
Hypothesis Exploration in Multiple Hypothesis
Tracking with Multiple Clusters

1st Edmund Førland Brekke
Dept. of Engineering Cybernetics

Norwegian University of Science and Technology
Trondheim, Norway

edmund.brekke@ntnu.no

2nd Lars-Christian Ness Tokle
Dept. of Engineering Cybernetics

Norwegian University of Science and Technology
Trondheim, Norway

lars-christian.n.tokle@ntnu.no

Abstract—Finding the most probable posterior hypotheses is
a core task in hypothesis-oriented multiple hypothesis tracking
(HO-MHT), and also in related tracking methods such as the
Poisson multi-Bernoulli mixture (PMBM) filter. The traditional
approach is to find the M best new hypotheses for each parent
hypothesis by means of Murty’s algorithm. In this paper we
instead present an algorithm for finding the M best hypotheses
ranging over all parent hypotheses. The algorithm is developed
in the more general context of cluster management, where the
goal is to merge several parent clusters, and to find the M best
posterior hypotheses in any such supercluster.

Index Terms—data association, multiple hypothesis tracking,
cluster management, Poisson multi-Bernoulli mixture filter, M -
best assignment

I. INTRODUCTION

In several approaches to multi-target tracking, data associa-
tion is addressed by discovering good association hypotheses
and calculating their probabilities. In some approaches, often
described as track-oriented, the goal is to find the one best
hypothesis that describes the assignments between tracks and
measurements over several time steps. In other approaches,
often described as hypothesis-oriented, the goal is to update a
collection of association hypotheses recursively every time a
new set of measurements is received. The focus in this paper
is on the hypothesis-oriented approach, which underlies the
original formulation of both the multiple hypothesis tracker
(MHT) [1] and the Poisson multi-Bernoulli mixture (PMBM)
filter [2], which essentially is a generalization of the MHT [3].

A common technique for transforming a prior collection
of hypotheses into a posterior collection of hypotheses is to
use Murty’s method [4] for discovering the M best posterior
hypotheses that are children of a given prior hypothesis.
By performing this process for each prior hypothesis, the
collection of posterior hypotheses is obtained.

This process suffers from a couple of inefficiencies. First,
what ultimately is most useful is the M best hypotheses among
all the posterior hypotheses, rather than the M best children
hypotheses of each parent hypothesis. To generate a fixed
number of children hypotheses for each parent hypothesis is
therefore inherently wasteful. Second, in a practical tracking

This work was supported in part by the Research Council of Norway
through Projects 223254, 331921 and 309230, and by NTNU through the
Autoferry Project.

system it is desirable to decompose the tracking problem
into spatially independent clusters. Inevitably, situations will
occur when clusters have to be merged. In this merging, it
becomes necessary to construct the combinations of prior
hypotheses from the different clusters. The exploration of
posterior hypotheses must then be done conditional on each
such combination. This can easily turn into a computational
bottleneck.

As a solution to these challenges, this paper proposes
a branch-and-bound method for hypothesis exploration that
works by considering all prior hypotheses simultaneously, and
switching from one prior hypothesis to another whenever there
is reason to do so. The method is a generalization of Murty’s
method. It uses key steps of Murty’s method in a cascaded
manner, both for finding good prior hypotheses and for finding
good track-to-measurement assignments.

The paper is organized as follows. In Section II we revisit
related work in hypothesis exploration. In Section III we
describe the context of cluster management in colloquial terms,
before a formal problem statement follows in Section IV. In
Section V we take a look at Murty’s method to build the
foundations for the proposed method. Section VI contains the
main contributions of the paper, where the proposed branch-
and-bound method is described. A simple worked example
is presented in Section VII. More comprehensive simulation
results are provided in Section VIII-B. The conclusion follows
in Section IX.

II. RELATED WORKS

By the term hypothesis exploration we understand the task
of generating a set of posterior association hypotheses, which
account for all sufficiently probable and mutually compatible
combinations of tracks in the prior hypotheses with measure-
ments in the current measurement scan. This has been a core
research area in multi-target tracking since the MHT was
invented. Many implementations of MHT and related methods
are based on the approach proposed in [5]. Here, Murty’s
ranked assignment method is used to generate the M best
children hypotheses for every parent hypothesis. This involves
the solution of 2D assignment problems, i.e., between tracks
and measurements, to find the best hypothesis, then the best
hypotheses when each track-to-measurement assignment of the

best hypothesis is forbidden, and so on. Popular techniques
for the 2D assignment problem include the auction method
[6], the Hungarian method [7] and the Jonker-Volgenant (JV)
algorithm [8].

An accelerated variant of Murty-based exploration was
proposed in [9]. Here, dual variables from the JV algorithm
are used to determine lower bounds which are used in two
ways. First, the bounds are used to sort the problems in in
the priority queue, so that the most promising problems are
solved first, hopefully leading to automatic exclusion of less
promising problems. Second, the bounds are used as a heuristic
for the order in which parent tracks are processed. This can
be seen as a greedy search, with the aim of making the 2D
assignment problems solved by the JV algorithm as small as
possible.

The formulations in [4] and [9] assumed square reward
matrices. In [10], the JV algorithm and Murty’s method were
adapted to rectangular reward matrices, which are more natural
to work with and avoid unnecessary dummy elements.

In the PMBM implementation of [11] the number of hy-
potheses generated per parent hypothesis is given by the ceil-
ing of M times the prior probability of the parent. In practice,
this means that only a few parents get multiple offspring,
while most parents are only allowed a single child. The same
strategy was used for the Generalized Labeled Multi-Bernoulli
(GLMB) filter in [12]. Later GLMB papers, such as [13],
have used Gibbs sampling for hypothesis expansion. In this
approach, one attempts to draw the associations from their
true distribution.

Murty’s method has been generalized to a method for
finding the M best solutions to a general 0− 1 integer linear
programming (ILP) problem in [14].

III. CONTEXT

The underlying problem that motivates this work is the
measurement update in the PMBM filter. In this setting, there
exists a prior multi-target density [15], also known as set
density, which can be factorized into a Poisson component
and multi-Bernoulli mixture (MBM) component. The latter
component can be seen as a weighed mixture over association
hypotheses, where the mixture weights play the role of hypoth-
esis probabilities. Conditional on each hypothesis, there is a
multi-Bernoulli (MB) multi-target density, which again can be
seen as the multi-target density of a union of several Bernoulli
random finite sets. A Bernoulli random finite set models a
target which may or may not exist with a given probability,
and is parameterized by this probability and a kinematic pdf
conditional on target existence. In this paper we will refer to
the Bernoulli components as tracks.

It was shown in [2] that the PMBM form remains closed
under the Bayes update. In other words, the multi-target
density that results from performing a Bayes update using
a set of measurements is also a PMBM density. This is
often described as a conjugate prior property in the tracking
literature. However, the number of hypotheses in the MBM
density increases exponentially. Therefore, M best exploration

techniques are necessary for a practical implementation of a
PMBM filter.

A central premise of the present paper is that the MBM
component can be further factorized into independent clusters.
The MBM density restricted to a particular cluster is then a
marginalization over the other clusters, and will also be an
MBM density, which has a simpler structure with fewer sub-
components than the global MBM density.

In practice, independence is enforced through gating: Tracks
can only be updated with measurements within a limited
validation gate centered around the track. Then, independence
between clusters breaks down whenever tracks in two different
clusters gate the same measurement. In such a situation, the
clusters involved must be merged into a new supercluster as
part of the measurement update. The main objective of this
paper is to propose an efficient solution for this task.

IV. PROBLEM STATEMENT

A cluster is a collection of hypotheses, which again is a
collection of pointers to tracks, a.k.a. Bernoulli components.
Any track is uniquely given by a temporal sequence of
measurements, possibly including dummy measurements. The
collection of prior clusters is {c1, . . . , cnC}. The prior cluster
ci contains nHi prior hypotheses {θ1(i), . . . , θnHi(i)}. The
prior hypothesis θl consists of nθl track pointers {θ1l , . . . θ

nθi
l },

which points to tracks at time k − 1. We say “track pointers”
and not “tracks” because the same track can be present in
several hypotheses. A track can be present in at most one
cluster.

Let the number of prior tracks be nk−1 and let the number
of measurements be mk. We define a dummy measurement
for each of the prior tracks, representing missed detection.
The number of elements in this extended measurement set
is thus m̃k = mk + nk−1. The potential matches between
prior tracks and measurements are accounted for by a reward
matrix G ∈ Rnk−1×m̃. The element gtj in G is a finite number
if track t gates measurement j. Otherwise it is −∞. In the
measurement update, posterior tracks, hypotheses and clusters
are to be constructed based on the m̃k = mk +nk−1 real and
dummy measurements, as well as the prior tracks, hypotheses
and clusters.

The collection of superclusters is a partitioning of the prior
cluster set under the following equivalence relation: Two prior
clusters belong to the same supercluster if they contain tracks
that share one or more measurements. We denote supercluster
number i by σi. Formally it is a set of integers in {1, . . . , nC}
pointing to the prior clusters belonging to σi.

For each supercluster, there is a corresponding posterior
cluster. The collection of posterior clusters is {c1, . . . , cnC}.
The posterior cluster ci contains nHi posterior hypotheses
{θ1(i), . . . , θnHi(i)}. The posterior hypothesis θl consists of
nlθ track pointers {θ1l , . . . θ

niθ
l }, which point to tracks at time

k. The score of a posterior hypothesis is the sum of scores
of all the prior hypotheses in its supercluster, plus the sum of
the reward values for all assignments between prior tracks and
measurements involved in its posterior tracks.

Given the prior clusters, hypothesis and tracks, as well as
the mk measurements and the reward matrix G, our goal is
to identify the M hypotheses with the highest scores in each
posterior cluster. Each of the M solutions in posterior cluster
ci is a composition of two mappings between discrete sets.
First, there is a mapping from the supercluster to the prior
hypotheses that it contains:

S : σi → N such that S(l) ≤ nHl ∀ l ∈ σi.

Second, there is a mapping from the prior tracks in the output
of S to the extended measurement set {1, . . . , m̃k}. This
mapping is of the form

T :
⋃
l∈σi

S(l)→ {1, . . . , m̃k} such that T (i) = T (j)⇒ i = j.

V. MURTY’S METHOD REVISITED

Murty’s method can be formulated in terms of two loops,
which together perform a branch-and-bound search. The outer
loop runs until the M topmost posterior hypotheses have been
generated, or no more hypotheses can be generated. The inner
loop goes over all relevant tracks in a prior hypothesis and
tries out new measurement assignments for these. When we
discuss a generic Murty algorithm, we shall refer to the tracks
as customers and the measurements as items.

Murty’s method is typically formulated in terms of its
operation on problem-solution pairs q = 〈P,S〉. The problem
P can be constructed as a collection of 4-tuples T = 〈y, z, l, e〉
where y is a customer, z is an item, l is a reward value and e is
an upper bound on the possible score values of solutions S that
contains T . A solution S to the problem P is a subset of the
4-tuples in P so that all customers y in P are included, and no
item z is repeated. The score q.s of a solution q.S is the sum
of all the l-values in the solution. The score bound T.e can
be found by means of the dual variables in the JV algorithm
using the technique described in [9]. The score bound can also
be omitted, or, equivalently, made trivial. Pseudo-code for the
outer Murty loop is given in Algorithm 1.

Algorithm 1 The outer loop of Murty’s method
1: procedure MURTY(P1, M)
2: Q[1]← SOLVE(P1)
3: R← []
4: while |R| < M and Q is non-empty do
5: Q[∗]← Entry of Q with the highest score
6: Remove Q[∗] from Q
7: R← [R,Q[∗]]
8: Q′ ← INNERMURTY(Q[∗],Q[∗].P,Q[∗].S)
9: Q← [Q,Q′]

10: end while
11: return R
12: end procedure

Pseudo-code for the inner loop follows in Algorithm 2. The
actual assignment solving is done by the procedure SOLVE,
which we will elaborate later (in Algorithm 5). This could for

example be a wrapper of a JV implementation. Notice that
SOLVE as used in INNERMURTY takes both the problem P′

and the priority queue entry Q[∗] as separate argument. This
is done to make its usage in the proposed branch-and-bound
algorithm as streamlined as possible. It outputs a new priority
queue entry q which is of the the same structure as Q[∗].
A key step in the algorithm is the enforcement of the tuple
T = 〈y, z, . . .〉 on line 12, which is a shorthand notation for
removing all tuples involving the customer y or the item z
except for T itself. This leads to a partitioning of the original
problem, so that problems generated subsequently in the inner
Murty loop become smaller.

Algorithm 2 The inner loop of Murty’s method
1: procedure INNERMURTY(Q[∗],P,S)
2: Q′ ← []
3: o← order of customers by a heuristic
4: for T = 〈y, z, . . .〉 ∈ S ordered according to o do
5: e← maxT ′.e s.t. T ′.y = T.y and T ′.z 6= T.z
6: if e ≥ LSB then
7: P′ ← P
8: Remove T from P′

9: q ← SOLVE(P′ ; Q[∗])
10: if q.S is valid and q.s ≥ LSB then
11: Q′ ← [Q′, q]
12: end if
13: Enforce T in P
14: end if
15: end for
16: return Q′

17: end procedure

The formulation of INNERMURTY also makes use of an
ordering heuristic o which decides the order of processing the
customers. It was recommended in [9] to sort the customers
according to the bounds in an ascending order. The rationale
behind this is that by treating the problems most likely to
contain good solutions last, the sizes of these problems are
reduced, leading to better efficiency. Furthermore, the formu-
lation of INNERMURTY makes use of a lower score bound
(LSB), which also has been included due to its importance in
the proposed branch-and-bound algorithm. The purpose of the
LSB is to immediately discard solutions which cannot possibly
be among the M best solutions.

Murty’s method generates a search tree whose root node is
Q[1].S, and whose parental relationships are defined by lines
7 and 10 in Algorithm 2. The solutions contained in Q can
be seen as a set of active leaf nodes, which potentially may
get children in subsequent iterations. All paths from the root
node, i.e. Q[1].S, towards the leafs must be non-increasing
in score. All nodes that are not part of Q are nodes that have
been admitted into R. Consequently, the best of the leaf nodes,
which is to be admitted into R at the current iteration, cannot
be worse than subsequent additions to R. It follows from this
that R is guaranteed to contain the M best solutions at iteration
number M of the outer Murty loop.

VI. JOINT CLUSTERING AND HYPOTHESIS EXPLORATION

The M -best problem posed in Section IV has a cascaded
structure which is more complicated than the structure as-
sumed by Murty’s method. Nevertheless, Murty’s method can
be generalized in various ways to solve this problem as well.
One possible methodology could be what we may call a double
Murty method: Once for discovering good prior hypotheses,
and once for discovering good track-to-measurement associ-
ations. However, it is not straightforward to determine how
many solutions should be returned in the two stages in order
to find the M best hypotheses in each posterior cluster.

Instead, we propose a branch-and-bound technique, which
employs only the inner Murty loop as a tool for discovering
both good prior hypotheses and good track-to-measurement
associations. The algorithm consists of three phases. In phase
one we find the best local posterior hypothesis for each
parent hypothesis. In phase two we initialize the priority
queue of posterior candidate hypotheses for the supercluster.
In phase three we search for good posterior hypotheses in
the supercluster, by adaptively exploring changes of parent
hypotheses (switches) and track-to-measurement assignments
(expansions). Pseudocode is given by Algorithms 2 - 7, which
together provide all the building blocks. The problems to be
solved, on local expansion level, switch level and clustered
expansion level, respectively, are constructed by means of the
procedures in Algorithm 3.

Algorithm 3 Problem construction algorithms
1: . Track to measurement for given prior hypothesis
2: procedure PROBLEMCONSTRUCT1(θl)
3: P← {< y, z, gyz > such that y ∈ θl , gyz > −∞}
4: return P
5: end procedure
6: . Prior cluster to prior hypothesis
7: procedure PROBLEMCONSTRUCT2(B)
8: P← {〈y, z, l〉 such that y is a prior cluster,
9: z is a prior hypothesis in cluster y,

10: l is B(y, z).s }
11: return P
12: end procedure
13: . Track to measurement within supercluster
14: procedure PROBLEMCONSTRUCT3(S̃)
15: P← {〈y, z, gyz, e〉 s.t. y ∈ T.θ for some T ∈ S̃,
16: gyz > −∞ and
17: e ≥ score of any S containing 〈y, z, . . .〉 }
18: return P
19: end procedure

A. Phase one (local assignments)

For each prior hypothesis in the prior clusters of the
supercluster we solve the track-to-measurement assignment
problem, and store the result together with the posterior
score. We term these solutions best-local posterior hypotheses.
Pseudocode for this is given in Algorithm 4.

Algorithm 4 Initialize MHT priority queue
1: function INITMHTQUEUE(c)
2: B← []
3: for each hypothesis θl ∈ c do
4: P← PROBLEMCONSTRUCT1(θl)
5: [S, s]← ASSIGN2D(P)
6: B← [B, < S, s >]
7: end for
8: return SORTDESCENDING(B)
9: end function

B. Phase two (Priority queue initialization)

The goal of this phase is to find one posterior hypothesis
which is a promising top contender. To do this, we concatenate
the prior hypotheses that gave the top solutions for each prior
cluster during phase one, and solve the resulting track-to-
measurement assignment problem. The solving is done by
means of the procedure described in Algorithm 5. If there is
measurement contention, the result may be different from what
we would get by concatenating the local posterior hypotheses
from phase one, and the resulting score may be lower than the
sum of scores of the best-local hypotheses involved.

Consequently, the initialization returns not only a global
candidate solution, its score and its building blocks, but also a
bound. This bound is equal to the sum of the best-local scores
involved (line 9 in Algorithm 7), ensuring that any global
hypothesis discovered later in the search tree cannot have a
higher score. This bound is declared the upper undiscovered
bound (UUB), meaning that no undiscovered hypotheses can
have a higher score. The LSB, which was introduced in Section
V, is simultaneously initialized at −∞.

Algorithm 5 The generalized solve algorithm
1: procedure SOLVE(π, Q[∗])
2: if π = P̃ then
3: [S̃,b]← ASSIGN2D(P̃)
4: P← PROBLEMCONSTRUCT3(S̃)
5: [S, s, e]← ASSIGN2D(P)
6: q ←< S, S̃,P, P̃,b, s, e >
7: else if π = P then
8: [S, s, e]← ASSIGN2D(P)
9: q ←< S,Q[∗].S̃,P,Q[∗].P̃, s, s, e >

10: end if
11: return q
12: end procedure

C. Phase three (Switch-expand search)

The search for the M best posterior hypotheses is imple-
mented as a loop which runs until the UUB coincides with
the LSB, or no more feasible candidates can be found. The
LSB remains at −∞ until M global hypotheses have been
generated, after which it always takes the score value of
hypothesis number M sorted from the top. In every iteration
we process the hypothesis in the priority queue that holds the

UUB. The hypotheses that are generated become descendants
of the UUB holder in the search tree. During every iteration,
the algorithm considers three possibilities in turn, which we
call aggressive switching, lazy switches and expansions.

Aggressive switching is triggered if the UUB holder has
a lower score than the UUB. The goal is to find a new
UUB holder whose score is equal to the UUB before we
proceed to lazy switches and expansions. To initialize aggres-
sive switching the UUB holder is marked as unresolved. The
aggressive switching is itself a while-loop that runs until no
more unresolved hypotheses exist. During each iteration, the
unresolved hypothesis with the highest bound is picked for
processing. An inner Murty loop is performed, with the clus-
ters as customers and the available switches as items. It should
be noted that this switch-level assignment problem is without
contention, because each prior cluster has a separate set of
prior hypotheses. However, the calls to SOLVE must solve
both the switch-level assignment problem and the resulting
track-to-measurement assignment problem, which yields the
hypothesis score. For each parent cluster, a best case loss value
is calculated. This is the difference between the the best local
score for the next best parent, and the best local score for the
current parent. Customers are skipped if no feasible switches
exist, or if the resulting best case loss is lower than the LSB.

Lazy switching is also conducted in terms of an inner Murty
loop identical to the one used for aggressive switching. In this
case, the loop is always used once and only once in each
iteration.

Expansions are also generated by an inner Murty loop.
Here, the customers are the active tracks in the parents of the
UUB holder and the items are the available measurements.
Here, the score bounds used in line 6 of Algorithm 2 are
obtained from the dual JV variables. Customers are skipped
if their bounds will push the posterior hypothesis score below
the LSB. Switches are not allowed in the descendants of an
expansion in the search tree.

REMARK 1 (The need for aggressive switching). If there is
a gap between the bound and the score of the UUB holder,
then there must be measurement contention between the prior
tracks of the UUB holder. In such a situation, it cannot be ruled
out that a switch may lead to a score that is higher than the
current score. However, we are not allowing switches among
the descendants of expansions in the search tree. Therefore, we
are only ready to perform expansions after we have accounted
for all possible switches that potentially can reduce the gap.

REMARK 2 (No switches downstream from expansions).
Switches are not allowed to follow expansions in the descents
of the search tree. This requirement is enforced in order
to prevent the same hypothesis from being reached through
multiple descents. This also makes it possible to use the score
of any expansion as its bound.

The pseudocode for the complete procedure is given in
Algorithm 7. In addition to the procedures presented in Al-
gorithms 2 - 5, it also makes use of a procedure for maintaing
and sorting the priority queue, given in Algorithm 6.

Algorithm 6 Queue maintenance procedure
1: procedure QUEUEMAINTAIN(Q)
2: Sort Q in decreasing order according to Q.b
3: α← argmaxiQ[i].b, Q[i] not investigated before
4: UUB← Q(α).b
5: if |Q| ≥M then
6: L← sort Q.s in descending order
7: LSB← L[M]
8: end if
9: return Q , UUB, LSB, α

10: end procedure

Algorithm 7 The switch-expand algorithm
1: procedure SWITCHEXPAND
2: . Phase 1: Best-local searches
3: Initialize empty matrix structure B
4: for each cluster c do
5: B[c, :]← INITMHTQUEUE(c)
6: end for
7: . Phase 2: Initialization of priority queue
8: S̃← Concatenate topmost solutions in B.
9: b← sum of topmost scores in B.

10: P̃← PROBLEMCONSTRUCT2(B)
11: P← PROBLEMCONSTRUCT3(S̃)
12: [S, s, e]← ASSIGN2D(P)
13: Q[1]←< S, S̃,P, P̃,b, s, e >
14: α← 1
15: LSB← −∞
16: UUB← Q[α].b
17: . Phase 3: Branch-and-bound search
18: while UUB > LSB do
19: while Q[α].b > Q[α].s do
20: Q̃← INNERMURTY(Q[α],Q[α].P̃,Q[α].S̃)
21: Q← [Q, Q̃]
22: [Q , UUB, LSB, α] ← QUEUEMAINTAIN(Q)
23: end while
24: Q̃s ← INNERMURTY(Q[α],Q[α].P̃,Q[α].S̃)
25: Q̃e ← INNERMURTY(Q[α],Q[α].P,Q[α].S)
26: Q← [Q, Q̃s, Q̃e]
27: [Q , UUB, LSB, α] ← QUEUEMAINTAIN(Q)
28: end while
29: I ← indices of the M highest entries of Q.s
30: return Q[I].S
31: end procedure

VII. WORKED EXAMPLE

Consider a scenario involving 7 tracks and 2 non-dummy
measurements, with reward values organized in the matrix

t\j 1 2 3− 8
10 4.30 4.77

−2.30 · I∗6.

11 −0.19 3.38
12 3.85 1.13
13 1.65 −1.25
14 4.66 4.62
15 1.77 4.13

(1)

I∗6 denotes an identity matrix where all zeros have been
replaced with −∞. Tracks 10, 11, 14 and 15 are in prior
cluster 1, while tracks 12 and 13 are in prior cluster 2. The
prior MBM in cluster 1 contains two hypotheses [11, 14] and
[10, 15] with prior scores 0 and −6.1407. The prior MBM
in cluster 2 contains two hypotheses [12] and [13] with prior
scores 0 and −5.7303. Our goal is to find the M = 6 best
posterior hypotheses.

A. Phase 1

In Phase 1 we find the best local posterior hypotheses for
each of the prior hypotheses. The outcome of Phase 1 is
displayed in Table I.

B. Phase 2

In Phase 2 we are to initialize by combining the prior hy-
potheses θ1(1) and θ1(2), and solving the resulting assignment
problem, so that we find an initial posterior hypothesis θ1.
That is, we are to find the optimal assignment of measure-
ments to the track collection [11, 14, 12]. Notice that there
is measurement contention: Both track 11 and track 12 got
measurement 1 assigned in the best-local hypotheses of Table
I. The assignment problem has the solution [4, 2, 1] with total
score

6.17 = 0 + 0− 2.30− 4.62 + 3.85.

On the other hand, the bound of θ1, i.e., the upper bound for
the score values of its descendants in the search tree, is

11.88 = 8.03 + 3.85.

C. Phase 3

The algorithm spends a total of 5 iterations of the outermost
loop before the LSB and the UUB meet. A total of 7
hypotheses are included in the priority queue. The search tree
is displayed in Figure 1, while the details of the hypotheses are
listed in Table II. The evolution of the LSB and UUB during
the iterations is displayed in Table III.

First iteration: In the first iteration of Phase 3 we first
consider aggressive switching, because the bound of the ini-
tialization was higher than its score. However, switching to
θ2(1) will reduce the bound to 6.13 = 11.88− (2.29− 8.04),
while switching to θ2(2) will reduce the bound to 3.95 =
11.88 − (−4.08 − 3.85). Since both these bounds are below
the score, aggressive switching is dismissed.

We proceed to perform lazy switches. We consider changing
the default prior combination [θ1(1), θ1(2)] to [θ2(1), θ1(2)] and
[θ1(1), θ2(2)], which yield hypothesis 2 and 3 in the search
tree, respectively. At a first glance, the bound of hypothesis 2
appears to be 6.14 = 2.29 + 3.85. However, the bound is not
tight, because we have measurement contention. Therefore, we
check whether subsequent switches could yield a higher score.
Since θ1(1) already is invalidated, the only remaining switch
is changing θ1(2) to θ2(2). Compared to preliminary bound of
6.14 this will lead reduce the bound to −1.79 = 6.14−3.85−
4.08. On the other hand, solving the assignment problem of
hypothesis 2 yields the score 0.1689. Thus, we can only know

1

2 3 4

6 7

5

Fig. 1. Search tree for the worked example which includes all hypotheses
obtained through solving a track-to-measurement assignment problem.

Prior hypothesis θ1(1) θ2(1) θ1(2) θ2(2)

Tracks [11, 14] [10, 15] [12] [13, 40]

Measurements [2, 1] [1, 2] [1] [6]

Score 8.04 2.29 3.85 −4.08
TABLE I

THE BEST LOCAL HYPOTHESES IN BOTH CLUSTERS.

that any hypotheses further down in the search tree below
hypothesis 2 cannot have a higher score than 0.1689, which
thus becomes the bound of hypothesis 2. Similar reasoning is
used for hypothesis 3.

We proceed to make the expansions of hypothesis 1. From
the dual variables obtained in the initialization we have score
bounds that are used to decide the order of expansions. In the
case that the assignment of track 11 with measurement 4 is
invalidated, the best remaining assignment is measurement 2
with score bound 6.1713. Similarly, the best remaining assign-
ments to track 14 and 12, after invalidating measurements 2
and 1, are measurements 1 and 5, with score bounds 6.1713
and 5.7369, respectively. Going from least to most promising,
as suggested in [9], the order becomes 12, 14 and 11.

The expansion in track 12 results from invalidating mea-
surement 1, leading to hypothesis number 4 with score 5.7308.
Measurement 1 is then enforced to track 12 for the remainder
of iteration 1. The expansion in track 14 results from inval-
idating measurement 2, leading to hypothesis number 5 with
score 4.9256. Measurement 2 is then enforced to track 14
for the remainder of iteration 1. The expansion in track 11
is then activated by invalidating measurement 4. However,
since measurements 1 and 2 already are enforced to other
tracks, the problem is not solvable. We have now generated
all hypothesis from iteration 1. The UUB is passed onto the
second best hypothesis, which is hypothesis 4. The LSB is
still −∞ because we have not yet generated 6 hypotheses.

Second iteration: Since hypothesis 4 is an expansion, no
switches are considered, and we move straight onto possible
expansions. This track-to-measurement assignment problem is
similar to that of hypothesis 1, except that measurement 1 has
been invalidated for track 12. We use the dual variables from
the assignment solving of hypothesis 4, which yield the score
bounds 5.5954, 2.2695 and 5.7369 for tracks 11, 14 and 12
respectively. This yields the track order 14, 11 and 12. Again,
we see that the tracks that will get the contended measurements

Hypothesis Tracks Measurements Bound Score

1 [11, 14, 12] [4, 2, 1] 11.8482 6.1652

2 [10, 15, 12] [2, 8, 1] 0.1689 0.1689

3 [11, 14, 13, 40] [2, 1, 6] 0.0054 0.0054

4 [11, 14, 12] [2, 1, 5] 5.7308 5.7308

5 [11, 14, 12] [2, 7, 1] 4.9256 4.9256

6 [11, 14, 12] [1, 2, 5] 2.1218 2.1218

7 [11, 14, 12] [4, 1, 2] 3.4793 3.4793
TABLE II

THE 8 POSTERIOR HYPOTHESES FOR THE WORKED EXAMPLE.

Iteration LSB UUB Found hypotheses

1 −∞ 11.88 [©1]

2 −∞ 5.7308 [1,©4 , 5, 2, 3]
3 0.169 4.9256 [1, 4,©5 , 8, 7, 2, 3]
4 0.169 3.4793 [1, 4, 5,©7 , 6, 2, 3]
5 0.169 2.1218 [1, 4, 5, 7,©6 , 2, 3]

TABLE III
THE 5 ITERATIONS FOR THE WORKED EXAMPLE.

1 and 2 enforced in subsequent expansions, are prioritized.
Thus, we again find an impossible problem in the third
expansion. Before that, hypothesis 6 and 7 are generated. We
have now generated all hypothesis from iteration 2. The UUB
is passed to the second best hypothesis, which is hypothesis
5. We have now a total of 7 hypotheses, and the LSB takes
the value of the second worst hypothesis, which is 0.169.

Third to fifth iteration: During these iterations, several more
hypotheses are considered, but in every case it is found that
the score must be lower than the LSB. Eventually, at the end
of iteration 5,hypothesis number 2, which is the sixth best
hypothesis, becomes the UUB holder while also holding the
LSB, and we are done.

VIII. SIMULATIONS

The proposed branch-and-bound method has been devel-
oped as part of a complete PMBM-style tracking system with
cluster management. A detailed exposition of this system is
beyond the scope of present paper. Therefore, we do not an-
alyze the performance of the overall tracking system. Instead,
we study the performance of the method as a standalone com-
ponent, by comparing it with benchmark alternatives on 80000
single- and multi-cluster assignment problems generated by
the complete tracking system.

A detailed exposition of the simulation setup used is also
beyond the space constraints of this paper. The assignment
problems have been generated from two scenarios: A track
initialization scenario with potentially up to about 30 targets,
mostly well separated, and a formation tracking scenario with
8 targets which often, but not always, are so close that several
of the validation gates intersect. Table IV gives an impression
of how the assignment problems vary in size. We see that
single-cluster single-target problems dominate by far with 75%
of the cases, but thanks to the large number of simulations

TABLE IV
FREQUENCY OF CARDINALITIES AND CLUSTER NUMBERS

Ave. Card. nC = 1 nC = 2 nC = 3 nC = 4 nC = 5

0 2114 0 0 0 0
1 60632 207 7 0 0
2 11590 3043 98 4 0
3 2963 2004 626 24 6
4 885 940 620 161 10
5 306 478 424 205 87
6 97 230 232 182 100
7 49 116 160 118 91
8 16 59 105 74 39
9 4 41 55 56 29
10 4 41 55 56 29
11 1 9 29 42 36
12 0 14 18 29 49
13 0 0 10 19 33
14 0 1 3 10 11
15+ 0 0 2 6 8

there are also a significant number of fairly complex assign-
ment problems. The observant reader may question why there
are 2114 cases of average cardinality zero, and why we have
7 cases with three clusters and average cardinality 1, etc.
This is because clusters have been allowed to contain empty
hypotheses, which may pull the average cardinality down.

A. Benchmark methods

We consider 4 methods for hypothesis exploration. The first
method, “Many”, uses the proposed algorithm with a very
large number (1000) of hypotheses per supercluster. This is
only implemented for benchmarking purposes. The second
method, “Branch-and-bound”, uses the proposed algorithm
with a reasonable number (150) of hypotheses per supercluster.
In the third method, “Double”, Murty’s method is first used to
discover the 30 best combinations of prior hypotheses from the
clusters involved, based on their prior scores. Then, Murty’s
method is used to discover the 30 best posterior hypotheses
for each such combination of prior hypotheses. The fourth
method, “Proportional”, uses proportional representation of
prior hypotheses. Here the best 150 combinations of prior
hypotheses are generated, in the same way as in the third
approach. The prior probabilities of the combinations are then
calculated, by normalizing the exponential score sums. Denote
the probability of combination number l by Pl. Combination
number l is then allowed to generate at most d150 · Ple
posterior hypotheses through standard Murty.

B. Performance analysis

We lump all the cases of nC together in our study of
performance. The same patterns can be observed for all values
nC . In Table V we analyze how much of the probability mass
is missing for Branch-and-bound, Double and Proportional,
compared to Many. The numbers are to be read as follows:
For instance, when Branch-and-bound attains the value 0.014
for average cardinality 4, it means that the probability mass
not contained in the output of Branch-and-bound is less than
0014 in 90% of the cases.

TABLE V
90% QUANTILE OF MISSING PROBABILITY MASS

Ave. Card. Branch-and-bound Double Proportional

0 0 0 0
1 0 0 0
2 0 0.009 0.003
3 0.004 0.037 0.021
4 0.031 0.116 0.059
5 0.0706 0.196 0.108
6 0.133 0.300 0.1786
7 0.173 0.366 0.223
8+ 0.1978 0.376 0.289

TABLE VI
PROPORTION OF CASES WHERE A SIGNIFICANT HYPOTHESIS IS LOST

Ave. Card. Double Proportional

0 0.000 0.000
1 0.000 0.000
2 0.003 0.001
3 0.018 0.005
4 0.055 0.018
5 0.101 0.420
6 0.168 0.071
7 0.210 0.103
8+ 0.266 0.150

The improvement of Branch-and-bound over Proportional
is most dramatic in the cases with average cardinality 2 and
3. The limited performance gains of Branch-and-bound over
Proportional for higher cardinalities may possibly reflect that
such problems are much more difficult, so that very large
numbers of hypotheses are needed to encapsulate all the
probability mass.

Another perspective can be seen by comparing the prob-
ability of the best hypothesis that Double or Proportional
failed to find, with the probability of the topmost hypothesis,
as calculated by Branch-and-bound. In Table VI we look at
frequencies for how often the ratio between these probabilities
is higher than 0.1. Again Proportional does significantly better
than Double. For both methods these frequencies appear to
increase as a function of cardinality.

We may ask how many of the top 150 hypotheses are miss-
ing in Double or Proportional, regardless of their probabilities.
In Table VII we look at the median for this proportion. Notice
that Proportional loses as much as 0.222 of the hypotheses al-
ready at cardinality 2. This is because Proportional frequently
distributes very many of its slots for new hypotheses to prior
hypotheses which in reality have few children despite the
high prior probability, and therefore fails to include the many
children from prior hypotheses with lower prior probabilities.

IX. CONCLUSION

Various approaches can be devised for hypothesis explo-
ration in multiple hypothesis tracking with multiple clusters.
We have proposed a systematic approach that finds the M best
posterior hypotheses in each supercluster. Simulations indicate

TABLE VII
MEDIAN FOR THE PROPORTION OF HYPOTHESES LOST

Ave. Card. Double Proportional

0 0.000 0.000
1 0.000 0.000
2 0.000 0.250
3 0.170 0.375
4 0.343 0.347
5 0.347 0.327
6 0.393 0.287
7 0.400 0.268
8+ 0.420 0.267

that alternative, and more heuristic approaches to hypothesis
exploration, may suffer from a higher loss of probability mass.

We intend to report the detailed description of a complete
PMBM filter utilizing the proposed exploration method in a
forthcoming publication. Potential topics of future research
include tighter bounds, more efficient ordering heuristics, and
possibly also techniques from probabilistic graphical model
theory to further boost performance.

REFERENCES

[1] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions
on Automatic Control, vol. 24, no. 6, pp. 843–854, Dec. 1979.

[2] J. Williams, “Marginal multi-Bernoulli filters: RFS derivation of
MHT, JIPDA, and association-based MeMBer,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664–1687, July
2015.

[3] E. F. Brekke and M. A. Chitre, “The multiple hypothesis tracker derived
from finite set statistics,” in Proceedings of Fusion, Xi’An, China, July
2017.

[4] K. G. Murty, “An algorithm for ranking all the assignments in order
of increasing cost,” Operations Research, vol. 16, no. 3, pp. 682–687,
1968.

[5] R. Danchick and G. E. Newnam, “Reformulating Reid’s MHT method
with generalised Murty K-best ranked linear assignment algorithm,” IEE
Proceedings - Radar, Sonar and Navigation, vol. 153, pp. 13–22, Feb.
2006.

[6] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems. Norwood, MA, USA: Artech House, 1999.

[7] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Mineola, NY, USA: Dover, 1998.

[8] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm
for dense and sparse linear assignment problems,” Computing, vol. 38,
no. 4, pp. 325 – 40, 1987.

[9] M. L. Miller, H. S. Stone, and I. J. Cox, “Optimizing Murty’s ranked
assignment method,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 33, no. 3, pp. 851–862, Jul. 1997.

[10] D. F. Crouse, “On implementing 2D rectangular assignment algorithms,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 4,
pp. 1679–1696, 2016.

[11] A. F. Garcia-Fernandez, J. L. Williams, K. Granström, and L. Svensson,
“Poisson multi-Bernoulli mixture filter: direct derivation and implemen-
tation,” IEEE Transactions on Aerospace and Electronic Systems, pp.
1–1, 2018.

[12] B.-N. Vo, B.-T. Vo, and D. Phung, “Labeled random finite sets and
the bayes multi-target tracking filter,” IEEE Transactions on Signal
Processing, vol. 62, no. 24, pp. 6554–6567, 2014.

[13] B. N. Vo, B. T. Vo, and H. G. Hoang, “An efficient implementation
of the generalized labeled multi-bernoulli filter,” IEEE Transactions on
Signal Processing, vol. 65, no. 8, pp. 1975–1987, April 2017.

[14] E. L. Lawler, “A procedure for computing the K best solutions to discrete
optimization problems and its application to the shortest path problem,”
Management Science, vol. 18, no. 7, pp. 401–405, 1972.

[15] R. Mahler, Statistical Multisource-Multitarget Information Fusion. Nor-
wood, MA, USA: Artech House, 2007.

