is not associated to a
new track, which over time means the number of tracks to estimate is unbounded without
any pruning procedure. For a single-hypothesis tracking scenario Williams proposes in
a previous work [22] the concept of recycling, which means to return low-quality tracks,
i.e. tracks with low existence probability, into the Poisson component for undiscovered
targets. By generalizing the method in [13] for multihypothesis scenarios we are able to
achieve the same for the multihypothesis case.

1.3 Outline of report

The report is structured as follows. First, the theory of factor graphs is introduced
in Chapter 2 that make up the tools that are later used for approximate inference of
association marginals. In Chapter 3, MTT modeling assumptions are introduced that
makes data association doable, together with the derivation of different joint association
hypothesis posteriors and how to marginalize them. The main chapter of this report is
Chapter 4, which is where the main contributions and novel work is presented. Here, the
actual problem is described, together with a derivation of the proposed solution. Lastly,
results of the given method are presented in Chapter 6, followed by a conclusion and
further work in Chapter 7.
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2 | Factor graphs

Factor graphs, first described in [7], is a particular bipartite graph consisting of variable
nodes and factor nodes where edges are only between variables and factors. A factor
graph describes a function f(xV) which can be factorized as

f(xV) =
∏
a

fa(xN(a)) (2.1)

where V denotes the variable index set of the graph such that xV indicates all variables
xi, i ∈ V , of f and where fa(xN(a)) is a factor of f with N(a) indicating all neighbors
of node a such that xN(a) indicates all neighboring variable nodes of fa.

Factor graphs are useful data structures that have seen use in fields like communication
theory for decoding purposes [23]. We will here concern ourselves with how they can
model a Probability density function (PDF). For this purpose, factor graphs are only one
possible graphical representation, where the two other ones are Markov random fields
and Bayesian networks. Describing these representations are outside the scope of this
text, but the reader is instead referred to references like [24], [25]. For the purpose of this
text, it suffices to say that factor graphs are particularly useful for describing functions
where the variables locally depend on each other, i.e. where the factors of a complicated,
global function are simpler and more local [7]. We will see that this is often a modelling
assumption we make about PDFs to facilitate efficient inference algorithms that operate
locally.

2.1 Variable elimination

Before proceeding with more specialized algorithms for inference on factor graphs, we
will first discuss the most general approach, called variable elimination. The name
“variable elimination”, as the name suggests, comes from the fact that we eliminate
variables from the graph by marginalization of the underlying PDF p(xV) ∝ f(x1:n).
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The marginal distribution p(xν) for a subset ν of the variables in V , ν ⊂ V , can be
retrieved by marginalizing out all other variables of the density, denoted by ν̄ = V \ ν
and with vi ∈ ν̄, i = {1, . . . , |ν̄|},

p(xν) =
∑
ν̄

p(xV) (2.2)

=
∑
xv1

∑
xv2

· · ·
∑
xv|ν̄|

p(xV).

The sum in (2.2) might at first look harmless and straight-forward to compute. The
tractability of the sum, however, heavily depends on the order the variables are summed
out, called the elimination order, dynamic programming and the structure of the graph.
We will here consider an example to build intuition for the two former points, while the
latter point will be inspected for a concrete case later in Chapter 2.3.

2.1.1 Elimination order and dynamic programming

Consider the factor graph in Figure 2.1 which represents the probability density

p(x1, x2, x3, x4, x5) ∝ f(x1, x2, x3, x4, x5) (2.3)

= fa(x1, x2)fb(x2, x3, x4, x5). (2.4)

x1 x2 x3

x5x4

fa

fb

Figure 2.1: Example factor graph of the function f(x1, x2, x3, x4, x5) = f1(x1, x2)f2(x2, x3, x4, x5).

Suppose that all variables of f can take values from a discrete and finite set denoted
by X and that we wish to marginalize out x2 and x4, i.e. eliminate x2 and x4. The
procedure looks like

f̃(x1, x3, x5) =
∑
x2,x4

f(x1, x2, x3, x4, x5) (2.5)

=
∑
x2,x4

fa(x1, x2)fb(x2, x3, x4, x5). (2.6)
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Doing this naively involves O(|X |2) summations that has to be repeated |X | times for
each variable in the marginalized function f̃ , which totals inO(|X |5) computations. We
can improve the complexity with dynamic programming by instead carefully do one sum
at a time and store temporary computations. This entails choosing an order to do the
sums – the elimination order.

If we eliminate x2 first and then x4, the resulting computations are∑
x2,x4

f(x1, x2, x3, x4, x5) =
∑
x4

∑
x2

f1(x1, x2)f2(x2, x3, x4, x5) (2.7)

=
∑
x4

∑
x2

f1(x1, x2)f2(x2, x3, x4, x5)︸ ︷︷ ︸
f̃1(x1,x3,x4,x5)

(2.8)

=
∑
x4

f̃1(x1, x3, x4, x5) (2.9)

= f̃(x1, x3, x5). (2.10)

The largest computation is in (2.8), where we build a table f̃1 of size |X |4 by doing
a summation of size O(|X |) for each entry, which in total makes the marginalization
O(|X |5), the same as for naive marginalization. In other words, for the elimination order
x4, x2 we gain nothing. We can, however, do better. If we instead eliminate x4 and then
x2, the computations become∑

x2,x4

f(x1, x2, x3, x4, x5) =
∑
x2

∑
x4

fa(x1, x2)fb(x2, x3, x4, x5) (2.11)

=
∑
x2

fa(x1, x2)
∑
x4

fb(x2, x3, x4, x5)︸ ︷︷ ︸
f̃2(x2,x3,x5)

(2.12)

=
∑
x2

fa(x1, x2)f̃2(x2, x3, x5) (2.13)

= f̃(x1, x3, x5) (2.14)

where we moved fa(x1, x2) out of the sum in (2.12) as it is constant with respect to
x4. In this case, the largest computation is in (2.12), where we build a table f̃2 of size
|X |3 by doing a summation of size O(|X |) for each entry, which in total makes the
marginalization O(|X |4), improving the computation.

As the example above shows, the order of elimination has an impact on the compu-
tational complexity. This begs the question whether we can find an optimal elimination
order and also how efficient doing elimination in this order is. Unfortunately, in the
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general case, finding an optimal elimination order is NP-complete, and even when using
this order the elimination procedure is NP-hard [24]. Fortunately, all hope is not lost.
The remaining discussions in this chapter will explore what structure we require to be
able to do efficient inference and how we might achieve similar performance even when
this is violated.

2.2 Encoding structure in densities with factor graphs

As we saw in Chapter 2.1, in the general case inference on factor graphs is NP-complete,
and infeasible in practice. Thus, we need to invoke additional model assumptions about
the conditional independence between the variables. As an example, consider again the
joint distribution in (2.3). By naive application of the chain rule of probability, we can
factorize it as

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3, x4, x5|x1, x2). (2.15)

Comparing (2.15) with the factorization in (2.4) and matching factors, we recognize that

fa(x1, x2) ∝ p(x1)p(x2|x1) (2.16)

fb(x2, x3, x4, x4) ∝ p(x3, x4, x5|x1, x2) (2.17)

which reveals that p(x3, x4, x5|x1, x2) = p(x3, x4, x5|x2) which implies that x3, x4, x5
are conditionally independent of x1 given x2, denoted by x3, x4, x5⊥⊥x1 | x2 . In this
case, making the assumption turns the factor graph into a factor tree, i.e. there are
no loops in the factor graph. This has profound consequences that are explored in
Chapter 2.3.

2.3 Belief propagation

The inference algorithm BP was first described in [4] and later in [7] for factor graphs,
and is an algorithm for doing inference on probabilistic graphs with tree structure that
exploits the structure of the graph for major efficiency improvements.

The objective of BP is to efficiently compute the marginals of each variable xi in
the graph. In other words, given a distribution p(x1, x2, . . . , xn) we seek each marginal
p(xi), i = 1, . . . , n. When we marginalized the distribution in Figure 2.1 we observed
that choosing the elimination order x4, x2 we were able to reduce the computational
complexity. This is no coincidence. In fact, the factor graph in Figure 2.1 is indeed a
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factor tree, satisfying the requirement of BP, and so we can attribute the performance
gain to the fact that we started in a leaf node of the graph.

2.3.1 The sequential formulation

This takes us to how BP operates. To use the example above as a stepping stone towards
the general algorithm, we will first explain the sequential formulation. First, choose an
arbitrary node in the graph as a root node. Then, starting in all leaf nodes, compute the
messages µ, given by [7]

µa→i(xi) =
∑

xN(a)\{i}

fa(xN(i))
∏

j∈N(a)\{i}

µj→a(xj) (2.18)

µi→a(xi) =
∏

b∈N(i)\{a}

µb→i(xi) (2.19)

where the notation N(i) denotes the set of all neighbors of node i, and where i and j refer
to variable indices and a and b refer to factor indices, such that µa→i denotes the message
from factor fa to variable xi and µi→a denotes the message in the opposite direction.
See Figure 2.2 for figures showing how the messages are passed along the edges of the
factor graph. Each node passes a message onto its parent towards the root node based on

. . .

. . .

. . .

xi
fa

. . .

. . .

. . .

µ
b→
i

µi→a

(a) Message passing from a variable xi to the factor
fa.

. . .

. . .

. . .

fa

xi . . .

. . .

. . .

µ
j→
a

µa→i

(b) Message passing from a factor fa to the variable
xi.

Figure 2.2: Figures comparing the two message definitions what are used when doing belief propagation on a
factor graph.

the messages it receives from its children. In the example in Chapter 2.1.1 the temporary
factor f̃2 that we computed played exactly this role. When all messages have propagated
upwards to the root node, perform the same procedure of computing messages, only in
the opposite direction until all leaf nodes have received a message. The marginals p(xi)
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are then given as
p(xi) ∝

∏
a∈N(i)

µa→i(xi). (2.20)

A final remark is that it can be shown that we can rescale the messages by any
arbitrary, positive constant, and still arrive at the correct marginals [13]. This will be
useful later.

2.3.2 The parallel formulation

The parallel formulation proceeds almost the same, except we send all messages between
all nodes concurrently. First, we initialize all messages as

µi→a(xi) = 1, (2.21)

µa→i(xi) = 1. (2.22)

Then, for each iteration, update the messages according to

µa→i(xi)←
∑

xN(a)\{i}

fa(xN(a))
∏

j∈N(a)\{i}

µj→a(xj), (2.23)

µi→a(xi)←
∏

b∈N(i)\{a}

µb→i(xi) (2.24)

until they converge. For trees the messages are guaranteed to converge to the exact
marginals after a number of iterations equal to the diameter of the tree, which is simply
equal to the longest distance between two nodes in the tree [26].

Note that the argument about rescaling of messages also holds for the parallel formu-
lation.

2.4 Loopy belief propagation

Many real-world problems are modelled with a probability distribution that contains
cycles, or loops, and therefore does not satisfy the tree structure constraint of BP. However,
considering the message definitions (2.23) and (2.24) in the parallel formulation are local,
i.e. they only concern themselves with the neighbors of the current node and not the
global structure of the graph, it is possible to do BP on such a “loopy” graph. This
possibility was even suggested by Pearl himself [4]. The resulting algorithm is aptly
called loopy belief propagation. Spectacularly, this has in many instances, e.g. in target
tracking [8], [10]–[13], [17]–[21], worked surprisingly well at approximating the exact
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solution, and one of the earliest successful uses of it is in the context of error-correcting
turbo codes [27].

2.4.1 LBP’s relation to variational inference - The Bethe free
energy

Initially, little was understood about properties of LBP such as the accuracy of the
estimates it computes and if and when the algorithm even convergence. Perhaps the
largest contribution to understanding the behavior of LBP came with the seminal work
by Yedidia et. al [28], [29]. In order to elucidate the properties of LBP, its fixed points and
its connection to variational inference, which is the theory of approximating probability
densities by optimization, the following will be a condensed summary of their derivation.

The key first step is to turn to statistical mechanics by rewriting our loopy distribution
p(xV) ∝ f(xV) in terms of Boltzmann’s law, which describes the state of a given system,

p(xV) =
1

Z
e−E(xV) (2.25)

where Z denotes the normalization constant, also called the partition function, of our
probability distributino p(zV) and

E(xV) = −
∑
ν

fν(xν) (2.26)

denotes the energy of the system in state xV . A particular quantity of interest in statistical
mechanics is the Helmholtz free energy FH given by

FH = − lnZ (2.27)

which is in general infeasible to compute exactly, and so much effort has been invested
into approximating it. In particular, FH can be approximated by Here Yedidia et. al
proposes the use of the variational free energy, sometimes also called Gibbs free energy,
defined for a trial density q as

F (q) = U(q)−H(q), (2.28)

U(q) = Eq[E(xV)] (2.29)

H(q) = −Eq[ln q(xV)] (2.30)

where Eq[•] denotes the expectation under the density q, U(q) denotes the variational
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average energy and H(q) the variational entropy. It is possible to rewrite (2.28) as

F (q) = FH +D(q||p) (2.31)

where
D(q||p) = Eq

[
ln
q(xV)

p(xV)

]
(2.32)

is the Kullback-Leibler divergence between q(xV) and p(xV). As D(q||p) ≥ 0, with
D(q||p) iff q = p, and FH being constant, minimizing F (q) will minimize D(q||p)
towards 0, yielding the q that best approximates p. This motivates the use of F (q) as a
cost function to minimize.

The last step remaining for calculating our trial distribution q(xV) is to construct it
to take the form of a simpler function we can do inference on. The particular constraint
we will choose is the q(xV) that factorizes as

qBethe(xV) =

∏
a qa(xN(a))∏

i∈V qi(xi)
di−1

(2.33)

where
∏
a denotes the product over the same subsets of variables that makes up the

factorization of our original distribution p and di denotes the degree of node i, i.e.
the number of adjacent edges. The choice of factorization in (2.33) is called the Bethe
approximation [30]. This choice might seem arbitrary, but this factorization is exact for
distributions that factorizes into trees [29]. Hence, in some sense, when optimizing we
retrieve the function q that is the closest to a “tree” with the same nodes and edges as in
our original distribution p. Note that in general qBethe will not be a proper distribution in
the sense that its factorization as a tree over a graph with loops in general will be invalid.

All the pieces are now in place for optimization. We start by inserting our Bethe
approximation qBethe into the variational free energy functional in (2.28) to get the Bethe
free energy FBethe. We require that the factors qa and qi in (2.33) behave like distributions
in the sense that they are nonnegative, sum to 1, and that they marginalize properly. To
achieve this we turn to the theory of constrained optimization [31] by defining the
Lagrangian L as

L = FBethe +
∑
a

λa

[∑
xν

qν(xν)− 1

]
+
∑
i

λi

[∑
xi

qi(xν)− 1

]
(2.34)

+
∑
i′

∑
a∈N(i′)

∑
xi′

λa→i′

qi′(xi′)− ∑
xN(a)\{i′}

qa(xN(a))
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where i′ = {i ∈ V | di ≥ 2}, i.e. the indices over all variable nodes with degree di ≥ 2,
λa, λi and λa→i′ are Lagrangian multipliers and we have ignored the nonnegativity
constraints as they are inactive during optimization and thus does not influence the
solution [29]. The final insight is to solve for the stationary points of (2.34) and insert
the definition

λa→i′ = ln
∏

b∈N(i′)\{a}

µb→i′(xi′) (2.35)

such that, after the dust settles, we indeed arrive at the fixed-point equation (2.20) which
is identical to the one in BP. This proves that when LBP converges to a fixed point, the
estimated marginals are a local minima of the Bethe free energy.

2.4.2 Research results on properties of loopy belief propaga-
tion

Research into LBP is an active research field. A seminal paper with empirical tests and
analysis of LBP is by Murphy et. al in [26]. Of particular interest is their investigation
into divergence of LBP, and in their results small priors and weights in the graph are
suspected as being the cause. In [32] by Ihler et. al they analyze accumulation of errors
during LBP and relates this to the dynamic range, i.e. the largest ratio of the factors, of
the graph, and derives convergence conditions for LBP.

2.4.3 Determining convergence of loopy belief propagation

Assuming that LBP will converge on a graph, we need a way of measuring convergence.
A commonly used method for determining convergence, e.g. in [26], is by using the
max norm between messages at different iterations, i.e., when the largest error between
messages at different iterations reaches below some threshold, we terminate. In [13] they
use a specialized distance metric for determining convergence based on the work in [32].
In the following we will use the metric in [13] since the LBP methods are based on their
work.
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3 | Data association in multitarget
tracking

Traditionally, doing data association in MTT involves finding the possible association
hypotheses, deriving a joint association hypothesis distribution and marginalizing this
distribution using the found hypotheses. To be able to do this from a practical perspective,
however, multiple model assumptions and simplifications are necessary. The following
chapter will first introduce model assumptions that are made in MTT in order to do data
association, and then derive the joint association hypothesis distributions that are used in
the MTT algorithms Joint probabilistic data association (JPDA) and Multiple hypothesis
tracker (MHT).

3.1 Multitarget tracking models and assumptions

for data association

This section will first introduce the model assumptions that are necessary for track
state estimation, which includes necessary expressions for deriving the joint association
hypothesis distribution. Then, the more specific MTT model assumptions are introduced.

3.1.1 Track state estimation

We will quickly see when deriving the joint association hypothesis posterior in Chapter 3.2
that specifying the distributions for the track state xtk and measurement zk is necessary.
For the sake of simplicity we will therefore make linear Kalman filter assumptions and
the resulting tools for data association will be summarized below. A full derivation and
justification of this estimation framework is outside the scope of this text, and the reader
is instead referred to [6], [33]–[36] for a more thorough treatment.
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We use the notation N (µ,Σ) for a multivariate Gaussian distribution, where µ and
Σ are the parameters of the distribution, specifically the expectation value vector and
covariance matrix, respectively. Due to the Kalman filter assumptions, we assume that
the state of each track t evolve from timestep k − 1 to k according to the process model
p(xtk|xtk−1) which we assume is linear and Gaussian, such that we have

xtk = Fxtk−1 + vk−1, (3.1a)

vk−1 ∼ N (0,Q) , (3.1b)

p(xtk|xtk−1) = N
(
Fxtk−1,Q

)
. (3.1c)

The measurement model p(zk|xtk) is similarly given as

zk = Hxtk +wk, (3.2a)

wk ∼ N (0,R) , (3.2b)

p(zk|xtk) = N
(
Hxtk,R

)
. (3.2c)

Assume that the posterior distribution p(xk−1|z1:k−1) of a track t in timestep k − 1,
where z1:k−1 = {z1, z2, . . . ,zk−1} denotes all measurements from timestep 1 to k−1,
is Gaussian. Together with the equations in (3.1) and (3.2), the prior distribution
p(xtk|z1:k−1) is given by

p(xtk|z1:k−1) = N
(
x̂tk|k−1,P

t
k|k−1

)
, (3.3)

x̂tk|k−1 = Fx̂k−1, (3.4)

Pt
k|k−1 = FPt

k−1F
T +Q, (3.5)

the likelihood distribution p(zk|z1:k−1) is given by

p(zk|z1:k−1) = N (ẑk,Sk) , (3.6)

ẑk = Hx̂tk|k−1, (3.7)

Sk = HPt
k|k−1H+R, (3.8)
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and the new posterior distribution p(xtk|z1:k) in timestep k is given by

p(xtk|z1:k) = N
(
x̂tk,P

t
k

)
, (3.9)

x̂tk = x̂tk|k−1 +Wt
k (zk − ẑk) (3.10)

Pt
k =

(
I−Wt

kHPt
k|k−1

)
Pt
k|k−1

(
I−Wt

kHPt
k|k−1

)T
+Wt

kR
(
Wt

k

)T (3.11)

Wt
k = Pt

k|k−1H
TS−1

k . (3.12)

3.1.2 Overview of MTT specific models and concepts

The following will review the standard MTT modelling assumptions and concepts [14],
[33], [37] which will be used when deriving the joint association hypothesis posteriors.

Multiple measurements

The main difference in MTT when estimating track state contrary to other state estimation
cases, e.g. the assumptions made in the Kalman filter, is the fact that we receive multiple
measurements each timestep, and has to infer the source of these measurements. The
normal Kalman filter assumption is that we receive a single measurement zk that we
know for certain originates from the track we estimate, and that these arrive at a regular
rate. In MTT we can not make the same assumptions due to the nature of the sensors
used, as these are exteroceptive, meaning they observe some part of the surveillance
region where tracks are allowed to exist.

Modifying the Kalman filter equations for this purpose requires minimal intervention.
We use zjk, j ∈ {1, . . . ,mk} to denote the jth measurement out of the mk we receive
in timestep k. For likelihoods we are required to condition on an association between
measurement j and track t, and we denote the corresponding predicted measurement
and likelihood covariance by ẑtjk and Stjk , respectively. When conditioning on measure-
ments we will instead condition on measurement sets Z1:k = {Z1, . . . , Zk}, where the
measurement set Zl in timestep l is given as Zl = {z1

k, . . . ,z
ml

l }, for all timesteps.

The definition of a track

Before proceeding, it will be useful in the sequel to properly define the notion of a track
and how it differs from a target. We will adhere to the convention used in [33]. A
target will refer to an actual object in the surveillance region. A track will refer to a
sequence of measurements or misdetections over time. More mathematically, assume we
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have k consecutive sets of measurements denoted by Z1 = {z1
1, . . . ,z

m1
1 }, . . . , Zk =

{z1
k, . . . ,z

mk

k }. A track t can then be represented as a vector

It = [i1, . . . , ik] (3.13)

where il = {0, . . . ,ml, N} for each l ∈ {1, . . . , k} [33, Definition 9.1.1, slightly
modified], where we have added the nonexistence index N to indicate a track that has
not been detected yet, and as such “does not exist”. An important consequence of
discriminating between a target and track this way is that a target remains semantically
exactly one object in the real-world, while we can have multiple tracks for the same target.
One can think of a track as a possible trajectory of a target given the measurements we
have, and that there are multiple way of interpreting the measurements we have, hence
multiple tracks.

Misdetections

Due to reasons such as the track being obscured by something or not in the field of view
of the sensors, we occasionally get misdetections, i.e. that no measurement in the set of
measurements received in a timestep originates from a given track. We will here model
the detection of a track t as a Bernoulli distributed variable τ t, with τ t = 1 defined as
detection and τ t = 0 defined as misdetection, such that

Pr
{
τ t
}
=


Pd, τ t = 1,

1− Pd, τ t = 0,

0, otherwise

(3.14)

for some constant detection probability Pd.

Clutter

The second MTT modelling necessary is to model the measurements that remain unas-
sociated to any tracks, called clutter. It is assumed that any excess measurements not
from tracks are due to false alarms. Assuming that the field of view of the sensor can be
divided into M cells with a constant and independent probability for false alarm equal
to PFA in each cell, the clutter cardinality, i.e. the number of clutter measurements φk,
follows a Binomial distribution, such that

Pr{φk} =
(
M

φk

)
Pφk

FA (1− PFA)M−φk . (3.15)
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Taking the limitsM →∞ and PFA → 0 while keepingMPFA = λVk, it can be shown
that the distribution in (3.15) becomes a Poisson distribution with parameter Λ = λVk,

Pr{φk} = e−λVk
(λVk)

φk

φk!
(3.16)

where we call λ the clutter intensity and Vk is the volume of the measurement space where
measurements can exist. Hence, by assuming that the sensor in use has sufficiently high
resolution and sufficiently low false alarm rate, the Poisson approximation is valid, and is
the modelling assumption that will be made going forward. Making this approximation
has its weaknesses, such as having a “flatter” distribution than the Binomial distribution,
but the modelling simplifications from using a Poisson rather than a Binomial distribution
justifies it. Additionally, an important benefit of using the Poisson distribution for
modelling clutter is that the number of clutter in one measurement region is independent
of all other regions, which is a natural assumption for clutter.

Specifically choosing a homogeneous Poisson distribution, i.e. a Poisson distribution
with constant intensity λ, has another added benefit. In this case, given how many clutter
measurements there are, the clutter is uniformly distributed in the measurement space.
In other words, the measurement model is given simply as

p(zjk|xtk) = p(zjk) =
1

Vk
, (3.17)

where we have used the assumption that all clutter measurements are independent of
track state.

Undetected targets

An obvious, but important, distinction between STT and MTT is that in MTT we allow
for new targets to enter our surveillance region, which needs to be modelled. Strictly
speaking, we need to distinguish between newly arriving targets and undetected targets.
The distinction comes from the observation that targets that arrive in the surveillance
region are not necessarily detected immediately. Namely, we can only model the number
of undetected targets in the surveillance region that we detect βk. We will use a simplified
version of the model used in [14] which is a Poisson distribution given by

Pr{βk} = e−PdνkVk
(PdνkVk)

βk

βk!
(3.18)

18



where Pd is the detection probability from (3.14) and νk denotes the arrival intensity of
new targets in all of the valid target space, which varies with time. The scaling by Pd is
done to account for the fact that new targets will seemingly “arrive less often” than νk as
we depend on detecting them with our sensor.

Extended object tracking and at-most-one assumption

The last, grossly simplifying assumptions that will be made are that each target at most
generates one measurement and that each measurement at most originates from one target.
It is easy to imagine scenarios where this obviously does not hold, for instance when a
large vessel is passing by our sensor and the sensor returns a point cloud of detections, or
that two small vessels are sufficiently close enough to overlap and return a single, merged
detection. Making the assumptions, however, severely reduces the hypothesis space,
which amongst other things allows for significantly more efficient marginalization. A
tracker that integrates the fact that multiple measurement may originate from the same
target uses extended object tracking, and is an open-research field. The topic is not
explored further in this report and the reader is instead referred to [38].

3.1.3 Gating of measurements

In practice we will not consider all measurements for each track t, but instead all gated
measurements zjk, which indicates measurements that pass the χ2-test

εtj < g2 (3.19)

where we call g the number of sigmas we consider and εtj denotes the Normalized
innovation squared (NIS) and is given by the parameters of the likelihood distribution in
(3.6) as

εtj = (zjk − ẑtjk )
T(Stjk )

−1(zjk − ẑtjk ) (3.20)

which indeed is χ2-distributed as long as zjk is Gaussian with expectation ẑtjk and
covariance Stjk . Note that in the following we will assume that all measurements are
gated to simplify the notation and derivation.

The region of valid measurements, be it the entire measurement space or those that
pass the χ2-test in (3.19), is called the validation gate. In the case that we do gating
of measurements, the volume Vk will refer to this, although we will see in the coming
derivations that we will not be required to explicitly calculate it.
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3.2 Hypothesis generation in MTT

Having derived the necessary tools and assumptions for data association, the next step is
to derive the association hypothesis marginals πtjk that are used, which are the marginal
probabilities that each track t should be associated to measurement j in timestep k. The
reason is as follows. As the final step of the track states update in MTT, under the
assumptions in Chapter 3.1, we compute the posterior for each track t as a Gaussian
mixture over all track associations atk, which, by total probability, is given by

p(xtk|Z1:k) =

mk∑
j=0

Pr
{
atk = j|Z1:k

}
p(xtk|atk = j, Z1:k) (3.21)

=

mk∑
j=0

πtjk N
(
x̂tjk ,P

tj
k

)
(3.22)

where x̂tjk andPtj
k are the parameters of the association-conditioned posterior distribution

of track t when the prior is updated with measurement j,

p(xtk|atk = j, Z1:k) ∝ p(xtk|Z1:k−1)p(z
j
k|xtk), (3.23)

where under linear Gaussian assumptions the prior p(xtk|Z1:k−1) and measurement
model p(zjk|xtk) are given by (3.3) and (3.2c), respectively, and πtjk is the association
hypothesis posterior marginal for associating track t with measurement j,

πtjk = Pr
{
atk = j | Z1:k

}
(3.24)

=
∑

ak:atk=j

Pr{ak | Z1:k} , (3.25)

where ak = {a1k, . . . , ank

k } is the set of all nk track associations in timestep k and ak :

atk = j stands for all ak where atk = j. The measurement j = 0 indicates misdetection
and in this case the posterior is equal to the prior distribution, i.e., x̂tjk = x̂tk|k−1 and
Ptj
k = Pt

k|k−1.
Thus, our objective is to calculate the association hypothesis posterior marginals in

(3.25) for each track t, t ∈ {1, . . . , nk} and measurement j, j ∈ {1, . . . ,mk}.

3.2.1 Hypothesis generation in JPDA

First described in [37] is the JPDA filter that builds upon the original Probabilistic data
association filter (PDAF) [39] by extending the association marginals to accomodate
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interfering targets that gate the same measurements. We will here concern ourselves
with how JPDA does the measurement updated of target states based on association
hypothesis posterior, together with how it’s computed.

Computation of joint association hypothesis posterior

Although the original derivation can be found in [37], the following will draw inspiration
from [33]. The posterior is first calculated by Bayes’ rule,

Pr{ak | Z1:k} = Pr{ak | Zk,mk, Z1:k−1} (3.26)

∝ p(Zk | ak,mk, Z1:k−1)Pr{ak | mk, Z1:k−1} , (3.27)

where the cardinality of Zk, mk, is used to make p(Zk | ak,mk, Z1:k−1) more tangible
to work with. The first factor can be written as

p(Zk | ak,mk, Z1:k−1) =

∫
p(Zk | ak,mk,x

1:nk

k )p(x1:nk

k | ak,mk, Z1:k−1) dx
1:nk

k

(3.28)
by total probability, where x1:nk

k = x1
k,x

2
k, . . . ,x

nk

k denotes the states of all tracks
and we invoked the Markov assumption that is used in the Kalman filter to perform the
substitution p(Zk | ak,mk,x

1:nk

k , Z1:k−1) = p(Zk | ak,mk,x
1:nk

k ). Conditioned on
the association hypothesis ak, we can partition the likelihoods based on the associations
made for each measurement zjk, assuming independence between them, such that

p(Zk | ak,mk, Z1:k−1) = p(z1
k, . . . ,z

mk

k | ak,mk, Z1:k−1) (3.29)

=

mk∏
j=1

p(zjk | ak, Z1:k−1). (3.30)
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Inserting (3.30) into (3.28) and rearranging gives∫
p(Zk | ak,mk,x

1:n
k )p(x1:n

k | ak,mk, Z1:k−1) dx
1:n
k (3.31)

=
∏

t:atk=0

 1

Vk

∫
p(xtk | ak, Z1:k−1) dx

t
k︸ ︷︷ ︸

=1


·
∏

t:atk>0

∫
p(zjk | ak,xtk)p(xtk | ak, Z1:k−1) dx

t
k︸ ︷︷ ︸

=lta
t
k

(3.32)

=
1

V φk

k

·
∏

t:atk>0

lta
t
k (3.33)

where ltatk is the event-conditional likelihood for target t given association to measure-
ment atk = j, t : atk = 0 denotes the set of all misdetected tracks t and t : atk > 0

denotes the set of all detected tracks, Vk is the volume of the validation gate and we made
the assumption that the track states are independent given the association hypothesis ak,
such that [33]

p(x1:nk

k |ak, Z1:k) ∝
∏

t:atk=0

p(xtk|Z1:k−1)
∏

t:atk>0

p(z
atk
k |xtk)p(xtk|Z1:k−1). (3.34)

In order to construct the association priorPr{ak | mk}we first introduce the detection
variable τk such that

τ tk =

1 if target t is detected in timestep k

0 if target t is not detected in timestep k
(3.35)

where the dependency onZ1:k−1 is dropped as, given onlymk, we have no information on
how previous measurements should affect our belief for how to associate measurements
in the current timestep [33]. As the detection event τk is entirely contained in the
association event ak, we can then rewrite the association hypothesis prior as

Pr{ak | mk} = Pr{ak, τk | mk} (3.36)

= Pr{ak | τk,mk}Pr{τk | mk} (3.37)

∝ Pr{ak | τk,mk}Pr{mk | τk}Pr{τk} . (3.38)

Let δk =
∑nk

t=1 τ
t
k denote the number of detected tracks and δ̄k = nk − δk the number
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of undetected tracks. The prior probability Pr{τk} is given by

Pr{τk} = (1− Pd)δ̄kP δkd (3.39)

where the detection distribution in (3.14) is used and is simply the probability that
the δk tracks indicated by τk are detected and the remaining are not. The probability
Pr{mk | τk} can be found by using that mk = φk + δk, where δk is a constant given τk
such that mk | τk is just a linear transform of the Poisson distributed variable φk, which
is just a new Poisson distributed variable. Hence, in this case, the probability distribution
is given by

Pr{mk | τk} = e−λVk
(λVk)

mk−δk

(mk − δk)!
(3.40)

= e−λVk
(λVk)

φk

φk!
. (3.41)

Lastly, Pr{ak | τk,mk} can be found as the uniform distribution over all valid association
hypotheses given τk and mk,

Pr{ak | τk,mk} =
1

|Ak|
(3.42)

whereAk is the set of all valid association hypotheses ak in timestep k. As all undetected
tracks are associated to misdetection, this can only be done one way, and so the number
of association hypotheses reduces to the number of permutations of detected tracks to
measurements. With mk measurements and δk detections, this amounts to

|Ak| = mk · (mk − 1) · . . . · (mk − (δk + 1)) (3.43)

=
mk!

(mk − δk)!
(3.44)

=
mk!

φk!
(3.45)

different possible association hypotheses, where the fact that mk = φk + δk is used.
Thus, inserting (3.45) into (3.42) gives

Pr{ak | τk,mk} =
φk!

mk!
. (3.46)
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In conclusion, the association hypothesis prior Pr{ak | mk} can be written as

Pr{ak | mk} ∝
φk!

mk!
· e−λV (λV )φk

φk!
· (1− Pd)δ̄kP δkd (3.47)

∝ (λV )φk · (1− Pd)δ̄kP δkd (3.48)

where φ! cancels out and 1/mk! and e−λV are moved into the proportionality as they are
constant with respect to ak.

Taking the product of (3.48) and (3.33) and movingP δkd into the product
∏
t:atk>0 l

tatk ,
as both are over all δk detected tracks,

P δkd

∏
t:atk>0

lta
t

=
∏

t:atk>0

Pdl
tat , (3.49)

then gives
Pr{ak | Z1:k} ∝ λφk(1− Pd)δ̄k

∏
t:ak>0

PDl
tatk (3.50)

where the V φk cancels out. The last step is to rewrite the expression in (3.50) in the
following way. Given Zk, mk is constant and equal to mk = δk + φk, such that we can
rewrite the clutter contribution factor λφk as

λφk = λφk · λmk

λφk+δk
(3.51)

= λφk · λmk

λφkλδk
(3.52)

∝ 1

λδk
(3.53)

where we use that λmk is just a constant we can hide in the proportionality sign such that
we can rewrite (3.50) as

Pr{ak | Z1:k} ∝ (1− Pd)δ̄k
∏

t:ak>0

PDl
tatk

λ
. (3.54)

3.2.2 Hypothesis generation in MHT

MHT was first presented in [40] as a multiple-scan filter which, contrary to JPDA, does
not reduce the multiple hypotheses for each posterior of each track into one posterior, but
instead keeps track of the M best (i.e., most likely) hypotheses at all times and develops
new hypotheses posteriors in a recursive manner.

To better understand how MHT structures association hypotheses as trees, we will
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consider as an example the multitarget tracking data association scenario in Figure 3.1.
The root is some parent hypothesis from the previous timestep θl1:k−1, where we assume
we haveL parent hypotheses and l ∈ {1, . . . , L}. The different possible child hypotheses
that can be formed based on the measurement set Zk are then formed as branches, where
the depth of the tree is the number of measurements and each node on the layer describes
the origin of the current measurement. In the original formulation of Reid, the valid
origins of a measurement can be either clutter, denoted by j = 0, a track not associated
yet and where the measurement passes the gating criterion given in Chapter 3.1.3, denoted
by j ∈ {1, . . . , nt}, or a new target, denoted by j ∈ {nt + 1, . . . , nt +mk}, where nt is
number of existing tracks.

Defining hypotheses as sets of tracks

Assume we get in total R child hypotheses and denote some arbitrary child hypothesis
by θr1:k with r ∈ {1, . . . , R}. The association hypothesis ak refers to the associations we
make between tracks and measurements in a branch from θl1:k−1 to θr1:k in the hypothesis
tree and where the parent index l and child index r are clear from the context. A
hypothesis needs to contain the full information of all associations made between tracks
and measurements for all timesteps k, and so we will use the recursive definition

θr1:k = ak ∪ θl1:k−1 (3.55)

with base case θ10 = { }. Since we define tracks as a collection of measurement
associations or misdetections as in Chapter 3.1.2, we can refer to a hypothesis as a subset
of all nk track indices

θr1:k ⊆ {1, . . . , nk} (3.56)

where instead each index t ∈ θr1:k points to a vector It over measurement associations
or misdetections for track t as defined in (3.13).

More informally, the hypothesis can be defined as “the set of all tracks that have
been initialized in the hypothesis at some point up the branch in the full hypothesis
tree”. When a track is contained in the hypothesis, we will say that the track exists in the
hypothesis. Conversely, this implies that nonexistence means the track is not contained
in the hypothesis. From the definition (3.56) we will allow the notations t ∈ θ to indicate
tracks t that exist in the hypothesis θ and t /∈ θ to indicate tracks t that does not exist in
the hypothesis θ.
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Figure 3.1: Example of a simple association problem in MTT and how a measurement-oriented hypothesis
tree is constructed from a parent hypothesis θl1:k−1 into eleven new child hypotheses θ1:111:k in the same manner
as in [40]. Each layer in the tree corresponds to different associations to the same measurement, indicated by
the dashed lines, such that the layer index together with the index in the node corresponds to an association.
The index 0 is used to indicate misdetection while the indices 3 and 4 refer to the new track index that is
initialized in the unassociated measurement. A full hypothesis can be retrieved by traversing the tree from the
root to a leaf, where each branch is a hypothesis. Note also that we chose to enumerate the child hypotheses by
1, 2, . . . , 11 for convenience, but that it of course is not necessary in general.
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Computing the joint association hypothesis posterior

Following the tree structure, the association hypothesis joint posteriors for each child
hypothesis are found by computing the probability for each leaf node hypothesis for each
possible parent root hypothesis. By writing θr1:k as the union of the parent hypothesis
θl1:k−1 and the association hypothesis ak the distribution Pr{θr1:k | Z1:k} can be written
out as

Pr{θr1:k | Z1:k} = Pr
{
ak, θ

l
1:k−1 | Z1:k−1, Zk

}
(3.57)

∝ p(Zk | ak, θl1:k−1, Z1:k−1)Pr
{
ak | θl1:k−1, Z1:k−1

}
Pr
{
θl1:k−1 | Z1:k−1

}
. (3.58)

The last factor in (3.58) sets up the recursion, and so we will only concern ourselves
with the two first factors. The likelihood p(Zk | ak, θl1:k−1, Z1:k−1) is, given the child
hypothesis ak, just a product over all associated and unassociated likelihoods such that

p(Zk | ak, θl1:k−1, Z1:k−1) =

mk∏
j=1

p(zjk | ak, θl1:k−1, Z1:k−1) (3.59)

=
1

V φk

k

·
∏
t:at>0

lta
t

, (3.60)

similarly to (3.33) in JPDA. The prior distribution for the child hypothesis ak is slightly
more involved to derive. As the only information we have on the measurement setZk is the
cardinality mk, all possible hypotheses are equally likely, and so the derivation reduces
to arguments using combinatorics counting the possible hypotheses. The hypothesis
event can be partitioned into what Reid calls a number event, configuration event and
association event.

The number event is computing the probability of receiving mk = δk + φk + βk

measurements, where δk, φk and βk are number of detections of known tracks, number
of clutter measurements and number of new targets detected, respectively, and where
φk and βk are both Poisson distributed as in (3.16) and (3.18) and each detection is a
Bernoulli variable as in (3.14). Denoting number of known tracks by NTGT , which is a
constant given the parent hypothesis θl1:k−1, the number event distribution is then

Pr
{
δk, φk, βk | θl1:k−1

}
=

(
NTGT
δ

)
P δd (1−Pd)NTGT−δk (PdνkVk)

βk

βk!
e−PdνkVk

(λVk)
φk

φk!
e−λVk .

(3.61)
The configuration event Ck is the uniform distribution over all different ways that the
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mk measurements can categorized as either detected track, clutter or new target. As this
is given as (

mk

δk

)(
mk − δk
φk

)(
mk − δk − φk

βk

)
=

(
mk

δk

)(
mk − δk
φk

)
(3.62)

different ways, where
(
mk−δk−φk

βk

)
=
(
βk

βk

)
= 1 is used, the configuration event distribu-

tion is given as

Pr{Ck | δk, φk, βk} =
1(

mk

δk

)(
mk−δk
φk

) =
δk!βk!φk!

mk!
. (3.63)

Lastly, as each track is unique, the association eventαk counts the number of permutations
the detected tracks can be associated to the established tracks, which gives the uniform
probability

Pr{αk | Ck} =
[

NTGT !

(NTGT − δk)!

]−1

=
(NTGT − δk)!

NTGT !
. (3.64)

Combining (3.60), (3.61), (3.63) and (3.64), canceling factors and moving constants into
the proportionality then gives the joint association hypothesis posterior

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

}
P δkd λφk(Pdνk)

βk(1− Pd)NTGT−δk
∏

t:atk>0

lta
t

.

(3.65)

Reducing the hypothesis space by introducing track existence

The association scenario in Figure 3.1 is very simple, but still the hypothesis tree branches
out quickly. The association tree only continues doing this exponentially for more com-
mon and more complex association scenarios in MTT, and so any means of reducing the
hypothesis branching is of interest. In more modern tracking methods such as Integrated
probabilistic data association (IPDA) [41], its multi-target tracking counterpart Joint in-
tegrated probabilistic data association (JIPDA) [42] and PMBM [14], the notion of track
existence is introduced, and in particular in PMBM this is used to make the hypothesis
space more compact. A full explanation of the above-mentioned filters is outside the
scope of this text, and so the following will only explain how hypothesis enumeration is
done in PMBM, as it is also a multihypothesis tracker.

As seen above, in MHT we explicitly distinguish between a measurement being
declared clutter or a new target. What can be seen is that except for this difference,
the two hypotheses containing these declarations of measurement origin will otherwise
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always be identical. PMBM does the clever trick of simply combining the two hypotheses
into one hypothesis by combining the number of new targets detected βk and clutter φk
into one variable κk = βk + φk. The idea to combine βk and φk was first proposed by
Bar-Shalom et. al in [43]. Instead, PMBM always initializes a new track together with
an extra state called the track existence probability rt. A full explanation for how this
track existence probability is initialized and used in the filter is outside the scope of this
text, and the reader is instead referred to [44]. We will, however, to be consistent with
the true hypothesis distribution in PMBM, modify the detection probability Pd in the
misdetection probability and detection likelihood for a track to be rtPd, i.e. the product
of the original detection probability and the track existence probability.

Based on the discussion above, by combining these two declarations into one gives
the hypothesis tree in Figure 3.2, where the number of leaf nodes is significantly reduced.
Considering that both the number of new targets and clutter are Poisson distributed and

bl1:k−1

1

02

0

2 0

2

0

b11:k b21:k b31:k b41:k b51:k

z2

z1

Figure 3.2: Hypothesis tree based on the scenario in Figure 3.1 but where we only enumerate new targets.
Comparing the number of leaf nodes in the two examples, the benefits of using the combined clutter and new
target declaration is evident, as this restricts the growth of the hypothesis tree.

independent, we can combine the two variables into one by summing them together,
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creating a new Poisson distributed variable κk = βk + φk with distribution

Pr{κ} = e−(Pdν+λ)Vk
[(Pdν + λ)Vk]

κk

κk!
(3.66)

where Pd is the detection probability and νk is the arrival rate of new targets as defined in
(3.18), λ is the clutter rate as defined in (3.16) and Vk is the volume of the measurement
region we consider. The joint association hypothesis posterior in PMBM can be shown
to be almost on the same form as in (3.65), but with the combined new target and clutter
it instead takes the form

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

}
(rtPd)

δk(Pdν+λ)
κk(1−rtPd)NTGT−δk

∏
t:atk>0

lta
t

.

(3.67)
It is, however, common to rewrite (3.67) in the following way, similarly to how we did
for JPDA in (3.64). First, we combine the product (rtPd)δk and

∏
t:atk>0 l

tat , as both are
products over all detected tracks. Additionally, we have that the number of measurements
mk is constant when conditioning on the measurement set Zk and mk = κk + δk, so

(Pdν + λ)κk = (Pdν + λ)κk
(Pdν + λ)mk

(Pdν + λ)κk+δ
(3.68)

= (Pdν + λ)κk
(Pdν + λ)mk

(Pdν + λ)κk(Pdν + λ)δk
(3.69)

∝ 1

(Pdν + λ)δk
, (3.70)

where we use that (Pdν+λ)mk is just a constant we can hide away in the proportionality
sign. We therefore substitute (Pdν + λ)κk with (3.70) in (3.67), which allows us to
combine it with (3.49). Lastly, by using the notation δ̄k = NTGT − δk for the number of
undetected tracks we therefore arrive at the expression

Pr{θr1:k|Z1:k} ∝ Pr
{
θl1:k−1|Z1:k−1

}
(1− rtPd)δ̄k

∏
t:atk>0

rtPdl
tat

Pdν + λ
(3.71)

for the joint association hypothesis posterior in PMBM. For the remainder of the report
we will use this form for marginalization.
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3.3 Marginalization of joint association hypothesis

posterior

After having derived the different forms of the joint association hypothesis posterior,
what remains is to compute the desired association marginals. Namely, two methods will
be described, the first being how to compute them exactly and an approximate solution
that is more common in existing implementations of MTT trackers, Murty’s method in
conjunction with a linear assignment solver.

3.3.1 Explicit hypothesis enumeration

The most straight-forward way of computing the marginals is to enumerate all possible
hypotheses by traversing all branches of the hypothesis tree and accumulate the marginals
while traversing. Since each hypothesis tree, as they appear in Figure 3.2, is dependent on
the prior hypothesis, i.e. the root node, these marginal computations have to be repeated
for each prior hypothesis and combined with total probability. We will for the time
being postpone how to compute exact marginals for the full multihypothesis problem and
instead only present the algorithm for exact marginal computation in a single-hypothesis
case.

Although not the most efficient way of doing hypothesis enumeration, we illustrate
how this can be done in the algorithm ExactMarginalization which can be found in
Algorithm 2 and uses two subalgorithms, HypothesisEnumeration in Algorithm 2 and
TraverseHypothesisTree in Algorithm 3.

In Algorithm 3 we traverse the hypothesis tree as it is defined in MHT, which is
measurement-oriented. This means that that we only explicitly enumerate what tracks
a measurement j is associated with for each j, with t = 0 denoting clutter. Such
measurement-oriented hypothesis is denoted by b, which corresponds to a branch in the
hypothesis tree. All branches of the tree are then collected in the set B. Note that in
Algorithm 3 assumes that we are working on references to the actual variables B and b,
such that modifying them in a procedure call modifies them in all prior calls in the call
stack.

Since the joint association hypothesis posterior considers detections of tracks, we
need to convert the set B to track-oriented hypotheses a, which are collected in the set
A. This happens in Algorithm 2.
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Algorithm 1 Marginalization by explicit hypothesis enumeration when single-
hypothesis.

1: procedure ExactMarginalization(Zk)
2: P← 0nk×(mk+2) ▷ Matrix storing all association marginals
3: A ← HypothesisEnumeration(Zk) ▷ See Algorithm 2
4: for a ∈ A do
5: p← 1
6: for (t, j) ∈ a do
7: if j = 0 then
8: p← p · (1− Pd)
9: else

10: p← p · Pdltj / (Pdν + λ)

11: for (t, j) ∈ a do
12: Ptj ← Ptj + p

13: P← NormalizeMarginals(P)
14: return P

Algorithm 2 Explicit hypothesis enumeration.
1: procedure HypothesisEnumeration(Zk)
2: B = { }
3: b = { }
4: mk = |Zk|
5: TraverseHypothesisTree(B, b, 1,mk) ▷ See Algorithm 3
6: A = { } ▷ Convert B to A
7: for b ∈ B do
8: a = { }
9: for t ∈ {1, . . . , nk} do

10: if Associated(b, t) then
11: j = AssociatedMeasurement(b, t)
12: a← a ∪ {(t, j)}
13: else
14: a← a ∪ {(t, 0)}
15: A ← A∪ a
16: return A
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Algorithm 3 Hypothesis tree traversal.
1: procedure TraverseHypothesisTree(B, b, j,mk)
2: if j > mk then ▷ All measurements associated
3: B ← B ∪ b
4: return
5: b← b ∪ {(0, j} ▷ Add misdetection and continue down
6: TraverseHypothesisTree(B, b, j + 1,mk)
7: b← b \ {(0, j)} ▷ Remove misdetection and try other branches
8: for t ∈ {1, . . . , nk} do ▷ Explore each possible branch
9: if Unassociated(b, t) and Gated(t, j) then

10: b← b ∪ {(t, j}
11: TraverseHypothesisTree(B, b, j + 1,mk)
12: b← b \ {(t, j)}
13: return

33



3.3.2 Finding the M best hypotheses with Murty’s method

Since enumerating all possible, valid association hypotheses is in practice infeasible, a
common heuristic for approximating the marginals is to enumerate only theM hypotheses
with the highest probability, as usually the remaining hypotheses will have negligible
probability [45]. The algorithm that makes this possible is called Murty’s method, named
after its inventor [46] which published the method back in 1968. The method was later
adopted into the MTT community by Cox, Miller et. al in [47] which optimized the
algorithm for use in MHT. Later, by Danchick and Newnam in [48], Reid’s MHT method
was reformulated to incorporate Murty’s method.

Embedded in Murty’s method is a linear assignment solver that solves the underlying
mutual exclusion assignment problem between tracks and measurements which follows
from the at-most-one assumptions discussed in Chapter 3.1.2. Common choices [49]
are the Hungarian method [50], the auction method [51] and the Joker-Volgenant (JV)
algorithm [52]. In [47] they used the JV algorithm to accelerate Murty’s by using the
dual variables from the JV algorithm as bounds for choosing an order to solve the most
promising problems first and what parent tracks to process first [49].
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4 | Approximating the association
marginals

The following chapter is the most important in the entire report and is where the main
contributions and novelties are presented. Having derived the joint association hypothesis
posterior in Chapter 3, we are properly equipped to compute the necessary marginals.
First, the association problem and the novel factor graph structure of the multihypothesis
association hypothesis density are described, for then to introduce two novel algorithms
for approximating the exact association marginals.

4.1 Factor graph representation of joint multihypo-

thesis association hypothesis posterior

We will here present the novel factor graph representation of the joint multihypothesis
association hypothesis posterior, which is based upon the work in [13], but introduces
two novelties. Firstly, the hypothesis variable θ, which extends the inference capabilities
of the factor graph to be multihypothesis. Secondly, we introduce the nonexistence
state at = N for all tracks t. Intuitively, this state encodes the notion that tracks are
only initialized in a single, previous hypothesis, and so we can only declare tracks as
misdetected or detected if they exist. More importantly, by adding the extra nonexistence
state to the track association variable, we are able to compute the desired multihypothesis
track existence probability that we need for track recycling in PMBM.

Based on this, the new factorization can be derived by inspecting the distribution
given in (3.71) as follows. We use the same overparameterization of track-measurement
associations as in [13] by introducing the association variable bj , j = 1, . . . ,mk with
mk being the number of measurements, defined as bj = t if measurement j is associated
with track t and bj = 0 is measurement j is a misdetection, similarly to how we did in
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Chapter 3.3.1. We then require the compatibility factors γtj between the tracks at and
measurements bj which are given as

γtj(at, bj) =

0, at = j ∧ bj ̸= t ∨ at ̸= j ∧ bj = t

1, otherwise
(4.1)

in order to assign 0 probability to invalid association hypotheses that disobeys the at-
most-one assumption discussed in Chapter 3.1.2.

We also add the prior factor for the hypothesis variable θ, which was denoted by
the factor Pr

{
θl1:k−1|Z1:k−1

}
in (3.71), to the factorization. Here too are compatibility

factors required, denoted by ζt, between tracks at and θ, defined by

ζt(θ, at) =

1, t ∈ θ ∧ at = j, j ∈ {0, 1, . . . ,mk} ∨ t /∈ θ ∧ at = N

0, otherwise
(4.2)

which we require to encode the nonexistence state at = N . The logical statement for
ζt(at, θ) = 1 can be interpreted as one of two mutually exclusive requirements that
must be fulfilled. One of the requirements, the existence consistency requirement, is that
at = j, j = 0, 1, . . . ,mk, i.e. a track t can only be associated with misdetection or
detection in the cases where θ takes the value of a hypothesis containing track t. The
alternative requirement, the nonexistence consistency requirement, is that at = N , i.e.
track t does not exist, only in the cases when θ takes the value of a hypothesis that does
not contain track t. Similarly to the association compatibility factor γtj in (4.1), the
purpose of this factor is to assign 0 probability to invalid association hypotheses.

We will now rewrite the expressioncontributions in (3.71) in a factorized form that
we can use to build a factor graph. Note that we have in (3.71) evaluated the hypothesis
posterior in a specific parent hypothesis θr1:k which branches of the child hypothesis
θl1:k−1. To generalize the expression for all hypotheses θ we include the compatibility
factor ζt from (4.2) and add the factors 1 for all tracks that does not exist in θ. Without
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adding the extra association variable bj , this lets us arrive at the expression

Pr{θ1:k|Z1:k} ∝ Pr{θ1:k−1|Z1:k−1}︸ ︷︷ ︸
φ(θ)

(1− Pd)δ̄k
∏

t:atk>0

Pdl
tat

Pdν + λ︸ ︷︷ ︸∏
t∈θ ζ

t(θ,at)ψt(at)

· 1︸︷︷︸∏
t/∈θ ζ

t(θ,at)ψt(at)

(4.3)

= φ(θ)
∏
t∈θ

ζt(θ, at)ψt(at)
∏
t/∈θ

ζt(θ, at)ψt(at) (4.4)

= φ(θ)

nk∏
t1

ζt(θ, at)ψt(at) (4.5)

where nk denotes the number of tracks and we have introduced the short-hand notation
for the prior hypothesis distribution

φ(θ) = Pr{θ1:k−1 | Z1:k−1} . (4.6)

and the prior factor ψt(at) for each track which is given by

ψt(at = 0) = 1− Pd, (4.7)

ψt(at = j) =
Pdl

tj

Pdν + λ
, j ∈ {1, . . . ,mk} (4.8)

ψt(at = N) = 1. (4.9)

In the above derivation, the definition ψt(at = N) = 1 was a convenient trick to
incorporate nonexisting tracks into the product without affecting the result. There is,
however, a theoretical result that shows that this is indeed correct to do. The result uses
Finite set statistics (FISST) and so it is not included here. The reader is instead referred
to [14], [33].

The final step of adding bj is done by simply adding in an extra product over all mk

measurements inside the product for each track t, arriving at

Pr{θ1:k|Z1:k} ∝ φ(θ)
∏
t

ζt(θ, at)ψt(at) mk∏
j=1

γtj(at, bj)

 . (4.10)

An illustrative example of how such a factor graph can look like can be found in
Figure 4.1 for a tracking scenario where we have three tracks a1, a2 and a3 and two
measurements b1 and b2.
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Figure 4.1: A toy example with three tracks a1, a2 and a3 and two measurements b1 and b2.

4.2 Hypothesis-conditioned loopy belief propagation

with probability hypothesis density approxima-

tion likelihood

Before presenting the main result of this report, we will first consider an alternative
approach to marginalization of the joint multihypothesis association hypothesis posterior.
We can rewrite the desired marginals as a total probability over all prior hypotheses, such
that one first computes the hypothesis-conditioned marginals using LBP as in [13], for
then to sum these together with appropriate scaling. By total probability and Bayes’ rule,
the marginal can be written as

Pr
{
at | Z1:k

}
=
∑
θ

Pr
{
at | θ, Z1:k

}
Pr{θ | Z1:k} (4.11)

∝
∑
θ

Pr
{
at | θ, Z1:k

}
p(Zk | θ, Z1:k−1)Pr{θ | Z1:k−1} . (4.12)

For tracks that exist in the prior hypothesis θ, the marginal Pr{at | θ, Z1:k} can be
computed with LBP, setting Pr{at = N | θ, Z1:k} = 0. For tracks that does not ex-
ist in the prior hypothesis we set Pr{at = N | θ, Z1:k} = 1 and all other association
events to 0. The prior probability Pr{θ | Z1:k−1} = φ(θ) is assumed given, and so
using this approaches reduces to computing the hypothesis-conditioned set likelihood
p(Zk | θ, Z1:k−1). Computing it exactly involves full hypothesis enumeration, which is
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in general infeasible. It can, however, be approximated using random finite set theory,
namely, by using approximations from the Probability hypothesis density (PHD) filter
[53]. Therefore, going forward we will refer to this method by the name Hypothesis-
conditioned loopy belief propagation with PHD approximation likelihood (LBP-PHD).
Intuitively, we can think of the true p(Zk|θ, Z1:k−1) as a binomial distribution over the
possible measurements we can get, considering both detections and clutter. Similarly to
what we did for clutter in Chapter 3.1.2 we can therefore approximate it with a Poisson
distribution. The exact derivation details are outside the scope of this text. The result is
that we can approximate the hypothesis-conditioned likelihood with

p(Zk|θ, Z1:k−1) ≈ e−
∑nk

t=1 rtPd

mk∏
j=1

[(
nk∑
t=1

rtPdl
tj

Pdν + λ

)
+ 1

]
(4.13)

where we can recognize the misdetection probabilities in the sum in the exponent by
rewriting as

nk∑
t=1

rtPd =

nk∑
t=1

1− (1− rtPd), (4.14)

the detection likelihoods from (3.71) in the product and the 1 accounts for the fact that
a measurement can be clutter and is equal to 1 as we have normalized the detection
likelihood by Pdν + λ.

4.3 Multihypothesis loopy belief propagation

The following section is the main, novel theoretical result of this report and will introduce
the notion of approximating the desired marginals by use of the LBP that was first
described in Chapter 2.4. The method will be built upon the work presented in [13], which
presents an association graph with similar structure to the one presented in Figure 4.1, but
without the presence of a prior hypothesis variable θ and the nonexistence state at = N .
Thus, in the following, this extension of LBP will be referred to as Multihypothesis
loopy belief propagation (MH-LBP). There are four types of messages that are sent in
the graph. The message sent from a track t to a measurement j is denoted by µt→j , the
message sent from a measurement j to a track t is denoted by νj→t, the message from
the prior hypothesis θ to a track t is denoted by σt and finally, the message from a track
t to the prior hypothesis θ is denoted by ρt. The message definitions are summarized in
Table 4.1 and their directions illustrated in Figure 4.2.
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In principle, doing LBP is matter of computing the messages

µa→i(xi)←
∑

xN(a)\{i}

fa(xN(a))
∏

j∈N(a)\{i}

µj→a(xj), (4.15)

µi→a(xi)←
∏

b∈N(i)\{a}

µb→i(xi) (4.16)

repeatedly until convergence, where the equations (4.15) and (4.16) are the same as in
(2.23) and (2.24) and repeated here for convenience. By inserting the factors (4.1), (4.2)
and (4.6) to (4.9) that we defined in Chapter 4.1 into (4.15) and (4.16) and using the
message notation from Table 4.1, the general LBP equations take the form

µt→j(b
j) =

∑
at

ψt(at)γtj(a
t, bj)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
i), (4.17)

νj→t(a
t) =

∑
bj

γtj(at, bj)
∏
t′ ̸=t

µt′→j(b
j), (4.18)

σt(a
t) =

∑
θ

ζt(θ, at)φ(θ)
∏
t′ ̸=t

ρt′(θ), (4.19)

ρt(θ) =
∑
at

ζt(θ, at)ψt(a
t)
∏
j

νj(a
t), (4.20)

where
∑
bj denotes the sum over all values bj ∈ {0, 1, . . . , nk},

∑
at denotes the sum over

all values at ∈ {0, 1, . . . ,mk, N},
∑
θ denotes the sum over all values θ ∈ {θ1, . . . , θL}

for L prior hypotheses,
∏
j′ ̸=j denotes the product over all measurements except for the

jth,
∏
t′ ̸=t denotes the product over all tracks except for the tth and

∏
j is the product over

all measurements. The key insight is that all messages have similar behavior to what
is recognized in [13], which allows for clever normalizations for reducing computation
complexity and simpler expressions. This is because we can show that, although the
messages above are strictly speaking functions of at, bt and θ, we can use the structure
of the graph to reduce the messages to scalar values instead of tables of values. This
takes less resources to compute and store in memory, which has great benefits when
implementing and executing the algorithm. The result is in Theorem 1, which follows.
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νj′→t′µt′→j′

Figure 4.2: Simplified illustraion of message directions in association graph.

Name Notation Direction

Track-to-measurement µt→j at → bj

Measurement-to-track νj→t bj → at

Hypothesis-to-track σt θ → at

Track-to-hypothesis ρt at → θ

Table 4.1: Message types in association graph.

Theorem 1 (The message definitions for multihypothesis LBP). Given an associ-
ation graph of the same structure as in Figure 4.1 where the factors are defined as
in (4.1), (4.2) and (4.6) to (4.9), the normalized messages used in multihypothesis
LBP are given as

µt→j =
ψt(j)

ψt(0) +
∑
j′ ̸=j,j′>0 ψ

t(j′)νj′→t + σt
, (4.21a)

νj→t =
1

1 +
∑
t′ ̸=t,t′>0 µt′→j

, (4.21b)

σt = ρt ·

∑
θ : t/∈θ

φ(θ)
∏
t′∈θ

ρt′∑
θ : t∈θ

φ(θ)
∏
t′∈θ

ρt′
, (4.21c)

ρt = ψt(0) +

mk∑
j=1

ψt(j)νj→t. (4.21d)

Proof. We will first simplify the track-to-measurement messageµt→j as much as possible
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at this point. The sum is over all values of at, j included, so we first explicitly separate
the sum into the term where at = j and a partial sum over the remaining at as

µt→j(b
j) = ψt(a

t = j)γtj(a
t = j, bj)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
t)

+
∑
at ̸=j

ψt(a
t)γtj(a

t ̸= j, bj)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
t). (4.22)

By now inserting bj = t, we see that∑
at ̸=j

ψt(a
t)γtj(a

t ̸= j, bj = t)
∏
j′ ̸=j

νj′→t = 0 (4.23)

and

ψt(a
t = j)γtj(a

t = j, bj)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
t) = ψt(a

t = j)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
t)

(4.24)
as γtj(at ̸= j, bj = t) = 0 and γtj(at = j, bj = t) = 1, respectively, by the way it was
defined in (4.1). Doing the same for bj ̸= t gives

ψt(a
t = j)γtj(a

t = j, bj ̸= t)
∏
j′ ̸=j

νj′→t(a
t)σt(a

t) = 0 (4.25)

and ∑
at ̸=j

ψt(a
t)γtj(a

t ̸= j, bj = t)
∏
j′ ̸=j

νj′→t =
∑
at ̸=j

ψt(a
t)
∏
j′ ̸=j

νj′→t (4.26)

for similar reasons. Thus, we get that the message value reduces to two distinct values,

µt→j(b
j) =

ψt(at = j)
(∏

j′ ̸=j νj′→t(a
t = j)

)
σt(a

t = j), bj = t∑
at ̸=j ψt(a

t)
∏
j′ ̸=j νj′→t(a

t)σt(a
t), bj ̸= t.

(4.27)

Since messages in LBP are only given up to scale, we can normalize them. Namely, by
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normalizing µt→j by its value when bj ̸= t, we get that

µt→j(b
j = t) =

ψt(a
t = j)

∏
j′ ̸=j νj′→t(a

t)σt(a
t)∑

at ̸=j ψt(a
t)
∏
j′ ̸=j νj′→t(at)σt(at)

, (4.28)

µt→j(b
j ̸= t) = 1. (4.29)

For now, these are the simplifications we can do. The expression in (4.28) will be further
simplified later.

We now consider the measurement-to-track message νj→t. We start by doing the
same as for µt→j above by explicitly separating the sum into the term where bj = t and
the partial sum where bj ̸= t to get

νj→t(a
t) = γtj(a

t, bj = t)
∏
t′ ̸=t

µt′→j(b
j = t)

+
∑
bt ̸=t

γtj(a
t, bj)

∏
t′ ̸=t

µt′→j(b
j). (4.30)

We can then reduce the message value to the two distinct values

νj→t(a
t) =


∏
t′ ̸=t µt′→j(b

j = t), at = j∑
bt ̸=t

∏
t′ ̸=t µt′→j(b

j), at ̸= j.
(4.31)

by following a similar line of reasoning as for µt→j . We choose to normalize by
νj→t(a

t ̸= j) to get

νj→t(a
t = j) =

∏
t′ ̸=t µt′→j(b

j = t)∑
bt ̸=t

∏
t′ ̸=t µt′→j(bj ̸= t)

, (4.32)

νj→t(a
t ̸= j) = 1. (4.33)

If we now insert (4.29) into (4.32) we get that the numerator reduces to∏
t′ ̸=t

µt′→j(b
j = t) =

∏
t′ ̸=t

1 (4.34)

= 1 (4.35)
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and the denominator becomes∑
bt ̸=t

∏
t′ ̸=t

µt′→j(b
j ̸= t) =

∏
t′ ̸=t

µt′→j(b
j = 0) +

∑
t′′>0
t′′ ̸=t

∏
t′ ̸=t

µt′→j(b
j = t′′), (4.36)

=
∏
t′ ̸=t

1 +
∑
t′′>0
t′′ ̸=t

µt′′→j(b
j = t′′)

∏
t′ ̸=t
t′ ̸=t′′

1

 , (4.37)

= 1 +
∑
t′′>0
t′′ ̸=t

µt′′→j(b
j = t′′), (4.38)

which, after changing back the dummy variable t′′ to t′ in (4.38), gives the final expression

νj→t =
1

1 +
∑
t′ ̸=t,t′>0 µt′→j

, (4.39)

which is the same as in (4.21b).
Next we turn to the hypothesis-to-track message σt. If we first rewrite the sum in

(4.19) as the sum of two partial sums,

σt(a
t) =

∑
θ: t∈θ

φ(θ)ζt(θ, a
t)
∏
t′ ̸=t

ρt′(θ) +
∑
θ: t/∈θ

φ(θ)ζt(θ, a
t)
∏
t′ ̸=t

ρt′(θ), (4.40)

where the notation θ : t ∈ θ and θ : t /∈ θ means all prior hypotheses θ containing and
not containing the track t, respectively. We again apply a similar procedure as for µt→j

and νj→t, only this time ζt(θ, at) takes the role of γtj(at, bj). For at ∈ {0, 1, . . . ,mk}
and t ∈ θ ∑

θ: t/∈θ

φ(θ)ζt(θ, a
t)
∏
t′ ̸=t

ρt′(θ) = 0 (4.41)

and ∑
θ: t∈θ

φ(θ)ζt(θ, a
t)
∏
t′ ̸=t

ρt′(θ) =
∑
θ: t∈θ

φ(θ)
∏
t′ ̸=t

ρt′(θ) (4.42)

as ζt(θ, at) = 0 and ζt(θ, at) = 1, respectively, by the way it was defined in (4.2).
Similarly, when at = N and t ∈ θ,∑

θ: t∈θ

φ(θ)ζt(θ, a
t)
∏
t′ ̸=t

ρt′(θ) = 0 (4.43)
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and ∑
θ: t/∈θ

φ(θ)ζt(θ, a
t)
∏
t′ ̸=t

ρt′(θ) =
∑
θ: t/∈θ

φ(θ)
∏
t′ ̸=t

ρt′(θ), (4.44)

Thus, σt reduces to the two cases

σt(a
t) =


∑
θ: t∈θ φ(θ)

∏
t′ ̸=t ρt′(θ), at = 0, 1, . . . ,mk∑

θ: t/∈θ φ(θ)
∏
t′ ̸=t ρt′(θ), at = N.

(4.45)

We choose to normalize by σt(at ̸= N) to get the values

σt(a
t = N) =

∑
θ: t/∈θ

φ(θ)
∏
t′ ̸=t

ρt′(θ)∑
θ: t∈θ

φ(θ)
∏
t′ ̸=t

ρt′(θ)
, (4.46)

σt(a
t ̸= N) = 1. (4.47)

We will return to (4.46) soon. First, we will return to the expression for the track-to-
measurement message µt→j , as we have all the pieces we need to simplify the message
in (4.28). Inserting (4.33) and (4.47) into (4.28) makes the numerator

ψt(a
t = j)

∏
j′ ̸=j

νj′→t(a
t = j)

σt(a
t = j) = ψt(a

t = j)

∏
j′ ̸=j

1

 · 1 (4.48)

= ψt(a
t = j) (4.49)
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and the denominator

∑
at ̸=j

ψt(at)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
t) = ψt(at = 0)

∏
j′ ̸=j

νj′→t(a
t = 0)

σt(a
t = 0)

+

mk∑
at=1
at ̸=j

ψt(at)

∏
j′ ̸=j

νj′→t(a
t)

σt(a
t)

+ ψt(at = N)

∏
j′ ̸=j

νj′→t(a
t = N)

σt(a
t = N)

(4.50)

= ψt(at = 0)

∏
j′ ̸=j

1

 · 1
+

mk∑
at=1
at ̸=j

ψt(at)νat→t(a
t)

 ∏
j′ ̸=j
j′ ̸=at

1

 · 1

+ 1 ·

∏
j′ ̸=j

1

σt(a
t = N) (4.51)

= ψt(0) +
∑

j′ ̸=j,j′>0

ψt(j′)νj′→t + σt (4.52)

where we used that ψt(at = N) = 1 from (4.9). Putting it back together we get

µt→j =
ψt(j)

ψt(0) +
∑
j′ ̸=j,j′>0 ψt(j

′)νj′→t + σt
. (4.53)

which again is the desired result in (4.21a).
The track-to-hypothesis message ρt(θ) can be simplified as follows. We do a decom-

position of the sum in (4.20) into a partial sum over at = 0, 1, . . . ,mk and the term for
at = N to get

ρt(θ) =
∑
at ̸=N

ψt(at)ζt(θ, at)
∏
j

νj→t(a
t) + ψt(N)ζt(θ, at = N)

∏
j

νj→t(N).

(4.54)
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Performing the same procedure as for σt above, we get that inserting θ when t ∈ θ makes

ψt(N)ζt(θ, at = N)
∏
j

νj→t(N) = 0 (4.55)

and ∑
at ̸=N

ψt(at)ζt(θ, at)
∏
j

νj→t(a
t) =

∑
at ̸=N

ψt(at)
∏
j

νj→t(a
t) (4.56)

due to ζt(θ, at) = 0 and ζt(θ, at) = 1, respectively, while for θ when t /∈ θ makes∑
at ̸=N

ψt(at)ζt(θ, at)
∏
j

νj→t(a
t) = 0 (4.57)

and
ψt(N)ζt(θ, at = N)

∏
j

νj→t(N) = ψt(N)
∏
j

νj→t(N) (4.58)

for similar reasons. Consequently, as before, the message reduces to two cases,

ρt(θ) =


∑
at ̸=N ψt(a

t)
∏
j νj(a

t), t ∈ θ
ψt(N)

∏
j νj(N). t /∈ θ

(4.59)

By inserting ψt(N) = 1 from (4.9) and
∏
j νj(N) = 1 from (4.33) we get that the t /∈ θ

case is equal to 1, hence no normalization is necessary in this case. If we separate the
term for at = 0 the t ∈ θ case becomes

ρt = ψt(0) +

mk∑
j=1

ψt(j)νj→t (4.60)

which we recognize as (4.21d).
The only thing that remains is to simplify (4.46). Note that the product

∏
t′ ̸=t ρt′ in

the numerator can be written as
∏
t′ ρt′ , i.e. over all tracks, as ρt = 1 for all terms in that

sum. We can further reduce the number of factors to
∏
t′∈θ ρt′ by normalization. For

the product in the denominator we do the same trick, only we now need to divide by ρt
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as well as it is no longer unity. Thus, the final message definition used is

σt =

∑
θ: t/∈θ

φ(θ)
∏
t′∈θ

ρt′

1

ρt

∑
θ: t∈θ

φ(θ)
∏
t′∈θ

ρt′

= ρt ·

∑
θ: t/∈θ

φ(θ)
∏
t′∈θ

ρt′∑
θ: t∈θ

φ(θ)
∏
t′∈θ

ρt′
. (4.61)

The benefit of this is that this allows for reusing of computation and lower overall
complexity by computing

∏
t′∈θ ρt′ for each θ before computation of σt. ■

We can now run LBP using these messages. After convergence, the approximate
association marginals can be computed from

p̂(at|Z1:k) ∝


ψt(0), at = 0

ψt(j)νj→t, at = 1, . . . ,mk

σt, at = N

(4.62)

while the measurement marginals are computed with

p̂(bj |Z1:k) ∝

1, bj = 0,

µt→j , bj = 1, . . . , nk
(4.63)

and the prior hypothesis posterior

p̂(θ|Z1:k) ∝ φ(θ)
∏
t∈θ

ρt (4.64)

4.3.1 Algorithmic complexity

In [13] they argue that the computation of µt→j and νj→t isO(nkmk), which holds here
as well. The computation of ρt for a given t consists of a sum which is mk large, which
over nk targets totals inO(nkmk) computations, hence not changing the complexity. For
a given σt, we need to computeHk terms, withHk denoting number of prior hypotheses
at timestep k, that makes up the total number of terms in the partial sums that appear
in the numerator and denominator. Since the same products can be used for all tracks,
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as these only depend on the hypotheses, they can be computed beforehand in O(Hknk)

time. Computation of all σt is then alsoO(Hknk), which in total means that all messages
can be computed in O(mknk + Hknk) time and with O(mknk) memory, as we need
mknk memory for µt→j and νj→t and nk memory for ρt and σt.
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III

Simulation results



5 | Simulation of multitarget track-
ing scenarios

The proposed methods for approximate marginals presented in Chapter 4 were tested on
a large, simulated dataset. The simulated dataset is called “9 ravens” and the scenario
consists of 1397 simulated radar scans in 2 dimensions. There are 8 true targets, while
the radar is mounted on yet another vehicle. The dataset consists of 10001 timesteps
of simulation. For each timestep, the methods are tested separately on each cluster of
tracks, where each cluster is defined as a set of tracks where each track in the set has
gated a measurement gated by at least one other track in the set. Extracting the cluster
data from the timestep data showed that there are in total 111887 clusters in the dataset.

In order to compute estimation errors, computing the exact marginals are required,
which involves explicit hypothesis enumeration. The hypothesis enumeration failed in
34 cases, equal to 0.03% of the available data, as the estimated number of hypotheses
to enumerate was too great, making it impossible to compute the estimation error. This
was deemed a negligible amount of the available data, and so it was simply discarded.

5.1 Overview of track clusters statistics used for test-

ing

In Figure 5.1 there are four histograms intended to summarize the most important statistics
about the clusters that the algorithms were tested on from a data association standpoint.
“Number of tracks” and “number of hypotheses” refer to the number of tracks and prior
hypotheses in the cluster, respectively. “Number of gated measurements” refers to the
total number of measurements that were gated by tracks in a cluster. “Highest number
of tracks competing for measurement” refers to, conditioned on tracks existing in a prior
hypothesis, the maximum number of tracks that gated the same measurement.
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There are two main takeaways from these histograms. The first, from inspecting
“Number of tracks” and “Number of hypotheses”, is that for the majority of clusters,
there are few hypotheses and tracks, simplifying the association problem and makes
approximate methods almost identical to the exact solution. This will be made more clear
when we later inspect the distribution of the estimation errors. The second takeaway
can be seen from inspecting “Number of gated measurements” and “Highest number of
tracks competing for measurement”. The more tracks that gate a measurement, the more
hypotheses there are to enumerate, and so this can be thought of as a rough measure of
how complicated the association problem is expected to be. As we can see, most of the
association problems we encounter have few tracks competing for the same measurement.
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Figure 5.1: Histograms over number of tracks, number of.
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5.1.1 Implications of number of competing tracks from a graph-
ical point of view

From a graphical point of view, the fewer tracks that compete for the same measurement,
the less correlated the tracks are to each other, and the better we expect LBP to perform.
Intuitively, when we associate a track to a measurement in the association graph, we
“weigh” the edge connecting them by the detection likelihood. This implies that when
two tracks gate the same measurement that have commensurate detection likelihood, we
get strong correlation between the tracks and and a tight cycle in the graph. On the other
hand, when a track gates a measurement alone or competes about it with another track
with low detection likelihood, the edge weight closing the loop gets low. Thus, we get
tracks that are only weakly correlated and a loose cycle in the graph such that the graph
more closely resembles a tree. Therefore, it is natural to conclude that for association
problems with few tracks competing for the same measurement, LBP is better at resolving
the association problem since the tree approximation it makes is more correct. In other
words, for the given dataset, we have reason to believe that for most of the cases, LBP
will perform well. An illustrative example comparing the two cases can be found in
Figure 5.2.

θ

a1

a2

b1

b2

θ

a1

a2

b1

b2

Figure 5.2: Two different association cases. The left case is a hard case, as the two tracks a1 and a2 are both
competing for the measurements b1 and b2 with close to equal detection likelihood, making two strong cycles
in the graph. In the right case, however, a2 is the only track that gates b2 with a weak link, corresponding to
low detection likelihood, to b1, such that graph more resembles a tree, making the LBP approximation closer
to exact.

5.2 The methods compared

Three methods are compared in the following results. The two first methods are the
methods MH-LBP and LBP-PHD, presented in Chapter 4.3 and Chapter 4.2, respectively.
Additionally, as a benchmark or best-case to compare with, a hypothesis-conditioned LBP
similar to LBP-PHD was also tested that used the exact normalization constant instead
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of the PHD approximation. The purpose of this was to isolate out errors from the
approximate normalization in order to better capture the properties and failure modes of
LBP on the multihypothesis association problem in question.
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6 | Results and discussion

The following chapter will present and discuss the results of running the different marginal
estimation methods on the dataset introduced in Chapter 5.

6.1 Signed marginal error and bias

First, we will discuss the histograms of the signed errors of the different methods com-
pared, which can be found in Figure 6.1. The main reason for inspecting the signed error
is to look for any bias in the estimated errors. Considering the symmetric shape of the
histograms about 0 and the computed statistics in Table 6.1, we can assume that all the
different methods are indeed unbiased.

Method Signed probability error mean± standard
deviation

MH-LBP 3.2767 · 10−20 ± 0.0168
LBP-PHD 1.1526 · 10−20 ± 0.0141
LBP with exact normalization constant −1.0956 · 10−21 ± 0.0030

Table 6.1: Summary of signed errors statistics for the different inference methods tested on the simulated
dataset.

We can also see from Figure 6.1 that MH-LBP has a lower, upper bound on error
compared to LBP-PHD, and that LBP with exact normalization constant clearly out-
performs both former methods. A possible explanation for why MH-LBP has a lower
error bound than LBP-PHD is that both methods inherit inaccuracies from LBP, but
that LBP-PHD accumulates extra error from also having to estimate the normalization
constant. If we compare LBP-PHD with LBP with exact normalization constant, we
can attribute the difference in error to the estimated normalization constant, suggest-
ing that estimating it accurately will significantly improve estimation accuracy and that
hypothesis-conditioned LBP shows promise.
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Figure 6.1: Histogram of the signed errors between MH-LBP and hypothesis-conditioned LBP with PHD
approximation. Note that the y-axis is logarithmic

6.2 Survival function over association errors

The plots in Figure 6.2 show the survival function, which is simply defined as 1− P̂ (e)
with P̂ (e) being the empirical cumulative distribution for the errors, of the empirical
distribution of the errors from MH-LBP, LBP-PHD and hypothesis-conditioned LBP
using the exact normalization constant as a best case to compare with. The reason
we are interested in the survival function is that we wish to compare the densities of
errors of the different methods, similarly to for a histogram. The main benefits of using
a survival function is that we can easily compare the estimation performance of the
different probabilities we are interested in and also quickly tell the best method by look
at what graph hits the x-axis first. Comparing the performance of MH-LBP with that of
LBP-PHD we see that overall, the two approaches are similar. Notably, MH-LBP seems
to perform better in particular for misdetections than LBP-PHD, and somewhat worse
for detections.

Even more interesting is how much better the LBP with exact normalization con-
stant is at estimating the nonexistence probability. This is most likely related to how
it is computed, as the hypothesis-conditioned marginals where a track does not exist is
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concentrated with probability 1 for nonexistence. More importantly, the crucial distinc-
tion is that we know the hypothesis-conditioned marginals for nonexisting tracks exact,
while the existing tracks have only approximate marginals for misdetection and detection
from LBP. Thus, the terms for nonexisting tracks in the total probability sum are also
exact, and so the errors we see must be come from the LBP approximation. In other
words, before renormalization of the marginals we can conclude that the unnormalized
nonexistence probability is exact, but that the renormalization injects error intdataseto
nonexistence probability from the remaining probabilities estimated from LBP. The most
profound implication of the accurate nonexistence probability estimate is that this shows
great promise in how accurate track recycling can be done in PMBM given an accurate
estimate of the hypothesis-conditioned likelihood.

As a final observation, although the nonexistence probability is very exact, the misde-
tection and detection probabilities do not show the same behavior. As these are inferred
from LBP, this is natural, as we have no guarantees about the accuracy contrary i the
same way as we have for nonexistence.

6.3 Normalization constant accuracy

In Figure 6.3 the PHD approximation normalization constant is compared to the exact
normalization constant in a correlation plot with logarithmic scale. In a logarithmic
plot the correlation between normalization constants is better captured, mostly because
the exact normalization constant in some cases is so significantly larger than the PHD
estimate. Interestingly, the correlation plot demonstrates the cost of using a Poisson
approximation to the measurement set over the binomial. This can be seen from the fact
that for low likelihoods, the Poisson approximation overestimates the exact likelihood,
while for high likelihoods it underestimates it, clearly showing the flatness of the Poisson
distribution compared to the binomial. In any case, although the order of magnitude
varies a lot, we can still conclude that the PHD approximation does somewhat correlate
with the true normalization constant.

6.4 Correlation between approximate and exact mar-

ginals

The correlations between the exact marginals and MH-LBP, LBP-PHD and LBP with
exact normalization constants, respectively, can be found in Figure 6.4.

In the correlation plot for MH-LBP most marginals are well correlated with the exact
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Figure 6.2: Survival function for different errors. Note that both the y-axis and x-axis are logarithmic. The
vertical line at x = 0 is due to all the marginals that estimated with zero error.

marginals. However, we can clearly see an S-shaped curve that follows the point cloud of
marginals. We can primarily make two observations from this. The first is that MH-LBP
has a tendency of estimating individual probabilities centered at 0.5, as the density of
points increases at marginals for this value, over all values of exact marginals. We can
interpret this as the fact that while the exact solution would be certain, e.g. to associate
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Figure 6.3: Correlation plot between estimated normalization constant and true normalization constant with
logarithmic scaling.

with probability 0.95 or not as the association probability is only 0.05, MH-LBP would be
more uncertain. This takes us to the second conclusion. For probabilities roughly below
0.5, MH-LBP tends to overestimate the probabilities as the point density is centered
below the correlation line. Similarly for probabilities above 0.5 we see the opposite
effect, concluding that here MH-LBP underestimates the probabilities. To conclude, it
can seem from the correlation plot for MH-LBP that MH-LBP overall has a tendency to
“squish” the true marginal distribution together, or at least capture the shape of it. This
follows from the observation that while most estimated probabilities are well correlated
with the exact probabilities, small probabilities are usually estimated to be larger than
they actually are and the opposite for large probabilities.

The correlation plot for LBP-PHD shows a clear correlation line, much in the same
way as for MH-LBP, but with large, convex-shaped variance about the correlation line.
We also note that LBP-PHD has more data points spread across the entire plot, while
MH-LBP is relatively more centered around the correlation line. A possible explanation
for this can be the same as used for Figure 6.3 above, i.e., the PHD approximation.
Since the Poisson approximation is flatter, tending to overestimating low likelihoods and
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underestimating high likelihoods, a possible explanation could be that the conservative
behavior that we saw in MH-LBP also applies for hypothesis-conditioned LBP, and that
this is further amplified by the PHD approximate normalization constant.

Lastly, we will inspect the correlation plot for the best-case LBP with exact nor-
malization constant. Overall, the estimated probabilities are highly correlated with the
exact probabilities, which should follow from having access to the exact normalization
constant. Mainly three observations can be made in this plot. The first observation
is that LBP with exact normalization constant has a larger tendency of overestimating
probabilities close to zero than underestimating them. This could be related to similar
behavior we saw for MH-LBP. The second observation is the strong trend that LBP with
exact normalization constant consistently underestimates higher probabilities, and almost
never underestimates it. This seems like an extreme case of what we saw for MH-LBP,
and begs the question whether this might be a trend for such approximate schemes, or at
least methods like LBP. Lastly, there seems to be an almost linearly increasing tendency
to underestimate increasing probabilities, which we see from the widening point cloud
above the correlation line.

6.5 Failed convergence of MH-LBP

In exactly one case out of in total 111887 clusters the MH-LBP algorithm failed to
converge to a solution, and instead the messages in the graph oscillates between two
values. These two values are not necessarily the same for each message. A software bug
caused many more clusters to not converge, about 780, and so at the point of writing it is
unclear whether the failed convergence is due to another software bug or whether this is
a more fundamental fact in the way the factor graph is structured and the messages are
defined. A small discussion of this particular case is anyhow warranted.

They prove mathematically in [13] that the track-to-measurement and measurement-
to-track messages, µt→j and νj→t, respectively, must converge, and this was assumed to
hold for the message definitions in (4.17) and (4.18). Namely, if we were to fix σt for all t,
then we expectµt→j and νj→t to converge. We therefore conclude that the main culprit for
the oscillations are the σt messages. In [16] they consider a similar association problem,
only instead of multihypothesis it is multiscan, and state that the Bethe free energy for
this association graph is nonconvex, which results in undesirable behavior. A possible
explanation for the nonconvergence could be that the Bethe free energy function of the
multihypothesis association graph is similarly nonconvex or exhibits other undesirable
properties.
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Figure 6.4: Heatmap showing correlation between MH-LBP marginals and exact marginals. Note that the
colors are logarithmic.

The oscillations of the hypothesis-to-track messages, σt, can be found in Figure 6.5,
together with the reward matrix for the cluster, which is here with one row for each
track and one column for each measurement and one for misdetection. The values
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placed in each entry in the matrix depends on the index of the entry, where the entries
at (t, 1) contains the misdetection probability of each track and (t, j′), j′ > 2 contains
the likelihood for the association between track t and measurement j, j = j′ − 1. In
Figure 6.5 we see that track 9 and 11 have the largest oscillations, while also being the
tracks with the largest likelihoods in the reward matrix.
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Figure 6.5: Oscillations of the different sigma messages of the tracks in the cluster where MH-LBP did not
converge, together with the cluster-conditioned reward matrix. Note that only 30 iterations are plotted.

In [13] results show that the accuracy of LBP is tied to the Signal-to-noise-ratio
(SNR) of the problem, where lower SNR seems to improve accuracy in vice versa. In
other words, for high misdetection probabilities and clutter rate, we can expect LBP in
the hypothesis-conditioned case to have improved accuracy. In [26] they observe that
priors in a graph with low values can cause oscillations in LBP, and that increasing
these in their experiments helped with convergence. As the misdetection probablities
do appear in the priors of the tracks in our factor graph, it was tested with considerable
higher misdetection probabilities. In Figure 6.6 we see that after adding 2.5 to the log
misdetections we achieve convergence, although relatively slowly as the σt messages
oscillates but the amplitude slowly decays. The fact that the messages converges for low
SNR might be related to the discussion in Chapter 5.1.1, as we expect for large detection
likelihoods that we get stronger correlation in the association graph, and that making the
misdetection probability larger makes these likelihood relatively smaller, weakening the
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Figure 6.6: Convergence of messages after increasing the misdetection probabilities. The logarithm of the
misdetection probabilities were increased by 2.5, effectively multiplying them by e2.5. Note that 150 iterations
are plotted to capture the convergence.

correlation. Lastly, we also see that, comparing Figure 6.5 and Figure 6.6, it seems like
the size of the likelihoods are related to how large the σt messages are, as track 9 and 11

dominate in both cases, but not to its convergence properties.
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Closing remarks



7 | Conclusion

This report started by introducing the challenges of data association in multi-target
tracking. The challenges are attributed to the combinatorial complexity that follows
from allowing multiple tracks to compete for the same measurements, and reasons that
approximations are necessary in practice. Based on previous work in data association in
MTT that are LBP, the main contribution of this paper is to generalize the approximate
methods for a multihypothesis setting.

Prior to presenting the novel methods for multihypothesis data association in multi-
target tracking, factor graphs are introduced, together with a presentation of the inference
methods BP for tree-structured graphs and LBP for general graphs contain loops. Fol-
lowing that, data association in MTT is reviewed, where the modelling assumptions
necessary for deriving a joint association hypothesis posterior in MTT are established.
These are then used to derive said posterior distribution in the MTT trackers JPDA and
MHT, together with how the posterior in MHT can be modified to become equal to the
one used in PMBM. Finally, a description for how to do exact marginalization of the
joint posterior is presented, together with a common approach for approximating the
marginals by enumerating only the M most likely association hypotheses with Murty’s
method.

After the preliminaries, the main contributions of this report are presented. The
first novelty is the factor graph representation of the joint multihypothesis association
hypothesis posterior, together with the introduction of the nonexistence state of tracks
which allows for efficient recycling of tracks in PMBM. The, two novel algorithms for
approximate marginalization of the joint multihypothesis association hypothesis posterior
are presented. The first method, called MH-LBP, does efficient LBP on the full posterior
by deriving special messages that use clever normalization to reduce computation and
memory complexity. The second method, called LBP-PHD, does hypothesis-conditioned
LBP over all prior hypotheses by also estimating the associated hypothesis-conditioned
likelihood with a Poisson approximation inspired by the PHD filter.
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The proposed methods are tested on a simulated dataset where the data is generated
by a PMBM filter implementation, and three methods are compared. The first two
methods are the novel methods MH-LBP and LBP-PHD. The third method is a best-case
comparision that does hypothesis-conditioned LBP in the same manner as LBP-PHD, but
with exact hypothesis-conditioned likelihood. The results show that both MH-LBP and
LBP-PHD perform well in most cases. The largest differences between was attributed
to the Poisson approximation of the hypothesis-conditioned likelihood, as it showed a
tendency to overestimate low values of the true likelihood and underestimate high values.
Based on the correlation between the estimated marginals and the exact marginals, MH-
LBP seems to overall estimate more conservative marginals, while LBP-PHD shows
larger variance. Inspecting the performance of the best-case hypothesis-conditioned
LBP shows promise in computing the association marginals by hypothesis-conditioned
LBP given an accurate estimate of the corresponding likelihood can be found, in particular
for track recycling, as it is able to estimate the nonexistence probability with very high
accuracy. A single case of nonconverging MH-LBP is discussed. It is speculated that
this is due to oscillations in the hypothesis-to-track messages and that this is related to
the SNR of the association case.

7.1 Future work

The most promising path forward is to further investigate the possibilities in variational
inference, where mainly two approaches can be identified.

The first is to improve MH-LBP by iterating and improving on the LBP scheme. This
is especially interesting considering the nonconvergence case of MH-LBP discussed
in Chapter 6.5. Choosing the Bethe approximation is only one choice to make in the
optimization problem discussed in Chapter 2.4.1. A common choice is the even simpler
trial distribution q that factorizes as a product marginals, i.e. where all variables are
assumed independent, which is called the mean field approximation [54]. Another
option is to work directly on the Bethe free energy and modify it for better properties
when optimizing. This is done by Williams et. al do in [16] that was briefly mentioned in
Chapter 6.5. They recognize that the underlying Bethe free energy that LBP optimizes is
nonconvex for the multiscan data association graph they construct, and addresses this by a
convexification of the Bethe free energy by using fractional free energy [55], [56] together
with deriving a BP-like scheme for approximating marginals. A similar inspection and
approach might be necessary for the multihypothesis data association graph presented in
this work.
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The second approach is to turn to the LBP-PHD method and use the fact that optimiz-
ing the variational free energy functional does not only compute approximate marginals,
but also allow for computing an approximation of the normalization constant of the
true distribution. As proven in [13], LBP on the hypothesis-condtioned data association
problem has many desirable properties, the most important perhaps being guaranteed con-
vergence. This makes approximating the hypothesis-conditioned likelihood a favorable
alternative if an accurate estimate can be computed. Although the PHD approximation
in the LBP-PHD method showed promise, comparing its performance to the best-case
with exact likelihood showed that there is much room for improvement. In [15], Vontobel
approximates the permanent of a matrix by using LBP in the same way as Williams et.
al does in [13], only he uses the fixed-point messages to compute the approximate Bethe
normalization constant. This approach seems promising for a more accurate estimate of
the hypothesis-conditioned likelihood.
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