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ABSTRACT
A hyper-phrase query (hpq) consists of a sequence of phrase sets. 
Such queries naturally arise when attempting to spot knowledge 
graph (KG) facts or sets of KG facts in large document collections to 
establish their provenance. Our approach addresses this challenge 
by proposing query operators to detect text regions in documents 
that correspond to the hpq as combinations of n-grams and skip-
grams. The optimization lies in identifying the most cost-efficient 
order of query operators that can be executed to identify the text 
regions containing the hpq . We show the efficiency of  our opti-
mizations on spotting facts from Wikidata in document collections 
amounting to more than thirty million documents.
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1 INTRODUCTION
To assist journalists and scholars in humanities in verifying and 
validating facts, large knowledge graphs (KGs) such as Wikidata 
have started to substantiate facts concerning named entities with 
references to news articles or scientific reports available on the Web. 
However, there still exist many facts in Wikidata that are entered 
manually without any references or provenance (e.g., see Figure 1). 
In order to establish the origin of KG facts, we need to retrieve their 
evidence from the Web or in large document collections. Simply 
spotting a single fact (e.g., ⟨bill clinton, spouse, hillary clinton⟩) 
is a time consuming task, unless we leverage the common sub-
phrases underlying the surface forms in the triple.

The process of validating and verifying facts about named enti-
ties relies on spotting them in text documents (e.g., news articles 
or on the Web). In such scenarios, hyper-phrase queries naturally 
manifest themselves. The problem of spotting KG facts becomes 
even more relevant when trying to verify false facts about emerg-
ing named entities. For emerging named entities it is impossible to 
apriori annotate large document collections using NLP tools. For 
example, named entity recognition and disambiguation tools will 
fail to annotate emerging entities as the KG does not contain their 
canonical entries for disambiguation. Furthermore, to assist down-
stream applications such as knowledge acquisition and question 
answering for emerging named entities, it is important that we can 
execute such hyper-phrase queries efficiently and at scale.
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Figure 1: KG facts regarding bill clinton from Wikidata. Note that
there are no references establishing the provenance of two facts.

2 PROBLEM DEFINITION
We now define the basic elements underlying the problem of exe-
cuting hyper-phrase queries. Key concepts related to the definitions
are illustrated in Figure 1. Consider a large document collection,
D = {d1,d2, . . . ,d |D |}. Each document in the collection d ∈ D is
a sequence of sentences d = ⟨s1, s2, . . . , s |d |⟩. Each sentence fur-
ther consists of a sequence of words drawn from the vocabulary Σ
associated with the collection.

Phrase Query. A basic phrase query is a sequence of words
that must be matched contiguously in a document. For example,
consider the phrase query: ⟨bill clinton is son of bill blythe⟩.
The entire phrase with each word occurring in that sequence must
be matched in the retrieved document. Formally, a phrase query p
can be defined as:

p ∈ Σ+. (1)
A document is a match for a phrase query p if it contains a

sentence in which the words of the phrase occur contiguously.
Formally, a sentence s matches the phrase p if

p ⊏ s ≡ ∃1 ≤ i ≤ |s | : ∀1 ≤ l ≤ |p | : s[i + l − 1] = p[l], (2)

and a document d matches a phrase if

p ⊏ d ≡ ∃s ∈ d : p ⊏ s . (3)

Phrase-Set Query. A phrase-set query is one that combines
multiple phrases, for example, consisting of different paraphrases
to increase recall in document retrieval. Consider, as a concrete
example, the phrase set query {⟨alumni of ⟩⟨attended college⟩}.
Formally, a phrase set query P can be defined as a subset of all
possible phrases that can be generated from the vocabulary:

P = {p1,p2, . . . ,p |P |} ⊆ Σ+. (4)
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A document is considered a match for a phrase-set query if
at least one of the phrases in the set is found in the document
according to Equation 3. Concretely, this can be put as follows:

P ⊏ d ≡ ∃p ∈ P : p ⊏ d . (5)

Hyper-Phrase Query (hpq). A hpq is defined to be a sequence
of phrase sets. An example of a hpq corresponding to a KG fact is
shown in Figure 1. Formally, a hpq is a sequence of phrase sets:

P = ⟨P1, P2, . . . , P |P |⟩. (6)

A document is said to match a hpq if one phrase from each
phrase set is matched, and matches for adjacent phrase sets occur
within k sentences from each other in the document. Formally:

P ⊏ d ≡ ∃1 ≤ i1 ≤ . . . ≤ i |P | :
∀1 ≤ j ≤ |P| : ∃p ∈ Pj : p ⊏ si j ∧

∀1 < j ≤ |P| : (si j+1 − si j ) ≤ k

(7)

The definition ensures that phrase matches across different sen-
tences have to occur in the order specified by the hpq . Should more
than one phrase set be matched by the same sentence, we addition-
ally ensure that their order is respected within the sentence. To
reduce formalism, we omit this detail from the above definition.

Establishing Provenance for KG Facts.Consider the problem
of spotting knowledge graph (KG) facts on the Web or in large
document collections [19] as a concrete use case of matching hyper-
phrase queries. A KG consists of facts. Each fact consists of vertices
that are either named entities or literals and edges that define
relationships between them. The facts are usually encoded in the
form of a triple, which consists of two vertices (either named entities
or literals) and an edge (predicate or relationship). The triples can be
succinctly represented as ⟨(s)ubject, (p)redicate, (o)bject⟩. Each
component of the triple is a canonical representation of its various
surface forms. Let these surface forms of s, p, and o be denoted by:
{s1, s2, . . . , su }, {p1, p2, . . . , pv }, and {o1, o2, . . . , ow } respectively.
A text region is considered an evidence (thereby establishing
provenance for the fact) if it contains at least one phrase from each
of the phrase sets within a distance of k sentences and with the
particular order as expressed in the fact.

Problem Difficulty. Consider the problem of retrieving docu-
ments for a hpq P = ⟨P1, P2, . . . , P |P |⟩, where each phrase set P
can contain at mostm surface forms, over a document collectionD.
Consider that we have access to a standard dictionary and inverted
index over words in the document collection. From them we can
assemble the text regions for the evidences by looking up the word
and its offsets within the documents. A naïve approach is: first
retrieve those documents that contain the words from each of the
m phrases in |P| phrase sets. As a second step, we can intersect
and pool those documents in which at least one phrase from each
phrase set is present. Finally, with this pool of documents we can
then scan each document for potential matches using the string
matching algorithms from [8, 9, 11, 14, 20]. However, this simple
approach is inefficient as we do not leverage common sub-phrases
among the phrases in each phrase set for retrieval of posting lists.
Furthermore, we also do not leverage any co-occurrence of words
among phrase sets that can significantly bring down the cost of
processing a hpq .

3 DATA MODEL
There are three key challenges that need to be overcome in order
to reduce the cost of processing a hpq . The first challenge is to
capture phrases as simpler combinations of n-grams and skip-grams.
Capturing skip-grams is hard as their number grows polynomially
with the sentence length. The second challenge is coming up with
novel ways of maintaining sentence boundaries such that we can
quickly identify the match of two phrases to lie within a distance
of k sentences. Third and finally, the data model must allow us to
compute different ways to represent combinations of phrases. We
can then design algorithms to optimize the order of processing such
operators. Figure 2 summarizes the key elements of our data model.
First, we must provide a data model that is capable of representing
text regions within documents.

Modeling Text Regions. A phrase in our data model is defined
as a contiguous sequence of words with their positional span as:

N × N × Σ+. (8)

In Equation 8, the Cartesian product of natural numbers N × N
represents the text region [i, j] of the phrase ⟨wi , . . . ,w j ⟩ ∈ Σ

+.
Incorporating Sentence Boundaries. A text document is ex-

plicitly structured using syntactical structures such as sentences,
paragraphs, pages, sections, chapters etc. In our work, we consider
sentences as the maximal unit for imposing structure on text. Sen-
tence boundaries can be reliably detected using natural language
processing (NLP) tools (e.g., Stanford’s CoreNLP toolkit [18]). Our
data model records the sentence information by encoding the sen-
tence numbers as identifiers along with phrases. The data model
with this augmentation is represented as:

sentence id︷︸︸︷
N ×

phrase︷ ︸︸ ︷
N × N × Σ+ . (9)

For instance, with this approach, we can represent the bigram
and the sentence information in Figure 2 as: (1, 2, 3). Also, with
this representation, we can easily compute relaxations of phrase
matches to lie within a distance of k sentences.

4 INDEXING UNITS AND INDEXES
Documents can be indexed by considering contiguous and non-
contiguous combinations of words in our data model as indexing
units. The key indexing units we consider are n-grams and skip-
grams (shown in Figure 2). Our dictionaries and indexes are stored
in HBase, a modern state-of-the-art distributed extensible record
store. Our indexes in the HBase record store comprise of tables,
where the records contain key-value pairs. In each key-value pair,
the key of a record in the table encodes the indexing unit while the
value stores the compressed payload for the posting list.

N-Grams. By considering the contiguous sequence of words
of fixed length we can arrive at unigrams, bigrams, and trigrams
as indexing units. These n-grams can immediately help us spot
phrases by decomposing them as an overlap of two or more n-
grams. For example, to retrieve documents for the phrase “physics
nobel prize”, we can decompose it to be an overlap of bigrams
“physics nobel” and “nobel prize”.
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Figure 2: Indexing units can be obtained by considering ordered con-
tiguous sequences of words (n-grams) or ordered non-contiguous
combinations of words (skip-grams). Additionally, to maintain con-
text windows and semantically meaningful text regions we keep
track of sentence boundaries. Circular nodes represent words and
the numbers their positions. While the square nodes represent sen-
tence boundaries and the numbers represent sentence identifiers.

Skip-Grams. To spot a phrase or sequence of phrases it shall
be helpful if we know, in advance, whether a pair of words co-
occurs or not. Examples of skip-grams are also shown in Figure 2.
However, recording all skip-grams contained within a sentence
can lead to index blowup. To curtail the selection of skip-grams
to only those which are highly discriminative, we leverage the
syntactical structure of sentences within documents to record skip-
grams. With this scheme we keep track of only those ordered co-
occurrences of words that are within a sentence and within fixed
separation of ℓ words. To instantiate our indexes we consider skip-
grams where the word separation is at most ten words (i.e., ℓ =
10). By limiting the separation between the skip-grams we also
discard those combinations of words that may be part of different
compound sentences and not semantically related to each other.
Since, we keep track of infrequent skip-grams also, we can detect
mentions of emerging entities as well. This however leads to large
inverted index sizes. Since, establishing provenance for KG facts is
a recall-oriented task, we consider this scheme for recording the
ordered co-occurrence of words.

Dictionaries. For each n-gram and skip-gram we record their
collection statistics in a dictionary. Each entry in the dictionary
stores for each indexing unit p: the document frequency df(p) –
number of documents containing p and the collection frequency
cf(p) – number of times p was observed in the entire collection.

Inverted Indexes. Our inverted indexes store posting lists that
consist of compressed lists corresponding to sorted document iden-
tifiers, and sorted lists for sentence identifiers, begin and end posi-
tions of the indexing elements. For the n-gram indexes we can omit
payload corresponding to the end positions as they can be inferred
by adding the n-gram length to the begin positions. The compres-
sion technique utilized is the patched frame of reference [6, 24].

5 QUERY PROCESSING AND OPERATORS
We now discuss the design of operators over text regions that we
use to represent the combinatorial space of a hyper-phrase query.

Basic Query Processing. First and foremost, we discuss how
to process a hpq to obtain the resulting text regions. Assume that
for a hpq P we have obtained the posting lists corresponding to
each of its constituent phrase sets P . To find the resulting text
regions that contain the evidences for the hpq we apply the binary
variable-length match operator by processing two phrase sets at a
time, from left to right, in P. Algorithm 1 shows how to process a

Algorithm 1: Computing a variable-length gap match.
Input :Posting lists Ll and Lr corresponding to the left and right operands

of the variable length match operator and k indicating the number
of sentences the match may span.

Output :Posting List containing the resultant text regions containing the
variable length match.

1 Function match(Ll , Lr, k)
2 R← find all common documents for postings in Ll & Lr
3 L← ∅, S← ∅
4 foreach doc-id ∈ R do
5 S← join(payload for doc-id in Ll , payload for doc-id in Lr ,k)
6 L← L.append(new⟨doc-id, S ⟩)
7 return L
8 Function join(Sl , Sr , k)
9 S ← ∅

10 if the last position span in Sr lies before the first position span in Sl then
11 return S
12 if first position span in Sr is before the first position span in Sl then
13 Sr ← remove position spans from the front of Sr until the first

position spans in it is after the first position spans in Sl
14 for (i ← 1; i ≤ |Sl |; i ++) do
15 for (j ← 1; j ≤ |Sr |; j ++) do
16 if |sentence id for Sr − sentence id for Sl | ≤ k then
17 if (Sl[i] is before Sr[j]) then
18 S ← S .append([Sl[i].begin, Sr[j].end])
19 return S

variable-length match between two posting lists. With Algorithm 1
acting as a general framework for query processing, we note two
avenues for optimization. First, we must minimize the time spent
for retrieving the postings corresponding to each phrase set P in
hpq P. Which in turn implies presenting the variable-length match
operator with a minimum number of documents to process (line
4 in Algorithm 1). Second, we must minimize the time spent for
joining the positions corresponding to each common document
(lines 8-19 of Algorithm 1).

Naïve Optimization. A naïve strategy to optimize the execu-
tion of the hpq is to identify a common pool of documents for all
the phrase sets P in hpq P before processing them for a variable-
length match. Clearly, this strategy is expensive as explained in
Section 2. An improvement for matching phrase sets was proposed
by Agrawal et al. [7] for named entity extraction from text docu-
ments. Their method relies on first computing a set cover over the
surface forms of named entities and then utilize Boolean operators
over a word index (i.e., no positional information is used) to obtain a
final superset of potentially matching documents. However, there is
much room for improvement on executing a hpq by exploiting the
order of phrases and optimizing them in our proposed data model.

Vertical Cover Operator (k). Given our data model, we can
leverage n-grams and skip-grams to reduce the time spent for re-
trieving postings for each phrase. We now describe a vertical cover
operator that does this. Let P be the phrase set and {p1,p2, . . . ,pn }
the constituent phrases. We can induce a partitioning for each
phrase set using n-grams and skip-grams. The partition that has
minimal cost (see Section 6) is then used for retrieval of the post-
ing lists. Using n-grams, we can decompose each phrase in the
phrase set using unigrams, bigrams, and trigrams. For instance, for
the phrase set {abc, bcd} the common unigrams are {b, c}, while
the common bigrams is {bc}. Using the common n-grams we can
induce partitions over the phrase set. For example, the partition
induced using unigrams is: {a, b, c, d}; using bigrams the partition
is: {ab, bc, cd}; and using trigrams it is: {abc, bcd}.
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Algorithm 2: Vertical cover operator using skip-grams.
Input :hpq P = ⟨P1, P2, . . . , Pn ⟩.
Output :Set of skip-grams that cover the phrase sets P in hpq P.

1 Function cover(P← ⟨P1, P2, . . . , Pn ⟩)
2 S ← ∅ // Resulting skip-gram cover.

/* Compute the set of skip-grams needed to retrieve postings for
P by keeping all the phrases across phrase sets in one set. */

3 skipGrams[] ← generateSkipGrams(put all phrases ofP in an array)
4 return skipGrams
5 Function generateSkipGrams(p[] ← {p1, p2, . . . , pm })
6 S ← ∅ // Resulting set of skip-grams.
7 words[] ← ∅ // Holds the words for the phrase being processed.
8 foreach p ∈ p[] do
9 words← p .split()

/* If the phrase is one-word only, keep it as is. It will be
retrieved using the unigram index. */

10 if (words.length = 1) then
11 S .put(p[i])
12 continue
13 i← 1
14 for (j← i + 1; j ≤ words.length; j++) do
15 S .put(⟨words[i], words[j]⟩)
16 return S

Algorithm 3: Horizontal order operator.
Input :Sets of n-grams that cover the phrase sets corresponding to the left

and right operand of the variable-length phrase match.
Output :Set of selective skip-grams between phrase sets that are indicative of

the number of positions needed to be merged for the join.
1 Function order(Sl , Sr )
2 S ← ∅ // Resulting skip-gram join cover.
3 wordsl , wordsr ← ∅
4 minCostSkipGram, skipGram← ∅
5 double minCost, cost← −∞
6 foreach (pl ∈ Sl ) do
7 wordsl ← pl .split()
8 minCost, cost← 0
9 foreach (pr ∈ Sr ) do
10 wordsr ← pr .split()
11 for (i← 1; i ≤ wordsl .length; i++) do
12 for (j← 1; j ≤ wordsr .length; j++) do
13 skipGram← ⟨wordsl [i], wordsr [j]⟩
14 cost← cost(skipGram)
15 if (minCost ≡ −∞) ∨ (minCost > cost) then
16 minCost← cost
17 minCostSkipGram← skipGram

/* Add the min. cost skip gram. */
18 S .add(minCostSkipGram)
19 return S

Using skip-grams, we can induce the partitions over phrase sets
by computing ordered co-occurrences with respect to an anchor
word. To compute skip-grams, we fix the first word of the phrase as
an anchor word and then derive all the skip-grams with respect to
it. For instance, for the phrase set {abc, adc} the skip-grams induce
the partitioning: {⟨a, b⟩, ⟨a, c⟩, ⟨a, d⟩}. Algorithm 2 shows how to
compute skip-grams that can then be used to retrieve posting lists.

Horizontal Order Operator (⊟). We now discuss how to min-
imize the time for performing the joins (lines 8-19 of Algorithm 1).
When computing the variable-length match for a hpq we shall
like to process those combinations that are highly selective, i.e.,
possess the least number of positions first. In our data model, we
can compute the cost of these joins by using skip-grams between
words from phrases belonging to different phrase sets. Concretely,
we select that skip-gram for phrases belonging to different phrase
sets that contains the least number of positions. By summing up

all the cardinalities indicated by the set of skip-grams, output by
Algorithm 3, we can determine the cost of joining two phrase sets.
Using the vertical cover and horizontal order operators we can now
model the execution of hyper-phrase queries using the n-gram and
skip-gram indexes.

Operator Properties.We note the following operator proper-
ties that are helpful in optimizing their order. The vertical cover
operator is both associative ((a k b) k c = a k (b k c)) and com-
mutative (a k b = b k a). However, the horizontal order operator
is only associative ((a ⊟ b) ⊟ c = a ⊟ (b ⊟ c)). Furthermore, the
vertical cover operator is only left distributive over the horizontal
order operator ((a k b) ⊟ (a k c) = a k (b ⊟ c)).

6 QUERY OPTIMIZATION
We now discuss the strategy to select the optimal operator sequence
to process a hyper-phrase query.

Cost Model. Our cost model depends on two factors. First, we
account for the number of postings to be retrieved from the inverted
indexes for a given indexing unit based on document frequency
– Cjoin. Second, we account for the number of positions in each
posting list based on collection frequency – Cmerge. The first cost
Cjoin gives us an estimate on the cardinality of the document sets
we must join for the query operators. The second costCmerge gives
us an estimate of the number of positions that we must merge to
compute the resulting posting for the query operators.

Cost of Vertical Cover Operator (k). The cardinality of the
result of the vertical cover operator is directly proportional to the
union of the number of documents associated with the left and
right operand. Formally, it can be expressed in terms of document
frequency (df(•)) as follows: |a k b | ∝ (df(a) + df(b) − df(a ∩ b)).

The cost associated with the vertical cover operator can be de-
termined using the number of common n-grams (skip-grams) (see
cover(•) in Algorithm 2) that we can uncover from each phrase set
of the hpq . In case of no overlap, cost degenerates to querying the
n-gram (skip-gram) inverted indexes for each n-gram (skip-gram)
decomposition of the phrases in each phrase set. We can put this
formally as:

cost(a k b) ∝
∑

x ∈cover(a,b)

(
Cjoin · df(x) +Cmerge · cf(x)

)
.

Cost of Horizontal Order Operator (⊟). The cardinality of
the result of the horizontal order operator is proportional to the
intersection of the number of documents associated with the left
and right operand. Formally, this can be expressed in the number
of documents (df(•)) as follows: |a ⊟b | ∝ (df(a)+ df(b) − df(a ∪b)).

The cost associated with the horizontal order operator depends
on the number of skip-gram combinations generated across the
phrase sets. To obtain the ordering using skip-grams for the hor-
izontal order operator, we need to generate skip-grams between
each two consecutive phrase sets in the hpq (see order(•) in Algo-
rithm 3). We can model the cost in two ways. First, if it is required
that we optimize both for the number of documents and positions,
we can write the cost as:

cost(a ⊟ b) ∝ argmin
x ∈order(⟨a,b ⟩)

(
Cjoin · df(x) +Cmerge · cf(x)

)
.
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However, if the number of documents is equal in both operands,
then we are interested in minimizing the number of positions to be
merged:

cost(a ⊟ b) ∝ argmin
x ∈order(⟨a,b ⟩)

(
Cmerge · cf(x)
Cjoin · df(x)

)
. (10)

Cost Comparison between k and ⊟. In general, computing
the intersection over large sets of documents is more expensive
than computing the union. The common document identifiers can
be identified via three strategies. The first strategy uses binary
search for looking up an identifier from the first list in the second
list of ordered document identifiers. The second strategy is to use
galloping (interpolation) search in order to speed up the lookups in
ordered lists. The third and final strategy is to use hash-set-based
intersections to reduce the time for intersection at the cost of per-
formance degradation due to collisions. The first two strategies
benefit from data locality however, on modern hardware architec-
tures, all perform comparably well [12]. Our implementation uses
the third strategy. Furthermore, the horizontal order operator leads
to a Cartesian product of sets if distributed over the vertical cover
operator. That is, (akb)⊟(ckd) = (a⊟c)k (a⊟d)k (b⊟c)k (b⊟d).
Given these two characteristics of the horizontal order operator,
it is more expensive to compute than the vertical cover operator.
Formally, cost(k) ≪ cost(⊟).

Optimization. LetP = ⟨P1, P2, . . . , Pn⟩ be a hyper-phrase query.
Where each phrase set Pi = {pi1,p

i
2, . . . ,p

i
m } has at mostm phrases.

Using the aforementioned query operators we can specify the fol-
lowing operator sequence for executing the query P:

(p11 k p
1
2 . . .p

1
m ) ⊟ (p

2
1 k p

2
2 . . .p

2
m ) ⊟ . . . ⊟ (p

n
1 k p

n
2 . . .p

n
m ). (11)

We can rephrase the above formulation as follows:
n

⊟
j=1

Pj =
n

⊟
j=1

m

k
i=1

p
j
i (12)

where, P represents the result of the vertical cover operator. At a
high level, it may seem trivial to execute the vertical cover operators
(k) first to obtain the union of the documents representing the
phrase sets (Pj ) and subsequently the horizontal order operators
(⊟) to obtain the result of sequences of one phrase set following
the other (Pj−1 ⊟ Pj ). However, naïvely executing this query plan
may be expensive. This is because, we may end up intersecting two
potentially large posting lists. This can be avoided if we chose to
perform amore selective operand (i.e., operand with fewer postings)
with an operand with a large posting list in order to eliminate those
documents that will not end up in the final result.

Optimizing Join-Order Sequence. To optimize the sequence
of operators in Equation 12, we first need to uncover the optimal
substructure property underlying the hyper-phrase queries. It
is important to note that a subsequence of phrase sets in a hpq
P = ⟨P1, P2, . . . , Pn⟩ is yet another hpq . To optimize the original
hpq , we must first identify the optimal sequence of performing
the horizontal order operators for sub-hyper-phrase queries that it
contains. This problem is similar to that of identifying the optimal
order of multiplying a sequence of compatible matrices [10] and
optimizing the join order for sql queries in relational databases [22].
A naïve method of computing such an optimal solution is lower

P1 P2 P3 P4 P5

P1 100 1400 2125 3400 3790

P2 × 750 1750 3275 4465

P3 × × 175 1975 3415

P4 × × × 725 3975

P5 × × × × 390

P(1,5)

P5P(1,4)

P4P(1,3)

P3P(1,2)

P2P1

Figure 3: An illustrative example of generating the optimal exe-
cution plan. For the example, consider the cost constant ratio to
be Cjoin/Cmerge = 10 with following cardinalities of the ⊟ operator
|P1 ⊟ P2 | = 50, |P2 ⊟ P3 | = 75, |P3 ⊟ P4 | = 100, and |P4 ⊟ P5 | = 300. As-
sume that each resulting text regions has only 50 positional spans.

bounded by the Catalan Numbers – Ω(4n/33/2) [10]. Let a sub-hyper-
phrase query be denoted by P(i , j) where the subscripts denote the
subsequence (without omissions) of phrase sets from the original
hyper-phrase query P. The optimal join order sequence can then
be stated as:

opt(P(i , j)) =



cost(kml=1 p
i
l ), if i = j

min
i≤k<j

[
opt(P(i ,k )) + opt(P(k+1, j))+

cost
(
P(i ,k ) ⊟ P(k+1, j)

) ]
, if i < j .

The equation above decomposes the optimization of a hpq P(1,n)
into smaller hyper-phrase queries. The base case of the inductive
hypothesis corresponds to computing the cost of the vertical cover
operator over each individual phrase set. The induction step builds
up the dynamic programming table by first computing the join be-
tween a hyper-phrase query with only two phrase sets. Thereafter,
we seek to intersect the solutions to those hyper-phrase queries
that consist of the least number of documents. Figure 3 shows an
example of computing an optimal join order sequence.

7 EVALUATION
We now discuss the evaluation setup of our experiments.

Document Collections and their Indexes. We build our pro-
posed indexes over four large document collections. The first doc-
ument collection consists of news articles published in the New
York Times (NYT) and is publicly available [3]. The NYT archive
consists of approximately two million documents published be-
tween 1997 and 2007. The second document collection we utilize is
Wikipedia [4]. Wikipedia comprises of around five million docu-
ments and is also publicly available. The third document collection
consists of news articles published by seven major newswire orga-
nizations including the Washington Post, the Associated Press, and
the Xinhua News Agency during the 1995-2010 reporting period [1].
This news archive is publicly available as the fifth edition of the
English Gigaword. It consists of around ten million documents. The
fourth and final document collection is the largest in our evaluation
setup. It comprises of a set of news articles obtained by crawling
the links available on the real-world event repository GDelt [2].
The GDelt document collection amounts to a total of approximately
fourteen million documents. In total, the four document collections
amount to more than thirty million documents. A summary of the
document collection statistics is given in Table 1.
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For each document collection, we created indexes based on the
data model discussed in Section 4. For n-grams, we instantiated
indexes for unigrams, bigrams, and trigrams. For skip-grams, we
instantiated indexes that record skip-grams with word separation
of up to ten words (i.e., ℓ = 10). The index build times are shown in
Table 2. Corresponding to each collection the dictionary and index
sizes in GB are reported in Table 3. We also show the sizes of the
word dictionary and inverted index for each of the collection in
Table 3. It can be observed by storing higher length n-grams we
blow up our indexes by a factor of at most 7.91×. While, the blow up
for the skip-gram index is at most 10.04× compared to a standard
word (unigram) index. Despite the large index sizes, we observe
that by lowering the word separation ℓ between skip-grams we can
reduce the skip-gram index sizes.

Hyper-Phrase Queries. In order to test the efficiency of our
proposed approach we utilize the Wikidata KG [5] to construct a
testbed of hyper-phrase queries. The translation of facts in the KG to
hyper-phrase queries is done via the following scheme:P ≡ ⟨s, p, o⟩.
We evaluate our proposed method and baselines against two kinds
of tasks: KG fact and KG subgraph spotting task.

Queries for KG Fact Spotting (KG-F) Task. For this task, each
test instance consists of a hpq corresponding to a single KG fact
with multiple object arguments. Each query consists of three phrase
sets where each phrase is an alias for the subject, predicate, or object.
To instantiate the instances for this task, we pursued those entities
where multiple objects for the same predicate could be associated.
Concretely, we constructed instances for categories and predicates
in Table 4. For each instance in this task we record the time to
retrieve the text regions as evidences for each hpq . An example of
an instance in the KG fact spotting task is shown in Figure 1.

Queries for KG Subgraph Spotting (KG-S) Task. Journal-
ists and scholars in humanities are seldom interested in retriev-
ing evidences for a single KG fact. It is often required that one
can query for relationships between multiple entities in a single
query. In order to simulate hyper-phrase queries with more than
three phrase sets we consider KG subgraphs. In particular, we re-
strict ourselves to subgraphs with a star topology. To construct
queries for the task of KG-S, we take each fact concerning an en-
tity (subject) as a constituent hpq . Thus, each instance in KG-S
task is a list of hyper-phrase queries, where each hpq represents
a fact concerning a common entity. For each instance in this task,
we retrieve the text regions as evidences for each hpq in the list
and record the total time to execute all of the constituent hpq .

To materialize the instances for the KG-S task we focus on promi-
nent named entities. The prominence is chosen by restricting our-
selves to famous scientists, artists, and athletes. To select these
named entities we looked at the prestigious awards won by scien-
tists (e.g., the Nobel Prize), artists (e.g., the Grammy), and athletes
(e.g., a medal at the Summer Olympics). The concrete Wikidata
object identifiers corresponding to these awards is shown in Ta-
ble 5. By obtaining a set of entities where the award occurs as an
object, we then focused on common and selective key predicates
to further narrow down the facts concerning these entities. The
key predicates that we utilized were: P19 (place of birth), P10
(occupation),P166 (awards received),P69 (educated at),P800
(notable work), P22 (father), P26 (spouse), P361 (part of),
P39 (position held), and P102 (member of political party). The

Table 1: Document collection statistics.
collection ndocuments nwords nsentences

nyt 1,855,623 1,058,949,098 54,024,146
wikipedia 5,327,767 2,807,776,276 192,925,710
gigaword 9,870,655 3,988,683,648 181,386,746
gdelt 14,320,457 6,371,451,092 297,861,511

Table 2: Inverted Index build times in minutes.
type nyt wikipedia gigaword gdelt

unigram 5.83 22.22 31.10 50.37
bigram 16.27 46.72 68.15 99.05
trigram 39.98 104.77 94.87 147.68
skip-gram 79.62 222.52 191.43 259.10

Table 3: Dictionary and index sizes in Gigabytes.
nyt wikipedia gigaword gdelt

collection size 3.00 21.89 9.10 77.44
index type nyt wikipedia gigaword gdelt

word dictionary 0.04 0.30 0.10 0.14
n-gram dictionaries 4.54 19.80 10.50 19.04
skip-gram dictionary 14.40 25.70 21.30 29.30
word index 5.80 18.00 22.30 35.90
n-gram indexes 45.90 126.30 154.40 234.80
skip-gram index 56.10 180.80 203.60 289.00

Table 4: Statistics regarding the testbed for the KG-F task.
category predicates nqueries µwords
writers award received,notable work 694 57.95

medicine laureates award received,employer 410 55.02
physics laureates award received,employer 406 58.48

chemistry laureates award received,employer 348 56.04
movies cast member,filming location 114 75.51

all us elections candidate 1 1081.00
all world war i battles location 1 1669.00
all world war ii battles location 1 2563.00

all summer olympics location 1 717.00
all winter olympics location 1 407.00

Table 5: Statistics regarding the testbed for the KG-S task.
category kg object id nqueries µwords
actresses Q103618 1,434 32.72

actors Q103916 1,547 35.00
singers Q41254 327 33.86
writers Q37922 2,316 33.69

us presidents Q11696 367 47.22
physicists Q38104 2,056 34.12
chemists Q44585 1,788 33.99

mathematicians Q28835 189 33.19
economists Q47170 274 37.57

pacifists Q35637 1,945 36.28

olympians
Q15243387

144 31.79Q15889641
Q15889643

number of facts thus created are reported in Table 5. An illustrative
example of an instance of the KG subgraph spotting task is shown in
Figure 1. The testbeds for KG-F and KG-S tasks are publicly available
at: http://resources.mpi-inf .mpg.de/dhgupta/data/hpq/.

Implementation and Hardware Details. The entire index-
ing infrastructure has been built from scratch in Java with in-
dexes stored in a cluster of machines running Cloudera CDH 5.90
version of Hadoop and HBase. Our Hadoop cluster consists of
twenty machines in which all machines have up to 24 core In-
tel Xeon CPUs at 3.50 GHz, up to 128 GB of primary memory,
and up to eight 4 TB HDDs. With the Hadoop cluster acting as
our storage backend, we evaluate our queries on a high-memory
compute node equipped with 1.48 TB of primary memory and
a 96 core Intel Xeon CPU with processing speed of 2.66 GHz.

Baselines and Systems. We evaluate three baselines against
our proposed approach. We first establish a lower bound on how
much time a hpq should take to answer by scanning the entire
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Table 6: Baselines and Systems.
system n-gram

dictionary

n-gram

index

skip-gram

dictionary

skip-gram

index

Bscan × × × ×
Bbigram × • × ×
Bngram × • × ×
Ak • • × ×
Ak⊟ • • • •

Table 7: Results for Baseline Bscan (secs).
system nyt wikipedia gigaword gdelt

Bscan 111.00 322.00 396.00 604.00

document collection on our Hadoop cluster in an embarrassingly
parallel manner Bscan. As a second naïve baseline, Bbigram, we re-
trieve the results corresponding to each individual phrase set in
the hpq using unigram and bigram decomposition only. We use
bigrams to construct the result set for phrases as we do not index
stopwords in the word index. Subsequent to this we compute the
result set only for those document identifiers that are present in all
the phrase sets of the hpq . As a third baseline, Bngram, we consider
the longest possible n-gram decomposition possible with our in-
dexes. The result is computed in a similar manner as in Bbigram. The
Bbigram and Bngram baselines, simulate traditional inverted indexes
(e.g., Lucene and Elasticsearch) with advantages (i.e., additionally
encoding sentence identifiers). As our first system, Ak , we test our
approach that searches for hyper-phrase queries by only leverag-
ing the optimized vertical cover operator across phrase sets. As
our second system, Ak⊟, we execute each hpq using the optimized
vertical cover and horizontal order operators.

Parameters and Setup. For both the KG-F and KG-S task, we
sample 100 queries to execute for the two baselines and our systems.
For the remaining baseline Bscan we measure the time required
to scan each document in the entire document collection once to
establish a lower bound. We evaluate the sampled queries for three
rounds with cold cache settings. To simulate the cold cache setting:
we shuffle the order of queries in between rounds. We only show
cold cache run times as they are similar to the warm cache setting
results. Furthermore, for computing the optimal plan of execution
we set the constants ratio (Cjoin/Cmerge) to 1 and we use the cost for
horizontal-order operator in accordance with to Equation 10. The
rationale for choosing this ratio was to consider the cost for merging
positions same as documents as we have applied the naïve query
optimization to all baselines and systems. We additionally vary the
match between phrase sets to lie within a distance of k ∈ {0, 2, 5}
sentences of the document containing the evidence.

Results. A summary of the dictionaries and indexes used by
the baselines and systems is shown in Table 6. We have further
computed the statistical significance of the results using the Stu-
dent’s paired t-test at significance level α = 0.05. The systems that
produce statistically significant results over the Bbigram baseline
are marked with △ and over the Bngram are marked with ▲. The
results for the first baseline Bscan are shown in Table 7. As expected
the time to scan the document collection directly depends on the
collection size. The NYT being the smallest takes the least time
while GDelt takes the most time on our Hadoop cluster to scan.

KG-F Task Results. We first discuss the efficiency results of
the KG fact spotting task. In this task, we are required to retrieve
text regions for a sequence of phrase sets that correspond to a KG
fact. The results for the baselines and systems are displayed in
Table 8. When restricting ourselves to matching phrase sets within

Table 8: Results for for KG-F Task (secs).
runtime results for kg-f task (secs) for k = 0.

system nyt wikipedia gigaword gdelt

Bbigram 7.77 ± 12.91 24.41 ± 29.43 41.24 ± 62.94 67.34 ± 164.75
Bngram 1.80 ± 2.82 7.59 ± 6.37 7.89 ± 7.16 12.47 ± 17.98
Ak △1.92 ± 3.63 △7.21 ± 5.63 △7.74 ± 7.30 △11.57 ± 16.36
Ak⊟

△▲1.41 ± 2.42 △▲6.04 ± 5.57 △▲6.45 ± 6.50 △▲9.78 ± 15.35

runtime results for kg-f task (secs) for k = 2.

system nyt wikipedia gigaword gdelt

Bbigram 8.61 ± 18.71 21.8 ± 28.25 34.77 ± 48.91 42.19 ± 68.97
Bngram 1.91 ± 3.33 7.11 ± 5.87 8.46 ± 8.66 10.50 ± 11.08
Ak △1.82 ± 2.87 △6.97 ± 6.06 △8.21 ± 7.63 △9.90 ± 10.31
Ak⊟

△▲1.52 ± 2.82 △▲5.86 ± 5.44 △▲6.92 ± 6.81 △▲7.65 ± 8.97

runtime results for kg-f task (secs) for k = 5.

system nyt wikipedia gigaword gdelt

Bbigram 10.45 ± 30.12 35.18 ± 120.41 39.93 ± 59.29 71.81 ± 233.71
Bngram 2.08 ± 4.64 10.02 ± 32.68 8.41 ± 7.42 12.92 ± 22.46
Ak △2.56 ± 6.06 △9.47 ± 30.57 △10.17 ± 11.39 △13.71 ± 25.07
Ak⊟

△▲1.64 ± 4.35 △▲8.26 ± 28.87 △▲7.07 ± 7.13 △▲11.26 ± 23.68

Table 9: Results for for KG-S Task (secs).
runtime results for kg-s task (secs) for k = 0.

system nyt wikipedia gigaword gdelt

Bbigram 7.50 ± 8.67 35.77 ± 53.78 37.66 ± 76.66 49.70 ± 66.84
Bngram 4.07 ± 4.86 18.04 ± 9.90 15.61 ± 15.92 21.18 ± 17.35
Ak △3.96 ± 4.17 △17.26 ± 10.35 △14.71 ± 11.81 △20.52 ± 17.29
Ak⊟

△2.91 ± 4.22 △▲10.53 ± 7.92 △12.05 ± 10.96 △17.45 ± 14.83

runtime results for kg-s task (secs) for k = 2.

system nyt wikipedia gigaword gdelt

Bbigram 6.20 ± 7.40 32.76 ± 31.72 46.56 ± 107.71 57.10 ± 67.78
Bngram 3.54 ± 4.11 17.79 ± 11.76 15.20 ± 15.74 21.38 ± 17.27
Ak △3.32 ± 4.28 △16.97 ± 11.11 △14.39 ± 12.80 △20.00 ± 16.27
Ak⊟

△2.98 ± 5.58 △▲10.20 ± 7.74 △12.17 ± 13.71 △▲15.38 ± 13.60

runtime results for kg-s task (secs) for k = 5.

system nyt wikipedia gigaword gdelt

Bbigram 9.33 ± 10.95 31.19 ± 34.11 38.09 ± 48.21 63.94 ± 72.30
Bngram 4.47 ± 4.29 17.36 ± 12.28 15.12 ± 12.11 24.47 ± 18.47
Ak △4.22 ± 4.99 △16.86 ± 11.04 △14.76 ± 12.43 △23.36 ± 18.83
Ak⊟

△▲3.06 ± 4.06 △▲9.91 ± 7.81 △▲11.66 ± 9.89 △▲18.47 ± 16.06

a sentence we notice a speed up of at least 8.97× using bigrams
Bbigram over the simple Bscan baseline. Further using trigrams to
spot phrases for matching a hpq brings about a speed up of at
least 42.42× over Bscan. Using our proposed optimization we can
achieve a speed up of at least 1.22× over Bngram, 4.04× over Bbigram,
and 53.31× over Bscan. As we increase the sentence relaxation k
size for matching a hpq we see a speed up of at least 1.15× over
Bngram and 3.72× over Bbigram. It is also important to observe that
with increasing collection sizes the difference between end-to-end
runtime results between the best baseline Bngram and our system
Ak⊟ increases significantly.

KG-S Task Results. We now discuss the efficiency results of
the KG subgraph spotting task. In this task, we are required to
retrieve text regions for hpqs that correspond to multiple facts
concerning an entity. The results for the baselines and systems
are displayed in Table 9. For the KG subgraph spotting task, when
restricting ourselves tomatching each constituent fact of a subgraph
to within a sentence, the baseline Bbigram achieves a speed up of
at least 9.00× over Bscan. While, the baseline Bngram achieves a
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speed up of at least 17.85× over Bscan. The improvements offered
by our proposed optimizations add up to reflect a speed up of
at least 1.21× and at most 1.71× over Bngram. As we increase the
sentence relaxationk size formatching phrase sets in a KG subgraph
we observe speed ups of at least 1.19× over Bngram, 2.08× over
Bbigram, and 31.57× over Bscan. Just like the KG fact spotting task,
we observe that with increasing collection size the benefit offered
by proposed optimization is significant over the baselines Bbigram
and Bngram.

Summary. At the task of spotting evidences for KG facts, our
proposed optimizations show an improvement of at least 1.15×
and at most 1.37× over Bngram across different levels of sentence
separations. At the task of spotting evidences for KG subgraphs,
our proposed optimizations have shown an improvement of at least
1.19× and at most a speed up of 1.75× over Bngram. We also observe
that as we move across increasing collection sizes the benefit of
optimization also becomes apparent. This speed up however, comes
at a cost of maintaining n-gram indexes and skip-gram indexes
that are a factor of at most 7.91× and 10.04× larger than keeping
only a word index. Despite this, we note that depending upon the
application domain, selective choices regarding what kind of skip-
grams to index and n-grams can further bring down the storage
cost and at the same time offer speed ups based on our optimization
for executing hyper-phrase queries.

8 RELATEDWORK
We now discuss prior studies related to our problem setting.

Variable length pattern matching is an allied area with respect
to our problem setting. Prior works [8, 20] have studied how in-
memory data structures can help in the design of efficient matching
algorithms. For instance, [20] considered matching-lookup table
while [8] considered a wavelet tree as an in-memory index to speed
up thematching process. Our work in contrast, leverages large-scale
inverted indexes that are part of modern IR systems to efficiently
execute a more difficult problem. A straight-forward approach to
spotting evidences for KG facts is to index document collections
annotated with named entities linked to KGs. However, using such
an approach we can not spot facts for out-of-KG entities or their
emerging relations. A recent work on spotting KG facts uses reg-
ular expression based operators at word-level [15, 16]. However,
their approach disregards any optimization for efficient execution
of hyper-phrase queries. [13, 19] propose a system that retrieves
witness documents given a KG fact as a query. However, a limita-
tion of their system is that documents need to be processed apriori
and linked to KG facts for their retrieval. Put another way, out-of-
KG facts or entities can not be processed with their system. Our
approach solves this issue by relying on a data model that can rep-
resent n-grams, skip-grams, and sentence boundaries. Relying on
our data model, we can then retrieve text regions as evidences for
KG facts. [17] investigate how to model query execution plans with
respect to recall of relevant documents and the query’s execution
time. Their approach contrasts between two models: inverted index
based approach versus scanning the entire document collection. [7]
describes an algorithm that identifies a relevant set of documents
for named entities by finding a token-set-cover for various surface
forms of the named entity and computing a join of the retrieved

documents. [21, 23] describe approaches to query phrases using
combinations of inverted, phrase, nextword, and direct indexes.
Our work in contrast explores ways to compute an optimal plan of
hyper-phrase query execution using dictionaries and indexes over
n-grams and skip-grams.

9 CONCLUSION
We have shown how to speed up the processing of verbose hyper-
phrase queries that help in establishing provenance for knowledge
graph facts and subgraphs. Additionally, our approach shall find
applications in knowledge acquisition for relationships and facts
regarding out-of-knowledge-graph entities. Our solution consists
of a data model for text that indexes n-grams and skip-grams along
with their sentence identifiers. Furthermore, we presented operators
to express the complete combinatorial space for optimizing hyper-
phrase queries. We then described an approach based on dynamic
programming to generate an optimal query plan using the proposed
vertical cover and horizontal order query operators. We showed
the efficiency of our system in spotting evidences for knowledge
graph facts and subgraphs in document collections amounting to
more than thirty million documents.
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