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Abstract. In this work, we consider the problem of classifying time-
sensitive queries at different temporal granularities (day, month, and
year). Our approach involves performing Bayesian analysis on time inter-
vals of interest obtained from pseudo-relevant documents. Based on the
Bayesian analysis we derive several effective features which are used to
train a supervised machine learning algorithm for classification. We eval-
uate our method on a large temporal query workload to show that we
can determine the temporal class of a query with high precision.

1 Introduction

Information needs conveyed in a time-sensitive query can only be served properly
if the temporal class associated with it can be determined. Determining the
temporal class of a query is an important stepping stone to larger components
in a time-sensitive information retrieval system. For instance, selection of an
appropriate retrieval model or deciding whether to diversify documents along
time. Existing work in this direction has only relied on publication dates while
ignoring temporal expressions in document contents. Temporal expressions allow
us to analyze events in web collections which may not have reliable publication
dates associated with them. This alleviates the problem of being restricted to
the time period covered by the publication dates of the document collection.
Analyzing the temporal class based on temporal expressions is challenging as (i)
they are highly uncertain (e.g. early 1990’s, during last century) and (ii)
are present at multiple granularities (e.g., day, month, and year).

Determining the temporal class of a query has been studied before in
approaches given in [2,5,6]. The approaches proposed in [2,6] however have
three major problems. First, all approaches only use publication dates for a
given a timestamped document collection. This may serve the purpose well
for time-sensitive queries concerning only current events covered in the news.
But it may be inadequate for queries covering historic events. Second, prior
approaches ignore the fact that events described in a query may be periodic
(e.g., summer olympics or nobel prize physics) or they may be aperiodic
(e.g., economic depression). Third, temporal ambiguity is considered only at
a single level of granularity. However temporal ambiguity may vary according to
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granularity. Consider, as a concrete example, the query summer olympics tokyo
athletics. Relying only on publication dates this query would be incorrectly
classified as temporally unambiguous; whereas it is temporally ambiguous at day
granularity. Such an information need would be best served if these shortcomings
can be overcome.

Hypothesis. By addressing the aforementioned problems we hypothesize we can
improve upon the classification of time-sensitive queries containing: (i) historical
events & entities; (ii) periodic events; and (iii) temporal ambiguity at a particular
granularity.

We build on our earlier work [4] which suggests interesting time intervals
using temporal expressions. For classifying queries we identify multiple features
from Bayesian analysis of the time intervals of interest. We show the effectiveness
of our proposed approach over prior work on a large testbed of time-sensitive
queries.

Contributions made in this work are: (i) temporal class taxonomy tak-
ing into account multiple granularities and (a)periodicity of events (Section 4);
(ii) determining time intervals as intents for temporally ambiguous queries
(Section 5); (iii) effective features that outperform prior approaches (Section 6);
and (iv) a large test bed of time-sensitive queries collected from previously
available resources such as TREC time-sensitive queries [2], NTCIR Geo-Time
queries [3] and other resources available on the Web (Section 7); which is made
publicly available for future research.

2 Related Work

In this section, we describe the prior work in our context. Our work largely
tries to overcome the shortcomings of work presented in [6]. The work by Jones
and Diaz [6] describes a taxonomy of temporal classes for time-sensitive queries.
They discuss various features derived from the distribution of document pub-
lication dates. Examples of these features are temporal clarity, kurtosis, and
auto-correlation. We extend their taxonomy in our work to accomodate tempo-
ral ambiguity at different granularities, as well as (a)periodicity of events.

More recent efforts in the direction of temporal query classification have been
described in works by Joho et al. [5] and Kanhabua et al. [7]. The Temporalia
project described by Joho et al. [5] considers temporal query classification with
a novel temporal taxonomy. The temporal classes they target are qualitatively
labeled as past, recency and future. This has two major caveats. First, the quali-
tative classes leave room for ambiguity in temporal intents. For example, for nba
playoffs last week the temporal class can either be past or recent. Second,
quantitatively no information can be discerned about the exact time intervals
the temporal class refers to. Both these problems are addressed in our work.

Detecting seasonality and periodicity associated with web-queries has also
been explored by Kanhabua et al. [7]. They propose to use features acquired
from web-query logs. Additionally, akin to existing approaches, they rely on
features derived from signal processing on time series of publication dates from an
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external document collection. These may not be adequate to detect the temporal
class at different granularities, as shown in our experiments.

3 Preliminaries

We now introduce the notation used throughout the paper and the approach for
identifying time intervals of interest.

Notation. Consider a document collection D. Each document d ∈ D consists of
a bag of keywords dtext and a bag of temporal expressions dtime. We let |dtext|
and |dtime| denote the cardinalities of these bags. A temporal expression is a four-
tuple, T = 〈bl, bu, el, eu〉. Each component of T is drawn from a time domain T
(usually N). A temporal expression T may refer to any time interval [b, e] ∈ T ×T
with bl ≤ b ≤ bu, el ≤ e ≤ eu, and b ≤ e. We treat temporal expressions as a
set of time intervals and let |T | denote the number of time intervals that T may
refer to.

Time Intervals of Interest to the given keyword query q are identified
using the approach proposed in [4]. In a nutshell, with R as the set of pseudo-
relevant documents, the approach assigns the probability:

P ( [b, e] | q ) =
∑

d∈R

P ( [b, e] | d )P ( d | q ),

to time interval [b, e]. The first probability is estimated as

P ( [b, e] | dtime ) =
1

|dtime|
∑

T∈dtime

1([b, e] ∈ T )
|T | ,

following [1]. The second probability is estimated from the query likelihoods
P (q|d) under a unigram language model with Dirichlet smoothing, that is:

P ( d | q ) =
P ( q | d )∑

d′∈R P ( q | d′ )
.

4 Temporal Class Taxonomy

We propose a new taxonomy taking into account additional classes for periodic-
ity, aperiodicity, and multiple granularities (day, month, and year). It builds on
the existing taxonomy proposed by Jones and Diaz [6]. The taxonomy, depicted
in Figure 1, is arrived at by noting the observations explained in this section.

Atemporal queries as per [6] are time-invariant in nature. Thus, an atemporal
query at year granularity also implies that it is atemporal at a finer level of
granularity (day and month) and vice-versa.

Temporally unambiguous queries are those with a unique time interval of
interest associated with them. If a given query is identified to be unambiguous
at day granularity then it will also be unambiguous at any coarser granularity.
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For instance, an unambiguous query at day level concorde crash is also unam-
biguous at year level. However, this does not imply that an unambiguous query
at year level may necessarily be unambiguous at month or day level.

Temporally ambiguous queries are those which may have multiple time inter-
vals of interest associated with them. Ambiguity associated with a query may lie
at different granularities. A temporally ambiguous query at a finer granularity
may be unambiguous at coarser granularity. However, we make the distinction
that a query ambiguous at any granularity be deemed temporally ambiguous at
that level of granularity. For example the query summer olympics 2000 rowing
is temporally ambiguous at day level granularity. Another aspect that we inves-
tigate is the (a)periodicity of keyword queries. For example the query summer
olympics should be classified as a periodic temporally ambiguous query. Recur-
ring events, such as tropical storms, which may not have fixed periodicity are
classified as aperiodic. In this work, we limit ourselves to (a)periodicity at year
level. However, approach described next is equally applicable to (a)periodicity
at month and day granularity.

Temporal (TX)

Ambiguous (TA)

Year (TAy)

Periodic (TAyp) Aperiodic (TAya)

Month (TAm) Day (TAd)

Unambiguous (TU)

Atemporal (AT)

Fig. 1. Temporal class taxonomy with (a)periodicity and multiple granularity

5 Bayesian Analysis

To determine the temporal class of the keyword query q we first obtain the
probability distribution of time intervals of interest at all three temporal gran-
ularities P ([b, e]|q). We consider time intervals of size equal to the granularity
under consideration (e.g., for year granularity [b, e] spans one year). We smooth
P ([b, e]|q) with time intervals from the entire document collection D, in order to
avoid the zero-probability problem:

P̂ ([b, e]|q) = λ · P ([b, e]|q) + (1 − λ) · P ([b, e]|D),

where,

P ([b, e]|D) =
1

|Dtime|
∑

T∈Dtime

1([b, e] ∈ T )
|T | .
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Detecting Multiple Modes. The distribution P̂ ([b, e]|q) is next analyzed
for multi-modality. For this we utilize a Bayesian Mixture Model fitted using
reversible jump Markov chain Monte Carlo (MCMC) procedure outlined by Xu
et al. [11]. The approach fits an unknown probability distribution by approxi-
mating it as mixture of Gaussian distributions. Utilizing this approach has the
advantage of performing both model selection and model fitting at the same
time. That is, we do not need to know the number of components in the mixture
apriori. The mixture model is described as follows:

P̂ ([b, e]|q) =
k∑

i=1

wi · N (μi, σi),

such that
∑k

i wi = 1; μi and σi characterize the mean and standard deviation of
the normal distribution N (μi, σi). To assess confidence of our hypothesis whether
P̂ ([b, e]|q) is multi-modal, we take Bayes factor as an objective. Bayes factor is
the ratio of the posterior to prior odds. If the Bayes factor exceeds 100, we
consider the hypothesis, that the probability distribution under observation has
multiple modes, correct.

The time intervals with the means μi of the components of the mixture model
are the temporal categories (Si

[b,e]) of q:

S = 〈S1
[b,e], S

2
[b,e], . . . , S

k
[b,e]〉.

6 Feature Design

After having determined the number of modes and the temporal categories from
the probability distribution P̂ ([b, e]|q), we need to identify the temporal class of
the keyword query. This is done by deriving features from the mixture model.
The features encoded are: (i) modality, (ii) fuzzy feature, and (iii) p-value of
randomness test. Next, we discuss the motivation behind the features.

Modality feature describes the number of modes identified by the Bayesian
Mixture Model. The intuition is if P̂ ([b, e]|q) is unimodal (|S| = 1), then the
temporal class should be temporally unambiguous. If the probability distribution
P̂ ([b, e]|q) is multi-modal (|S| > 1), then it should be temporally ambiguous.

Fuzzy Feature. To analyze the temporally ambiguous query for periodicity we
use the concept of fuzzy numbers. Fuzzy logic is used here to account for outlier
cases in periodic events e.g. for summer olympics anomalous years would be
[1936, 1936] and [1948, 1948]. Specifically, we capture the membership value of
the time lags between the time intervals associated with different modes against
a fuzzy number around the mean of the time lags (Φ̂).

We first identify the time lags between ordered set temporal categories Φ:

Φi
[b,e] = 〈t|t ∈ Si+1

[b,e] − Si
[b,e]〉 with, Φ̂ =

∑n
i=1 Φi

[b,e]

n
.
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Difference between intervals is calculated element-wise. Next we construct a
triangular fuzzy number with Φ̂ whose membership function is given by:

μ(x) =

{
1

1+x2 if x �= Φ̂

1 if x = Φ̂

The motivation is: if μ(x) �= 0 ∀x ∈ Φ, then issued query is a periodic query with
period approximately equal to that of Φ̂. Otherwise if ∃x ∈ Φ for which μ(x) = 0
then query could potentially be aperiodic.

Randomness Test. For atemporal queries we check P̂ ([b, e]|q) for randomness.
For this we perform a a two-tailed runs up and down test for randomness [10] on
time lags. We next note the p-value of this test as a feature. This feature thus
captures if the time lags are randomly generated or not.

For a given query, we construct the feature vector at day, month, and year
granularity. The feature data is then subsequently used for classification via a
decision tree.

7 Experimental Evaluation

7.1 Datasets

Document Collection used was The New York Times Annotated 1 corpus.
Temporal annotations for it were obtained from the authors of [1]; they used
TARSQI [9]. TARSQI is able to identify both explicit and implicit temporal
expressions in text.

Queries. The challenging aspect of evaluating our approach was compiling
a list of queries for temporally ambiguous class at different granularities. To
this end we use various previously published resources [4], TREC time-sensitive
queries [2], NTCIR Geo-Time queries [3], and also manually compiled some of
them from the Web. Table 1 summarizes the query workload. This dataset is
publicly available with an accompanying description of how it was compiled at:

http://resources.mpi-inf.mpg.de/dhgupta/data/spire2015

Table 1. Query set sizes for our evaluation setup

Set Id Description Size

TX
TA

TAy
TAyp Periodic and ambiguous at year 113
TAya Aperiodic and ambiguous at year 118

TAm Ambiguous at month 64
TAd Ambiguous at day 74
TU Unambiguous 142

AT Atemporal 154

1 http://www.catalog.ldc.upenn.edu/LDC2008T19

http://resources.mpi-inf.mpg.de/dhgupta/data/spire2015
http://www.catalog.ldc.upenn.edu/LDC2008T19
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Baseline. We use the approach proposed by Jones and Diaz [6] as a baseline. We
selected the best-performing temporal features from [6] to build the baseline clas-
sifier. Temporal features considered were: first order autocorrelation, kurtosis, and
features derived from a burst model. We consider these features at year level granu-
larity for time intervals of interest. Since, we are considering time intervals of inter-
est generated by the approach in [4]; we take into account temporal expressions and
publication dates at year granularity for the baseline also.

7.2 Setup

We discus various aspects related to the experimental setup next.

Parameters. For identifying time intervals of interest we considered top-50
(|R| = 50) pseudo-relevant documents. The mixing parameter for smoothing
the distribution was set to λ = 0.70. For modality assessment we performed
reversible jump MCMC procedure with 2,200 iterations with initial 200 burn-in
iterations.

Implementation. All methods for feature extraction were implemented in R,
a statistical programming language. Procedure for reversible MCMC sampling
was obtained from [11], also in R. The decision tree classifier based on the CART
algorithm was utilized from the R package, rpart [8]. The generative model for
time intervals of interest was programmed in Java.

Measures. For a classification task we report the standard measures for com-
paring performances – Precision, Recall and F1. Statistical significance of our
results is reported with the p-value calculated using McNemar’s test. We also
show an unweighted κ statistic for the classifiers. The κ statistic measures the
agreement between the observed accuracy to the expected accuracy by chance.
Higher value of κ indicates better discrimination between different classes.

7.3 Experimental Results

Below we report the results for each temporal class. In order to accurately gauge
the performance we also report the confusion matrix for our classifier. Training
and test set were constructed by sampling without replacement. Train and test
set split was 80% to 20% of the combined query workload (665 queries). Baseline
(B) and proposed approach (A) were trained on different random samples.

Discussion. For the temporally ambiguous class we can classify very accurately
at all levels of granularity. For the atemporal case we can also discern the class
with high precision. However, it is relatively difficult to identify temporally unam-
biguous queries. Another class that is hard to detect is aperiodic. Compared to
the baseline our approach performs better in all classes.

Failure Analysis. There were two classes for which our approach didn’t perform
well: (i) temporally unambiguous and (ii) aperiodic.

Temporally unambiguous may not have been classified precisely due to
pseudo-relevance feedback. In pseudo-relevant documents it is inevitable to not
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True Class

P
r
e
d
ic
t
e
d

C
la
s
s TAyp TAya TAm TAd TU AT

TAyp 6 4 0 2 5 4
TAya 2 6 1 5 0 5
TAm 4 7 6 1 3 4
TAd 3 2 0 4 1 1
TU 6 4 1 1 6 5
AT 2 7 4 4 3 13

(a) Baseline (B)

True Class

P
r
e
d
ic
t
e
d

C
la
s
s TAyp TAya TAm TAd TU AT

TAyp 14 0 0 0 0 0
TAya 0 6 0 0 5 0
TAm 0 0 12 1 0 0
TAd 1 1 0 20 0 3
TU 5 10 2 1 14 4
AT 1 1 3 0 3 26

(b) Proposed approach (A)

Fig. 2. Confusion matrix for decision tree

Table 2. Statistics by class for decision trees: baseline (B) and proposed approach (A)

Statistics by Class

Precision | Recall | F1

Class B A B A B A

TX 0.81 0.92 0.79 0.92 0.80 0.92
TA 0.70 0.87 0.64 0.71 0.67 0.78
TAy 0.45 0.80 0.34 0.51 0.39 0.62
TAyp 0.29 1.00 0.26 0.67 0.27 0.80
TAya 0.32 0.55 0.20 0.33 0.24 0.41

TAm 0.24 0.92 0.50 0.71 0.32 0.80
TAd 0.36 0.80 0.22 0.91 0.28 0.85

TU 0.26 0.39 0.33 0.64 0.29 0.48
AT 0.38 0.76 0.41 0.79 0.39 0.78

Macroaverage 0.31 0.74 0.32 0.67 0.30 0.69

p-value 4.5e-2 2.2e-16
κ-value 0.16 0.62

consider other related events, which act as noise, for the keyword query in the dis-
tribution of time intervals. Some misclassified example queries are : chernobyl
soviet union and president nixon associated press orlando.

Aperiodic queries were mostly misclassified as unambiguous. Most of the
queries in the aperiodic query set comprise of famous personalities. Thus, the
errors can be due to a very specific events in the corpus linked to the entity. Mis-
classified examples from this category are george bush jnr, madrid bombing,
muhammad ali, and ronald reagan.

8 Conclusion and Future Work

We have proposed how to solve the problem of temporal query classification
at multiple levels of granularity. Additionally, we can predict the periodicity of
events with very high accuracy. We inspect both content temporal expressions
as well as publication dates of pseudo-relevant documents given only a keyword
query. Our approach considers features based on Bayesian analysis of the time
intervals of interest. Experiments indicate that heuristics identified by us are able
to predict the temporal class for ambiguous queries really well. In contrast, for
unambiguous and aperiodic queries it is difficult to classify the class by looking
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at the pseudo-relevant documents. All in all, our classifier achieves the target of
temporal query classification with good accuracy.

As part of our ongoing work; we are investigating how to incorporate the
temporal categories (Si

[b,e]) of given keyword query for diversifying search results
along time. As part of our future work; we plan to carry out an end to end
evaluation of retrieval effectiveness when considering disambiguated temporal
categories.
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