
GYANI: An Indexing Infrastructure for Knowledge-Centric Tasks
Dhruv Gupta

Max Planck Institute for Informatics

Saarbrücken Graduate School of Computer Science

Saarland Informatics Campus, Germany

dhgupta@mpi-inf.mpg.de

Klaus Berberich

Max Planck Institute for Informatics

Saarland Informatics Campus, Germany

htw saar, Saarbrücken, Germany

kberberi@mpi-inf.mpg.de

ABSTRACT
In this work, we describe gyani (gyan stands for knowledge in Hindi),
an indexing infrastructure for search and analysis of large semanti-

cally annotated document collections. To facilitate the search for

sentences or text regions for many knowledge-centric tasks such

as information extraction, question answering, and relationship

extraction, it is required that one can query large annotated docu-

ment collections interactively. However, currently such an indexing

infrastructure that scales to millions of documents and provides

fast query execution times does not exist. To alleviate this problem,

we describe how we can effectively index layers of annotations

(e.g., part-of-speech, named entities, temporal expressions, and

numerical values) that can be attached to sequences of words. Fur-

thermore, we describe a query language that provides the ability to

express regular expressions between word sequences and semantic

annotations to ease search for sentences and text regions for en-

abling knowledge acquisition at scale. We build our infrastructure

on a state-of-the-art distributed extensible record store. We exten-

sively evaluate gyani over two large news archives and the entire

Wikipedia amounting to more than fifteen million documents. We

observe that using gyani we can achieve significant speed ups of

more than 95× in information extraction, 53× on extracting answer

candidates for questions, and 12× on relationship extraction task.

ACM Reference Format:
Dhruv Gupta and Klaus Berberich. 2018. GYANI: An Indexing Infrastructure

for Knowledge-Centric Tasks. In The 27th ACM International Conference on
Information and Knowledge Management (CIKM ’18), October 22–26, 2018,
Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3269206.3271745

1 INTRODUCTION
Knowledge-centric tasks such as information extraction rely on

meaningful text regions extracted from the analysis of large seman-

tically annotated document collections. A semantically meaningful

text region connects, for instance, a named entity to a literal via a

paraphrase of a knowledge graph predicate (e.g., alan turing pub-
lished papers during the 30s) within a context window of few sen-

tences. Currently there exists no indexing infrastructure that allows

for interactive querying of such text regions on large annotated

document collections. To enable such complex knowledge-centric

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00

https://doi.org/10.1145/3269206.3271745

tasks at scale, we are faced with three key challenges. The first

challenge is to provide a more expressive query language to enable

knowledge acquisition at scale. The second challenge is to iden-

tify a data model that respects the salient relationships between

sequences of words and semantic annotations. The third challenge

is to identify key indexes as building blocks using which we can

then assemble the required search results quickly. By building such

a core infrastructure and an expressive language for querying such

text regions at scale we can provide more training data for improv-

ing the effectiveness of complex machine learning algorithms that

are developed to serve these knowledge-centric tasks.

A flexible and more expressive query language for us is one that

goes beyond simple Boolean operators. What is thus needed is a

counterpart to grep for analysis of large semantically annotated

document collections. grep is a powerful Unix utility that allows

for regular expression based search over text documents. It is an

indispensable tool when trying to find and manipulate lines of

text matching a particular regular expression. However, when it

comes to searching millions of annotated documents, a counterpart

to grep is missing. This is challenging, as natural language text,

unlike field delimited files (e.g., tsv) is not structured. However,

with the help of modern natural language processing tools we can

impose a lexico-syntactic structure over text. Such tools now allow

us to annotate large document collections with various kinds of

semantic annotations, such as part-of-speech (e.g., nn), temporal

expressions, (e.g., last year), and named entities (e.g., Alan Turing).
The annotations give deeper semantics to the terms as well as

provide canonical linguistic structure to text. This lexico-syntactic

structure thus offers us an opportunity to implement a counterpart

to grep over annotated document collections.

Queries composed of regular expressions over word sequences

and annotations offer us an opportunity for knowledge acquisi-

tion at scale. With such a query language we can simplify many

knowledge-centric tasks. For instance, a template to identify n-ary

relations about disasters can be expressed as: ⟨(number) were killed
in (location) on (date)⟩. Below we discuss existing solutions for

knowledge-centric tasks and outline how these approaches can

benefit from our infrastructure.

Information Extraction requires one to acquire facts that hold

between named entities from unstructured text [17, 25]. For this

task, extraction templates are employed, e.g., Hearst patterns [17].

A template for identifying scientists in a document collection, can

be written as: ⟨scientists such as nnp1 . . . nnpn⟩. To execute this

example, documents that contain the terms ⟨scientists such as⟩ are
retrieved and the sentences are annotated for part-of-speech tags

and subsequently filtered to produce relations. With gyani this can
be achieved interactively by issuing the following query: ⟨scientists
such as (person)∗⟩.

https://doi.org/10.1145/3269206.3271745
https://doi.org/10.1145/3269206.3271745
https://doi.org/10.1145/3269206.3271745

Question Answering. Knowledge Graphs encode relationships
or facts in the form of ⟨subject, predicate, object⟩ triples. Natu-
ral language questions such as: ⟨which countries joined nato and
when?⟩, need to be transformed into a structured query using the

sparql language [14, 28]. However, knowledge graphs are rarely

complete (e.g., with respect to temporal information) and thus we

are forced to spot the answers for such questions in large annotated

document collections. By providing the facility to formulate a ques-

tion as a template that expresses the relationship between a named

entity and temporal expression we can provide a large extracted set

of sentences as an input to machine learning algorithms that can

further reason about the correct time interval for this question [16].

For example, with gyaniwe can extract training data with following
query: ⟨(location) joined nato (date)⟩.

Fact Spotting. The inverse task of information extraction is

to find textual evidence in support of the facts in a knowledge

graph [23]. To deal with the linguistic variations in which many

of the canonical relations are phrased, paraphrase dictionaries are

employed [25]. To account for the many different ways a named

entity can be mentioned, its surface forms are added to increase the

recall of the pattern-matching procedure. The procedure to perform

this task can be greatly simplified by combining regular expressions,

annotations, and word sequences. This has important consequences

when we are trying to spot out-of-knowledge-graph entities, for

which we may have to manually specify many surface forms for

a yet to be canonicalized named entity. For example, consider the

query: ⟨[united states | us | usa] to criticize [russia | russland]⟩.
Semantic Search. Semantic annotations are an important build-

ing block for many linguistic and information retrieval tasks as

they lend themselves for conveying deeper semantics to the terms

in text. Thereby, allowing the user to convey her information need

in a more structured manner [7, 14]. However, current inverted

indexes offer only limited capabilities to search and analyze se-

mantically annotated text. Using prior art many documents that

might qualify to satisfy the user’s information need are lost due to

this semantic gap. For instance, a user issuing the query ⟨nineties
decade⟩, will miss documents that also contain the time interval

1990 − 1999 or the query ⟨paris hilton⟩ may retrieve documents

matching the location and hotel when the intent was related to

the celebrity. We propose to bridge the semantic gap by providing

operators to attach meanings to terms. For example, to retrieve

sentences in document collections detailing relationships between

the person, paris hilton and the time period, nineties decade: ⟨(paris
hilton)⊕(person) (word)∗ (nineties decade)⊕([1990,1999])⟩.

Implementing a grep-like interface over large annotated docu-

ment collections poses many challenges. At the data modeling level,

we need to identify a data model in which we can model a text

document along with a multitude of annotations while preserving

the sequential order of words. At the index implementation level,

we need to work through all possible choices for indexing units in

the design space such that the index structures provide fast query

execution times (i.e., order of millisecond query execution times for

complex and lengthy queries). To address these challenges, we de-

scribe gyani, an infrastructure that indexes semantically annotated

text using a novel data model and provides a highly expressive

language for queries involving regular expressions over word se-

quences and annotations. Furthermore, we show how we model

the possible combinations of word sequences and annotations in a

multi-layered data model to process complex and verbose grep-like
queries for knowledge-centric tasks quickly and at scale.

Contributions and Outline. As a first contribution, we de-

scribe a novel data model to represent text with various layers of se-

mantic annotations (Section 2.1). Second, we propose a novel query

language involving regular expressions between words and annota-

tions (Section 2.3). Third, we present an efficient implementation of

our datamodel that provides fast query execution times (Section 2.4).

Finally, we construct a comprehensive testbed of knowledge-centric

tasks to show the efficiency of gyani at the tasks of information

extraction, relation extraction, question answering, fact spotting,

and semantic search (Section 3).

2 GYANI
Gyan in Hindi means knowledge and gyani refers to a person who

possesses knowledge. Our proposed infrastructure is named gyani
to personify an index over text that contains knowledge by virtue

of semantic annotations adorned on text. We next describe the data

model that consists of layers of annotations that can be attached to

sequences of words, thereby allowing different semantic interpreta-

tions of natural language. We then describe the query language to

perform regular expression based search in semantically annotated

text. Lastly, we discuss the design space of the data structures used

for indexing annotated documents in gyani.

2.1 Data Model
Consider a document collection, D = {d1,d2, . . . ,dN}. Each doc-

ument in the collection d ∈ D consists of layers of sequences

containing words or semantic annotations. Each layer of sequences

consists of elements drawn from a particular vocabulary with their

positional span. Concretely, each element ℓ in a layer L is a relation

defined over the Cartesian space described by its layer alphabet

ΣL and an interval of natural numbers N indicating their positions

in the sequence. Formally, the definition of an element is,

ℓ ⊂ N × N × ΣL. (1)

The word layer in each document consists of words drawn from

vocabulary ΣV with unit length positional spans. Formally,

dV = ⟨w[1,1], . . . ,w[|d|,|d|]⟩, (2)

where |d| denotes the number of words in the document and the

interval in subscript records the unit length spans as positions of
the word in the sequence.

Natural language word sequences present in the documents can

be preprocessed with various kinds of semantic annotators, e.g.,

part-of-speech, temporal expressions, and named entities. Each

type of annotation thus signifies an interpretation (semantics) of

the terms by inspecting the signals derived from its surrounding

context. For instance, in the sentence, ⟨peace was brokered between
them during 1903⟩, the term 1903 will be tagged as a cardinal

number by part-of-speech tagger and as a date by a temporal tagger.

We treat each sequence of annotation derived over a sequence

of words as an annotation layer. An annotation layer dL over a

document is denoted by,

dL = ⟨ℓ[i,j], . . . , ℓ[k,l]⟩, (3)

where, each annotation ℓ spans the positions described by the

interval in subscript ([i, j] with i ⩽ j). In short-hand notation, we

refer to a sequence of words as, w⟨i:j⟩ = ⟨w[i,i], . . . ,w[j,j]⟩, and a

sequence of annotations as, ℓ⟨i:l⟩ = ⟨ℓ[i,j], . . . , ℓ[k,l]⟩, where i ⩽ j,

k ⩽ l, and i < k. A text region consists of word sequences w⟨i:j⟩
in a document d ∈ D that satisfies conditions imposed by the

query involving word sequences and the semantic annotations. In

other words, a document is considered a match if it contains at least

one text region that meets the constraints specified in the query

involving word sequences and semantic annotations.

Each document is further accompanied by metadata such as its

unique identifier (id) and its timestamp (ts), dM = ⟨id, ts⟩. The
pairs of all valid ⟨id, ts⟩ pairs in the document collection (D) are

denoted by ΣM.

2.2 Semantic Annotations
Natural language processing (NLP) tools allow us to markup var-

ious kinds of annotations in text. We specifically focus on four

fundamental types of semantic annotations that are commonly

provided by off-the-shelf NLP toolkits: part-of-speech, temporal

expressions, numerical values, and named entities. We describe

these four different types of semantic annotations in the following

paragraphs and justify their importance.

Part-of-Speech (PoS) Tags are assigned to a word based on

common linguistic characteristics derived from their surrounding

terms [18]. Thus, a word’s PoS tag can quickly help to describe the

context in which it occurs [18]. Examples of PoS tags are: nouns

(nn), verbs (vb), and quantities (cd). The PoS annotation layer is

denoted by dP. PoS tags are significant as they form the basis for

tasks in computational linguistic. For instance, PoS annotations

such as nouns can be used to generate text summaries or they can

be employed for complex natural language processing tasks such

as named entity recognition and named entity disambiguation [18].

Temporal Expressions convey mentions of time in text. Nat-

ural language descriptions of time are often convoluted, as time

can be explicit as a concrete date (e.g., July 4, 1776), it can be im-

plicit emphasizing that it is commonsense knowledge and refers to

already known facts (e.g., independence day of the usa), or it can
be relative with respect to dates mentioned in the narrative of the

text (e.g., yesterday). Temporal annotators are able to detect these

implicit, explicit, and relative temporal expressions. Moreover, the

detected expressions can be resolved to definite time intervals by

using metadata such as publication dates. Formally, each temporal

expression that is annotated is represented as an interval (t = [b, e])
with a begin and end time point. We denote the temporal annotation

layer by dT . Temporal expressions are significant in computational

linguistics as they signify the presence of events.

Numerical Values are resolved values of words tagged as car-

dinal numbers (cd) that are not temporal expressions. Examples

of such annotations are percentage values, monetary values, and

other numerical figures. Just like temporal expressions, these nu-

merical values can be explicit (e.g., 95%) or implicit (e.g., a dozen).
Numerical values are useful in quantifying tragic events e.g., iden-

tifying casualties of a natural disaster or for quantifying financial

events e.g., profit and loss for a company. The layer containing

these annotations is denoted by dN .

Numerical
Values

Temporal
Expressions

Named
Entities

Part of
Speech

Words

1 2 3 4 5 6 7 8

Alan Turing published seven papers during the 1930s

NNP NNP VBD CD NNS IN DT NNS

PERSON NUMBER DATE

[1930,1939]

7.0

Figure 1: Data model showing the text & annotation layers.
Named Entities are mentions of persons, organization, loca-

tions etc. in text. These annotations are classified based on context

surrounding their mentions. For instance, in the sentence, ⟨alan
turing was a scientist who lived in britain⟩, the mentions alan tur-
ing and britain are classified as person and location, respectively.

We denote the named entity annotation layer by dE. Named enti-

ties can be further disambiguated to their canonical entries (URI)

in knowledge graphs and accommodated in our data model as a

layer of URIs. Entity annotations allow for advanced text analytics,

e.g., the ability to perform entity summarization by retrieving all

sentences in documents that contain mentions of that entity.

These four kinds of annotations offer an immense opportunity

for various text analytics applications that can be developed for

linguists, scholars in humanities, and journalists. Figure 1 illustrates

how the different annotation layers for part-of-speech tags, named

entities, temporal expressions, and numerical values are overlayed

over a sequence of words according to our data model.

2.3 Query Language
We now describe the language to express queries involving regular

expressions over word sequences and annotations. The complete

grammar containing production rules for query generation is given

in Figure 2. In the following paragraphs we discuss the semantics

of the operators and how to form queries using this grammar.

To formalize the semantics of the operators, we use the function

gyani(Q) to represent the mapping between query Q and a set of

documents {d1,d2, . . . ,dk} that satisfy the conditions of the query.

A document is deemed a match if contains a text region matching

the query. A text region is considered a match to a query if and

only if the sequence of elements ℓ⟨i:l⟩ in the query occurs as a

contiguous sequence in the appropriate layer of the document dL.

Formally,

ℓ⟨i:l⟩ = ⟨ℓ[i,j] . . . ℓ[k,l]⟩ ⊏ dL. (4)

For instance, ⟨alan turing⟩ ⊏ ⟨computer scientist alan turing⟩,
while ⟨scientist turing⟩a ⟨computer scientist alan turing⟩.

Boolean Operators in our query language are: and (∧), or
(∨), and negation (¬). The binary operators and and or act on
two sequences of words such that the resulting documents must

contain both or either of the sequences of words respectively. The

negation operator, on the other hand, is a unary operator and

acts on a sequence of words such that the resulting documents

do not contain that sequence of words. For instance, the query:

[⟨alan turing⟩ ∨ ⟨enigma machine⟩] ∧ ⟨wins war⟩ selects those
documents that contain either of the sequences of words ⟨alan
turing⟩ or ⟨enigma machine⟩ with the phrase ⟨wins war⟩.

Stack Operator. With the help of annotations, different inter-

pretations can be stacked on top of sequences of words in the text

layer. This is done with the help of the stack (⊕) operator. Thus, a

particular interpretation can be attached to a sequence of words, for

example: ⟨last year⟩⊕[1918,1918], refers to those temporal expres-

sions that resolve to the year 1918. The stack operator is a unary
operator, such that it results in only those documents that contain

the sequences of words with that particular annotation attached to

them. Formally, the semantics can be specified as,

gyani
(
w⟨i:j⟩ ⊕ ℓ[i,j]

)
=

{
d∈D

∣∣∣w⟨i:j⟩ ⊏ dV ∧ ℓ[i,j] ⊏ dL

}
.

For example, the query: ⟨paris hilton⟩⊕(person) retrieves those
documents that contain the sequence of words paris hilton anno-

tated as a person by the named entity annotator.

Regular Expression Operators. We consider four basic regu-

lar expressions in our query language at word or annotation level.

These are (based on [6]), star (*) that allows greater than zero

repetition; plus (+) that allows greater than one repetition; ques
(?) that either matches a single word or annotation or nothing; and

dot (�) that acts as a placeholder for any word or annotation. We

also provide the union (|) operator to group together results for

two different word sequences. The semantics of union operator is

equivalent to that of the or operator. We are particularly interested

in combinations of those regular expressions that join two word

or annotation sequences to match and retrieve text regions. The

regular expression operators that we provide are: dot star (�*),
dot plus (�+), dot ques (�?), and dot (�) operator. We show the

semantics of the dot plus operator below:

gyani
(
w⟨i:j⟩ �+ w⟨k:l⟩

)
=

d ∈ D

∣∣∣∣∣∣∣
(w⟨i:j⟩ ⊏ dV)∧

(w⟨k:l⟩ ⊏ dV)∧

(k− j ⩾ 2)

 . (5)

Semantics for the other regular expression operators can be

obtained similarly by adjusting the gaps between the two word or

annotation sequences that are being joined (i.e., varying the distance

(k − j) in Equation 5). Concretely, for the dot star �* operator

we have (k− j ⩾ 1); for the dot ques �? operator (k− j ∈ [1, 2]);
and for the dot � operator (k − j = 2). The operators �* and

�+ can be greedy in matching multiple sentences in a document

that satisfy the positional constraints. In order, to keep only the

shortest possible match, these can be turned lazy by using ques as
a flag. That is, the operators �*? and �+? match only the shortest

positional difference.

Projection Operators. The regular expression operators, �*
and �+ will yield documents that contain text regions spanning

multiple sentences. In many knowledge-centric applications it is

desirable that the text regions lie within a context window of few

sentences or be restricted to a single sentence. To support this op-

eration, we propose the k−project operator πk where k specifies

the number of sentences the positional intervals may span.

We further specifically instantiate operators that project the reg-

ular expression match for words or annotations within a sentence

boundary. These operators consist of phrase star (ℓ*), phrase
plus (ℓ+), phrase ques (ℓ?), and phrase dot (ℓ) operators. The
phrase projection operators are obtained by binding the regular

expression to a specific annotation type. The overriding constraint

operator→ ∧ | ∨ | ¬ | ⊕
reg. expr.→ * | + | ? | . | |

qery→ | ⟨seqence⟩ operator ⟨seqence⟩qery
∗

| ⟨seqence⟩ reg. expr. ⟨seqence⟩qery
∗

| ⟨seqence⟩ reg. expr. qery
∗

| reg. expr. ⟨seqence⟩qery
∗

| [qery] | ⟨ seqence ⟩ | ε

seqence→ Σ+
V | Σ+

P | Σ+
E | Σ+

T | Σ+
N

Figure 2: The query language.

we impose on these operators is that the resulting positions lie

within sentence boundaries in addition to the positional constraints

of the regular expression. The semantics of one such instance (other

instances can be derived in a similar manner) is stated below:

gyani
(
w⟨i:j⟩ ℓ*

)
=

{
d ∈ D

∣∣∣∣∣ (w⟨i:j⟩ ⊏ dV)∧ (l[p,q] ⊏ dL)∧

(j < p)∧ ([i,q] ⊆ [m,n])

}
.

where, the interval [m,n] encompasses the sentence boundary

containing the word sequence and the annotation in the document.

We can further combine regular expressions and the projection

operators to establish the following equivalence:

wl ℓ+ wr ≡ π1
(
wl �*? ℓ �*? wr

)
. (6)

2.4 Index Design
Next, we discuss the design and implementation aspects concerning

the data model. While considering the implementation for gyaniwe
considered three key aspects: scalability, reliability, and compatibil-

ity. Prior work [26, 30] highlights the utility of using combinations

of inverted indexes and augmented indexes (e.g., next word, phrase,

or direct indexes) can provide in answering phrase queries. In par-

ticular, we base our index design on a combination of inverted and

direct indexes. Since, these indexes are present in existing infras-

tructure [26], a complete overhaul of the indexes is not required

thereby assuring compatibility of our implementation. Addition-

ally, these indexes can be sharded (distributed) across a network of

commodity hardware, making them extremely scalable and reliable.

Design Space. We now describe the design space to decide what

are the appropriate indexing units for our data model. The basic

queries in our language consist of word sequences,w⟨i:j⟩. Theword
sequences can be stackedwith annotations,w⟨i:j⟩⊕ℓ[i,j], to specify

semantics. Moreover, for queries involving regular expressions,

we need to maintain positional constraints. Figure 3 summarizes

the key choices. We now contemplate four different choices for

designing our indexes to support the query language.

naïve design. A naïve design choice is to implement grep as-is.
That is, given a query traverse the entire document collection to

retrieve the required documents. This can also be achieved by a

direct index, that stores the layers of annotations andword sequence

against the document metadata.

inverted index design. The naïve design can be improved by

using an inverted index over elements to narrow down the search

space. The inverted index structure will thus store individual ele-

ments with singleton positional offsets, to indicate unit intervals.

As shown in Figure 3, this design choice corresponds to indexing

units being unigrams w[i,i] or annotations ℓ[i,i] spanning unit in-

tervals. The types of queries that can be answered using an inverted

index built on these units are, Boolean and wildcard combinations

of unigrams or single annotations. However, there are three short-

comings of adopting this design choice. First, this approach is lossy,
as the positional information conveyed by intervals is lost. That

is, a named entity with positional interval [i, j] is not equivalent
to {i}, {i+ 1}, . . . , {j}. For instance, the annotation (person)[1,2] con-
veys that the words at positions w[1,1] and w[2,2] is one person as

opposed to (person)[1,1] & (person)[2,2] indicative of two different

persons. Second, retrieving word sequences incurs a high compu-

tational cost as the number of calls to the index is proportional to

the size of the sequence. Third, word sequences stacked with anno-

tations can not be answered in this design space. These issues can

be mitigated to some degree by combining the inverted index with

the direct index. This combined design mimics the choice made by

Cafarella and Etzioni [9] for their neighbor index. The neighbor

index modeled an inverted index over unigrams and then wraps

the annotation layer for the document containing the unigram as

an additional payload to the posting list.

k-fragment design. Going beyond single elements as indexing

units, we can decide on their size with respect to our annotation

choices. Since, the annotations for PoS tags, named entities, tem-

poral expressions, and numerical values incrementally build on

each other, they share positional information based on the word

sequences which they annotate. For example, in Figure 1, the word

sequence alan turing is annotated with PoS tags {(nnp)(nnp)} and
named entity tag (person). Thus, we can treat the layers of annota-

tion that build on the PoS tag as a fragment or as an indivisible unit

to index. We refer to this indivisible unit of variable word sequence

attached to its k−1 annotation layers as a k-fragment. In this design
space, semantic queries can be answered, if and only if the variable

-length word sequence and all the attached annotations for it are

known to the user. While, maintaining complete fragments in an

inverted index is cheap, it poses little utility since the length of the

word sequences accompanying a particular annotation is variable.

Therefore, both these design choices are ill suited for implementing

our data model. We thus look at the design space between these

two extremes, which is discussed next.

gyani design. We have already considered the extremes of index-

ing word sequences as single words to variable length fragments. A

better design choice, is thus to consider word sequences as combina-

tions of fixed size n-grams. The n-gram index, consists of n-grams

pointing to a list of postings that contain the metadata (⟨id, ts⟩) and
a list S of positional spans (s = [i, j]) of the document in which it

occurs. Specifically, we construct unigram (n = 1), bigram (n = 2)

and trigram (n = 3) indexes to retrieve word sequences. In addi-

tion, we construct annotation indexes to maintain the locations

of semantic annotations in the document collection. To index the

variable-length word sequences with their annotations, we consider

2-fragments that are pairwise combinations of the word sequences

with one of the attached annotations. These, binary fragments are

the basic indexing units for the 2-fragment indexes. To locate sen-

tence boundaries and maintaining positional constraints we index

all layers in a direct index.

LAYER2

LAYER1

WORDS

1 2 3 4 5 6 7 8

INVERTED INDEX:
Per element keep
only unit intervals.

GYANI: Combinations of
annotations with n-grams
(e.g., bigrams with NEs).

k-FRAGMENT:
Complete fragments based
on longest annotation.

2-
S
T
IT
C
H

TRIGRAM

ANNOTATION

2
-F
R
A
G
M
E
N
T

Figure 3: Design space.
Knowledge-centric tasks such as information extraction rely on

extraction templates leveraging regular expressions between anno-

tations and word sequences. Processing regular expression queries

involving word sequences and annotations can be extremely ex-

pensive if only annotation indexes are utilized, as the posting lists

for each annotation can span the entire document collections (e.g.,

⟨(location) city of (location)⟩). This is a problem similar to index-

ing stopwords in document collections. In order to execute such

complex queries, we additionally index combinations of elements

across layers that are shifted. Indexing units that arise from combi-

nation of word sequences and ordered co-occurring annotations

from k− 1 different layers are termed as as k-stitches. For example

by combining a word sequence and named entity we can create a

2-stitch: ⟨city of (location)⟩. Thus, we additionally create 2-stitch
indexes that record pair-wise ordered co-occurrences of unigrams,

bigrams, and trigrams with annotations within sentence bound-

aries. These ordered co-occurring combinations of word sequences

and annotations convey relations similar to those obtained by de-

pendency parsing. A relation in a dependency parse tree connects

within a sentence two words with a particular relationship which

is a subset of the combinations modeled by our 2-stitch indexes.

We further need to store information regarding sentence bound-

aries in order to restrain the text regions obtained from the indexes.

Sentence boundaries can be obtained by retrieving them from the

direct index (where they are stored as separate annotations). Or

they can be added as an additional payload to the n-gram indexes.
For the latter case, we make the design choice to store sentence

numbers that further allows us to easily compute relaxations to

context windows of more than one sentence.

2.5 Query Processing
We now discuss how the indexes in gyani are combined to retrieve

documents for queries expressed in our language.

RetrievingWord & Annotated Sequences. We first illustrate

how the basic tokens in our query language are retrieved. Word

sequences are retrieved from an n-gram index, which requires

normalizing the requested word sequence into a list of n-grams and

subsequently merging their positions. This method of retrieving

any arbitrary length word sequence is shown in Algorithm 1. The

retrieval of annotated word sequences using the stack operator

requires directly querying the 2-fragment index, and no additional
processing is required.

Algorithm 1: Processing word sequences.

Input :Q = ⟨w1 . . .wk⟩
Output :Posting List, L, containing document metadata ⟨id, ts⟩

containing Q and its positions s = [i, j].

Function NGramQuery(Q)
N← generate a list of n-grams fromQ

L ← retrieve posting list forN[0] from n-gram index
L ′← ∅ // temporary variable

for (i← 1; i < (k−n+ 1); i++) do
L ′←retrieve posting list forN[i]

L←merge positions for postings in L&L ′ s.t.each position for
a posting in L is before the position for the same posting in L ′

return L

Processing Regular Expressions. We now consider how to

process queries involving regular expressions operators. In particu-

lar, we consider the operator �+ in Algorithm 2. The operators �* ,
�? , and � can be implemented similarly. The �+ operator is a binary

operator that consumes as its left and right operand two posting

lists. The output list contains postings indicating each occurrence

of the element in the left operand is succeeded by the element in

the right operand. This join operation is specified with the help of

the operator Z �+ . The Z �+ operator takes as input the positions of

the elements in the left Sl and right operand Sr, and the gap con-

straint ∆. The gap constraint ∆ indicates the permissible interval

size between the elements of the left and right operand. For the

operator �+ , the gap constraint ∆ is equal to 2. For the operators

�* , �? , and � the constraints are, ∆ ⩾ 1, ∆ ∈ [1, 2], and ∆ = 2.

Processing Projection Operators. We now consider how to

process queries involving phrase projection operators that project

the regular expression match to within a sentence. Processing these

operators can be done using combination of different indexes.

First, we can process phrase projection operators using a com-

bination of direct and n-gram indexes. Here, the direct index is
used to identify sentence boundaries and to identify the positions

of the annotations in its respective layer of a document. Since, these

regular expressions with annotations or words return results at the

sentence level, we instantiate each operator to expand the suffix

(▶); or the prefix (◀); or both suffix and prefix (◆) of the attached

word sequence. For instance, for the query ⟨war started on⟩(date),
involves processing the word sequence ⟨war started on⟩ and select-
ing those sentences in which it occurs with a date as a suffix. While,

the query (word)+ ⟨war started on⟩ (date) involves expanding
both a prefix and suffix expansion. The processing for the suffix ex-

pansion of ℓ+ operator is shown in Algorithm 3. The operators ℓ* ,
ℓ? , and ℓ and the associated type of expansion are implemented

in a similar manner.

Second, we can implement the query processing for phrase
projection operators using 2-stitch and n-gram indexes. The pro-

cessing of these operators is done by first looking up the ordered

co-occurrences of the word sequences and annotations from the

2-stitch indexes and then merging them based on overlaps in the

text regions they share within the same sentence. For example, for

the query ⟨ (organization) acquired the start-up for (money) ⟩, we
can lookup the 2-stitches ⟨ (organization) acquired the start-up
for⟩ and ⟨ acquired the start-up for (money) ⟩ and merge them based

on overlapping text regions.

Algorithm 2: Processing the �+ operator.
Input :Posting lists L

l
and Lr corresponding to the left and right operands of

�+ operator, respectively.

Output :Posting List, L← L
l
�+ Lr .

Function �+ (Ll , Lr)
R← find all common metadata for postings in Ll & Lr
L← ∅, S← ∅
foreach ⟨id, ts⟩ ∈ R do
S←Z �+ (positionsfor⟨id, ts⟩ in Ll ,positionsfor⟨id, ts⟩ inLr ,2)
L← L.append(new ⟨ ⟨id, ts⟩,S ⟩)

return L

Function Z �+ (Sl , Sr ,∆)
S← ∅
if the last interval in Sr lies before the first interval in Sl then

return S

if first interval in Sr is before the first interval in Sl then
Sr ← remove intervals from the front of Sr until the first interval in it is
after the first interval in Sl

for (i← 0; i < |Sl|; i++) do
for (j← 0; j < |Sr|; j++) do

if (Sl[i] is before Sr[j])∧ (Sr[j].end− Sr[j].begin ⩾ ∆) then
S← S.append([Sl[i].begin,Sr[j].end])

return S

Algorithm 3: Processing the ▶+ operator.
Input :Posting list L.
Output :Expanded Posting List, L, using suffix expansion.

Function ▶+(L)
S← ∅ // holds the annotation layer

B← ∅ // holds the sentence boundaries

N← ∅ // holds the new positions after expansion

count← 0 // holds the annotation count

foreach posting P in list L do
S← retrieve the annotation layer containing ℓ for the metadata
⟨id, ts⟩ using the direct index
B← retrieve the sentence boundaries for the metadata ⟨id, ts⟩ using
the direct index
count← 0,N← ∅
foreach position interval [x,y] in posting P do

count← count the number of annotations that are equal to ℓ
between the positional interval spanning y and the end of the
sentence using S andB

if count > 1 then
N←N.append([x,y])
N←N.append(position of the annotations found between y
and the end of sentence)

replace positions of P with expanded positionsN
return L

Third and finally, we can use a combination of annotation, n-
gram, and direct indexes for processing phrase projection opera-

tors. To do so, we can compute a regular expression join between

the word sequence obtained from the n-gram index and annotation

obtained from the annotation index. After the join, we can restrict

the text region to within one sentence using the π1 operator. The

πk operator restricts the positional spans of a posting list that are

input to the operator to lie within a span of k sentences. The imple-

mentation for this operator is given in Algorithm 4. For instance,

the following query π1
(
(location) �*? ⟨declared war on⟩

)
, yields

documents where the resulting text regions after the �*? operation

lie within a sentence of the retrieved documents.

3 EVALUATION
We now describe the evaluation setup of the experiments that

includes a description of he document collections. We then show

how the testbeds for the knowledge-centric tasks were constructed.

Finally, we discuss the results obtained for the experiments.

Table 1: Document collection statistics. The table shows the sizes of annotated collections as well as annotation statistics.
collection size (gb) n

documents
n

words
nsentences n

part-of-speech
n

named entity
ntime n

numbers

new york times 49.7 1,855,623 1,058,949,098 54,024,146 1,058,949,098 107,745,696 15,411,681 21,720,437

wikipedia 156.0 5,327,767 2,807,776,276 192,925,710 2,807,776,276 444,301,507 97,064,344 82,591,612

gigaword 193.6 9,870,655 3,988,683,648 181,386,746 3,988,683,648 517,420,195 72,247,124 102,299,554

Algorithm 4: Processing πk operator.

Input :Posting List L and sentence window k.
Output :Posting List L′

such that each position lies within a k sentence

window.

Function πk (L, k)
foreach posting P in list L do

S← ∅ // modified positions for P

B← retrieve the sentence boundaries for the metadata ⟨id, ts⟩
using the direct index
if k > 1 then

B← coalesce (B, k)
foreach position interval [x,y] in posting P do

foreach position interval [m,n] inB do
if [m,n].contains([x,y]) then

S← S.append([x,y])
replace positions of P with modified positions S

return L

Function coalesce(B, k)
S← ∅ // coalesced positions

b,e← −1 // begin and end for intervals

for (i← 0; i < |B|.size− (k− 1); i++) do
b← B[i].begin
e← B[i+ k− 1].end

S← S.append([b,e])
return S

3.1 Evaluation Setup
Document Collections.We considered three large document col-

lections to index with gyani. Statistics regarding the collections

are summarized in Table 1. The first document collection is the

New York Times, which comprises of news articles published over

a twenty year (1987-2007) time period [2]. The second document

collection is the English Gigaword collected from seven distinct

English news publishers over a sixteen year (1995-2010) time pe-

riod [1]. The third and final document collection is the entire English

Wikipedia [4] (we use the snapshot available on March 13th, 2017).

An important aspect of all the aforementioned document collec-

tions is that, they are written in well poised grammar and language,

so that the automated annotations obtained via NLP tools are of

high quality.

Annotating Document Collections. Each document in the

collections was annotated with four different types of semantic

annotations. We utilized the Stanford Core NLP [22] toolkit to

annotate the documents with part-of-speech, named entities, tem-

poral expressions, and numerical quantities. The processing for the

documents was done as follows. First, each document’s text con-

tent is created by concatenating the headline, the article body, and

other auxiliary keyword or classification terms provided as meta-

data into one long document string. Second, the publication date

for the news article is obtained; for Wikipedia pages we used the

document creation time. Third, the document string is fed into the

annotation pipeline, which performs sentence boundary detection,

tokenization, and tags each token with the aforementioned types

of annotations. Fourth, for each token we analyze the type of anno-

tation performed and subsequently create the layer elements. For

the parts of speech tags we keep the tag as the annotation element

Table 2: Index sizes in Gigabytes (GB).
index type nyt wikipedia gigaword
direct 18.80 44.80 52.40

n-gram 45.90 126.30 154.40

annotation 2.39 7.65 9.33

2-fragment 6.30 23.10 24.16

2-stitch 141.00 473.00 542.40

and unit interval spans as positions. The Stanford Core NLP named

entity annotator provides ten different classes of entities. We divide

these classes as per our requirement. For the named entity layer, we

consider all the class tags as annotation elements: person, organiza-
tion, location, date, time, duration, money, percent, number, and
ordinal. For the temporal expressions, we consider for resolution

the classes: date, time, and duration. For the numerical quantities

we consider for resolution the classes: money, percent, number,
and ordinal. Finally, the document string, along with the strings

containing the annotation layers as per our data model are stored

together with the metadata information containing the timestamp

(determined using publication date or creation time) and its identi-

fier (determined using the hash of the publisher supplied identifier

string or the title string).

Implementation Details. The implementation of the entire

infrastructure was done in Java. All document processing and in-

dexing was done in a distributed manner over a cluster of twenty

machines running the Cloudera CDH 5.90 distribution of Hadoop.

All machines in the cluster were equipped with Intel Xeon CPUs

with up to 24 cores and a clock speed of up to 3.50 GHz, up to 128

GB of primary memory, and up to eight 4 TB hard disks as sec-

ondary storage. We utilized the 1.2.0 CDH 5.9.0 version of HBase

for implementing our indexes.

gyani Indexes. We instantiated the index types discussed in

Section 2.4 for each of the document collections. Posting lists are

compressed using the PForDelta compression technique [5]. We

summarize the index sizes for the various types in Table 2.

3.2 Knowledge-Centric Tasks
We next describe the structure of the queries for the five knowledge-

centric tasks used in our evaluation.

Information Extraction (IE) Task. To construct information

extraction templates, we utilize the paraphrases of relations [25]

present in the Yago knowledge graph. The information extraction

templates are constructed as follows. First, for each of the Yago re-

lations the domain of the subject and the range of the object is iden-

tified. For example, for the predicate wasBornIn the domain of the

subject is person and the range of the object is location. Second, for
the given relation, we look up how the relation is expressed in text

using a paraphrase dictionary [25]. For example, the paraphrases

for wasBornIn are grew up, returned to, and raised in. Finally, we
combine the subject, paraphrase of the relation, and the object to

form the information extraction template. For instance, a template

for the relation wasBornIn is: (person) ⟨raised in⟩ (location).

Table 3: Testbed statistics.

task nquery µ
word

µannotation

task-ie 56,261 2.50 2.22
task-re-news 116,157 83.77 0.00
task-qa-news 828,208 37.68 1.60
task-fs-news 1,618,377 126.61 0.83
task-re-wiki 861,235 67.89 0.00
task-qa-wiki 18,151,907 19.47 1.48
task-fs-wiki 26,164,545 81.32 0.69
task-sq 4,589 6.15 2.53

Relation Extraction (RE) Task. The aim of the relation extrac-

tion task to identify the textual patterns of the predicate given its

subject and object arguments. From the paraphrase dictionary [25],

we also have concrete instances of subject-object pairs identified in

the New York Times and Wikipedia. However, most of the named

entities can be expressed in myriad surface forms. In order to cap-

ture the different surface forms for a given named entity we turn

to the redirectedFrom relation in the Yago knowledge graph. To

create queries for this task we proceed as follows. First, we distill

the unique instances of the subject-object pairs identified by [25]

in both news and encyclopedic sources. Second, we look up surface

forms for the named entities contained in the subject and object

arguments from Yago’s redirectedFrom relation. Third, we combine

the named entity and its various surface forms as union wildcard

clause, e.g., [kennedy | jfk]. Finally, we construct the relation extrac-
tion template by combining the subject and objects arguments with

ℓ* operator. For example, [john f. kennedy | jfk | john fitzgerald
kennedy] (word)* [ronald reagan | 40th president of the united
states | ronnie reagan].

Question Answering (QA) Task. The aim of the question an-

swering task is to retrieve sentences as candidate answers in re-

sponse to a query with annotation wildcards. For this task we

consider the textual patterns of the predicates that occur between

the subject-object instances, also available from the dataset in [25].

To create the queries for this task we carry out the following steps.

First, we consider only the subject’s named entity and its surface

forms from the subject-object pairs. Second, we combine the textual

pattern detected as a predicate for the given subject-object pair [25].

Finally, we replace the object with its appropriate range type with

a ℓ annotation wildcard operator. For example, [microsoft | office
corporation] to work closely with (organization).

Fact Spotting (FS) Task. The aim of the fact spotting task is

to retrieve sentences that are evidences of facts from a knowledge

graph. The process of creating queries for this task is similar to

that of question answering task except that we keep the named

entity and its surface forms for the object argument. An example

of a query in this task is [microsoft | office corporation] to crush
[netscape | devedge].

Semantic Search (SQ) Task. The aim of the semantic search

task is to demonstrate the ability to express queries containing

word sequences overloaded with a semantic meaning. To create

queries for this task, we turn to a compendium of important events

compiled by the New York Times called “On this Day” events [3].

Each event in this compendium consists of a date and an accompa-

nying textual description. The steps involved in creating the queries

are as follows. First, each of the event descriptions are run through

an annotation process similar to the one applied to the document

collections. Second, we combine annotations and word sequences

from the named entity, time, and numerical quantity layers to form

stacked phrases. Finally, we combine them with the Boolean ∧

operator to form the semantic query. For example, (mohandas k.
gandhi)⊕(person) ∧ (india)⊕(location).

In Table 3 we summarize the entire testbed statistics. As can be

noticed from query length in Table 3, the queries in our testbed

are quite complex, lengthy, and verbose. The dataset is publicly

available at the following website:

http://resources.mpi-inf.mpg.de/dhgupta/data/cikm2018/.

3.3 Experimental Results
We evaluate gyani for efficiency by measuring end-to-end query

execution times. For each of the task we sampled 100 queries from

the appropriate testbed for evaluation. Each sample is executed

three times and the average execution time is reported. We execute

each task under two settings: warm and cold caches. In the warm

cache setting, each query is executed once to bring the relevant

posting lists into the main memory of the HBase cluster and then

executed three more times to measure its execution time. In the

cold cache settings, the sample of queries is executed three times by

shuffling the order of query execution between rounds. The time

measured consists of retrieving the posting lists from HBase and

further performing the necessary operations dictated by the tasks,

which may further involve accessing the direct index. In order to

minimize interruptions due to garbage collection we utilize the

concurrent garbage-first garbage collector (G1GC). Experiments are

run on two servers capable of handling high I/O bound jobs as our

front-end and the Hadoop cluster acting as our back-end storage.

Each server consists of up to two Intel Xeon processors with up to

96 cores, clocked at 2.66 GHz and up to 1.48 TB of primary memory.

Baselines. The baselines we evaluate are aligned with respect

to the design choices explored in Section 2.4. We first measure the

time to scan the entire document collection without any indexes.

This naïve design thus establishes a worst case upper bound to

execute a single query by finding the pattern in the entire document

collection. This simple design thus imitates grep in an embarrass-

ingly parallel manner. The first baseline implements the inverted
index design and is denoted by texti. This baseline considers only
the word sequences that can be obtained by combining n-gram
indexes and the direct index. With texti we test how efficiently

an infrastructure can retrieve candidate documents relying only on

text. To a certain extent, texti simulates the “neighbor index” [9],

where we are forced to access the direct index to match the context

around the words during query processing. To execute the queries

with n-gram indexes and direct index, we identify the sentences

(using the direct index) containing the text only arguments of the

query and apply the and operator between the obtained posting

lists to obtain the final result. The second baseline considers n-gram
indexes, annotation indexes, and direct index to evaluate regular

expression queries. We call this baseline anni. The anni baseline
considers posting lists for annotations when evaluating regular

expression queries for the knowledge-centric tasks. It additionally

resorts to the direct index for identifying sentence boundaries

when restraining the results to within one sentence. We evaluate

our infrastructure gyani that leverages the complete set of indexes

http://resources.mpi-inf.mpg.de/dhgupta/data/cikm2018/

Table 4: grep baseline times in seconds.
new york times wikipedia gigaword

111.00 322.00 396.00

proposed. With gyani, however, we leverage the sentence identifiers
stored within the n-gram indexes to restrict the regular expression

matches to within one sentence. In order to execute the same set of

queries for all the three infrastructures, we choose those queries

where the predicate does not contain any annotation wildcards

and the subject and object regular expressions are either (person),
(organization), or (location). To execute the queries against texti
we replace (person), (organization), or (location) operator with
(word)+. For the semantic query task, only the texti baseline is
applicable where only the n-gram indexes are used to execute the

word-only versions of the semantic queries.

Results. We now discuss the results for texti, anni, and gyani
at the five different tasks over three document collections.

Grepping the Entire Document Collection. We first report

the results for the baseline grep that involves scanning (i.e., match-

ing the �* operator) the entire document collection on our Hadoop

cluster. This is akin to running grep as an embarrassingly parallel

task per query over a large document collection. We report the time

taken to scan the three different document collections for a single

query in Table 4. The time required for scanning the document

collections is proportional to the collection’s size. The minimum

amount of time was required for the New York Times which is the

smallest collection amongst the three. While, Gigaword required

the most time as it was the largest amongst the three collections.

End-to-end Query Execution Times. We now discuss the re-

sults obtained for query execution times over the three different

document collections. The results are reported in Table 5 are in

seconds. Note that our system and the baselines shown in Table 5

retrieve equivalent sets of text regions as results. All values marked

with △ and ▲ indicate statistically significant results (p ⩽ 0.05)

with respect to texti and anni respectively. The significance was
measured using the paired t-test. For the information extraction

task we can see that our proposed infrastructure gyani drastically
brings down execution times from several seconds (several minutes

in case of Gigaword) to within milliseconds per query. The drastic

decrease in execution time can be attributed to the observation that

gyani relies on the 2-stitch indexes and does not resort to anno-
tation indexes (which anni does) and direct index (which both

anni and texti do). For the question answering task, our proposed

approach again delivers results within milliseconds as compared to

the other two baselines. The gains again can be attributed to the

same observation as with the ie task. For the relationship extrac-

tion and fact spotting task the performance of gyani is better or at
par with anni. However, compared to texti the query execution

costs are brought down from several minutes to few seconds. The

gain that gyani attains over the other baselines is due to the fact

that it does not resort to the direct index for identifying sentence
boundaries (it uses the sentence numbers available within the n-
gram indexes) when evaluating the regular expressions between

the query arguments. For the semantic query task, we can see that

by directly leveraging the 2-fragment indexes gyani identifies the
result more quickly than the texti baseline, which uses only n-gram
indexes, as it can not disambiguate their semantics.

Table 5: Query execution times in seconds.
task texti (cold) (s) anni (cold) (s) gyani (cold) (s)
ie 8.38± 20.61 12.32± 12.41

△▲
0.01± 0.02

qa 9.68± 18.11 9.18± 0.82
△▲

0.15± 0.16

fs 7.10± 34.49 0.29± 0.57
△

0.29± 0.58

re 41.92± 122.89
△
2.75± 9.98

△
2.41± 8.30

ne
w

yo
rk

ti
m
es

sq 1.22± 3.96 − 0.69± 2.98

task texti (warm) (s) anni (warm) (s) gyani (warm) (s)
ie 3.53± 10.97 11.55± 11.15

△▲
0.01± 0.01

qa 4.81± 9.70 9.13± 0.42
△▲

0.09± 0.15

fs 4.39± 21.79 0.30± 0.55
△

0.29± 0.51

re 29.60± 111.56
△
2.73± 9.90

△
2.42± 8.25

ne
w

yo
rk

ti
m
es

sq 0.96± 2.98 − 0.86± 3.61

task texti (cold) (s) anni (cold) (s) gyani (cold) (s)
ie 17.73± 35.35 51.52± 33.08

△▲
0.11± 0.25

qa 21.10± 73.18 28.30± 19.33
△▲

0.21± 0.63

fs 5.76± 38.32 0.46± 0.96 0.46± 0.95

w
ik
ip
ed

ia

re 105.31± 298.58
△
2.50± 7.00

△
2.16± 5.81

sq 2.64± 4.50 − 2.50± 6.61

task texti (warm) (s) anni (warm) (s) gyani (warm) (s)
ie 7.18± 14.88 43.69± 19.37

△▲
0.06± 0.16

qa 8.25± 34.22 25.92± 1.55
△▲

0.14± 0.55

fs 2.49± 14.33 0.49± 0.99 0.46± 0.93

w
ik
ip
ed

ia
re 39.73± 113.50

△
2.36± 6.42

△
2.15± 5.81

sq 2.58± 4.31 − △
1.43± 2.70

task texti (cold) (s) anni (cold) (s) gyani (cold) (s)
ie 36.69± 88.43 65.10± 51.88

△▲
0.07± 0.10

qa 57.78± 109.89 43.93± 2.99
△▲

0.39± 0.54

fs 52.41± 212.42
△
1.31± 2.58

△▲
1.25± 2.47

gi
ga
w
or

d

re 316.52± 1048.42
△
19.33± 83.11

△
15.69± 61.45

sq 5.25± 7.82 − △
3.65± 5.96

task texti (warm) (s) anni (warm) (s) gyani (warm) (s)
ie 12.44± 33.78 61.88± 33.04

△▲
0.13± 0.96

qa 19.15± 38.10 43.11± 2.43
△▲

0.31± 0.50

fs 32.75± 172.51 1.27± 2.51 1.26± 2.46

gi
ga
w
or

d

re 256.10± 1047.16
△
18.11± 75.08

△
15.67± 61.13

sq 5.21± 7.23 − △
3.48± 5.56

Summary. Summing up our experimental results across tasks

and document collections, we observe that the indexes that con-

stitute gyani consume at most 5.62× the space required by the

uncompressed semantically annotated document collections. sq
and fs are the tasks that profit least with speed ups in response

time of 1.12× and 5.41× respectively. For ie, qa, and re, as more

complex tasks, gyani achieves impressive speed ups of at least

95.69×, 53.44×, and 12.23×, respectively. We designed gyani as a
versatile tool supporting various knowledge-centric tasks. We point

out that, should only specific tasks need to be supported, a subset

of indexes would suffice.

4 RELATEDWORK
Searching Semi-Structured Text. The earliest attempts in infor-

mation extraction from semi-structured text documents relied on

region algebras [11, 12, 27]. The pat system [27] supported expres-

sions that could match SGML tags to match regions of text for

information extraction. Their approach also allowed the user to

query for regions of text with the help of the region expressions.
Clarke et al. [11] proposed a data model that relied on maintaining

generalized concordance lists to index positional spans for SGML

tags. A clear contrast between these early works and our work is

in accommodating semantic annotations in text.

Lalmas [20] provides an overview of work on XML retrieval

including expressive query languages such as XPath and XQuery.

While documents with semantic annotations could be represented

as XML, this would entail a blowup in space and formulating regular

expression queries for knowledge-centric tasks in the aforemen-

tioned languages is all but intuitive.

Miller and Myers [24] were the first to realize the unavailability

of popular Unix delimited-text manipulators such as grep for semi-

structured documents. Their data model represented text regions

by Cartesian coordinates. The authors then leveraged R*-trees to

intersect and compute proximity between rectangles. Cho and Ra-

jagopalan [10] focused on how to allow queries to contain regular

expressions at character level. Their proposal was the concept of a

k-gram index that indexed selective n-grams for efficient regular

expression based search. However, both these approaches do not

provide any scope for handling semantically annotated text.

Searching Annotated Text. Ferrucci and Lally [14] presented

Unstructured Information Management Architecture (UIMA), a com-

prehensive and integrated suite of annotators and text analytics

pipeline. UIMA supported modeling implicit annotations present

in text as “common analysis structure” that allowed overlaying

of annotations to cover common portions of text. Cafarella and

Etzioni [9] proposed the “neighbor index” that provided Boolean

queries involving phrases, annotations, and functions over annota-

tions. Both the UIMA framework and “neighbor index” aimed at

providing the functionality of Boolean queries (not regular expres-

sions) over annotated text.

Li and Rafiei [21] described how to execute queries involving

wildcards, part-of-speech tags, and words. Their implementation re-

lied on commercial search engines for retrieving text snippets. Bast

and Buchold [7] proposed an index architecture that incorporates

both knowledge-graph relations associated with entities and the

contextual text containing that entity. This thus allows for search

over a combined index of knowledge graph and unstructured text.

Massung et al. [31] investigated how to index aggregated feature

vector representations of text along with documents for a unified

framework for analysis. A recent survey on information extrac-

tion over text and knowledge graphs [8] lacks any mention of an

implementation that allows for structured search involving word

sequences, annotations, and regular expressions.

The computational linguistics community also looked into query

languages for annotated corpora (including additional annotations

such as dependencies) [15, 19]. Scalability, though, has not been a

focus in those works and the considered corpora were at least an

order of magnitude smaller than the ones we consider in this work.

Searching Text Using RDBMS. Solutions to enable structured
search over semantically annotated text can also addressed us-

ing conventional database technologies [13, 32]. However, none

of these approaches supports wildcard operators. By adopting the

RDBMS approach, Zhou et al. [32] described a data model that

encodes words, annotations, the confidence of the accompanying

annotations, and its positional span. Queries over this data model

are mapped to SQL queries for execution. Cornacchia et al. [13]

considered the problem of implementing IR systems using array

databases with efficient storage schemes for sparse arrays.

5 CONCLUSIONS
In this work, we described gyani, an infrastructure for supporting

sophisticated knowledge-centric tasks at scale. We first proposed a

novel data model that accommodates word sequences and layers of

semantic annotations associated with them. We then proposed a

novel language that allows the user to express queries consisting of

regular expressions over word sequences and annotations. To allow

for fast query execution times, we further described the appropriate

indexes to support our query language in a complex design space.

Finally, our experimental results over five knowledge-centric tasks

show the ability of gyani to efficiently support search and analysis of

large semantically annotated document collections for knowledge

acquisition at scale.

REFERENCES
[1] English Gigaword Fifth Edition. (https://catalog.ldc.upenn.edu/LDC2011T07).

[2] New York Times (NYT) Corpus. (https://catalog.ldc.upenn.edu/LDC2008T19).

[3] NYT: On This Day. (https://learning.blogs.nytimes.com/on-this-day/).

[4] Wikipedia: The Free Encyclopedia. (https://www.wikipedia.org/).

[5] JavaFastPFOR. (https://github.com/lemire/JavaFastPFOR).

[6] GNU Grep 3.0. (https://www.gnu.org/software/grep/manual/grep.html).

[7] H. Bast and B. Buchhold. An index for efficient semantic full-text search. In

CIKM’13.
[8] H. Bast et al. Semantic Search on Text and Knowledge Bases. Foundations and

Trends in Information Retrieval 10, 2-3 (2016), 119–271.
[9] M. J. Cafarella and O. Etzioni. A search engine for natural language applications.

In WWW’05.
[10] J. Cho and S. Rajagopalan. A Fast Regular Expression Indexing Engine. In ICDE’02.
[11] C.L. A. Clarke et al. An Algebra for Structured Text Search and a Framework for

its Implementation. Comput. J. 38, 1 (1995), 43–56.
[12] M. P Consens and T. Milo. Algebras for Querying Text Regions - Expressive

Power and Optimization. J. Comput. Syst. Sci. 57, 3 (1998), 272–288.
[13] R. Cornacchia et al. Flexible and efficient IR using array databases. VLDB J. 17, 1

(2008), 151–168.

[14] D. A. Ferrucci and A. Lally. UIMA: An Architectural Approach to Unstructured

Information Processing in the Corporate Research Environment. Nat. Lang. Eng.
10, 3-4 (Sept. 2004), 327–348.

[15] E. Frick et al. Evaluating Query Languages for a Corpus Processing System. In

LREC’12.
[16] D. Gupta and K. Berberich. Identifying Time Intervals for Knowledge Graph

Facts. In WWW’18.
[17] M. A. Hearst. Automatic Acquisition of Hyponyms from Large Text Corpora. In

COLING’92.
[18] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition
(2nd ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[19] T. Krause et al. graphANNIS: A Fast Query Engine for Deeply Annotated Lin-

guistic Corpora. Corpus Linguistic Software Tools 31, 1 (2016), 1–25.

[20] M. Lalmas. XML Retrieval. Morgan & Claypool Publishers (2009).

[21] H. Li. Data extraction from text using wild card queries. Masters Abstracts
International (2006).

[22] C. D. Manning et al. The Stanford CoreNLP Natural Language Processing Toolkit.

In ACL’14.
[23] S. Metzger et al. S3K: seeking statement-supporting top-K witnesses. In CIKM’11.
[24] R. C Miller and Brad A Myers. Lightweight Structured Text Processing. USENIX

Annual Technical Conference, General Track (1999).

[25] N. Nakashole et al. PATTY: A Taxonomy of Relational Patterns with Semantic

Types. In EMNLP-CoNLL’12.
[26] K. Panev and K. Berberich. Phrase Queries with Inverted + Direct Indexes. In

WISE’14.
[27] A. Salminen and F. W. Tompa. PAT expressions: an algebra for text search. Acta

Linguistica Hungarica (1994).
[28] D. Savenkov and E. Agichtein. When a Knowledge Base Is Not Enough: Question

Answering over Knowledge Bases with External Text Data. In SIGIR’16.
[29] F. M. Suchanek et al. YAGO: A Large Ontology from Wikipedia and WordNet.

Web Semant. 6, 3 (Sept. 2008), 203–217.
[30] H. E. Williams et al. Fast Phrase Querying with Combined Indexes. ACM Trans.

Inf. Syst. 22, 4 (Oct. 2004), 573–594.
[31] C. Zhai and S. Massung. Text Data Management and Analysis: A Practical Intro-

duction to Information Retrieval and Text Mining. Association for Computing

Machinery and Morgan & Claypool, New York, NY, USA.

[32] M. Zhou et al. Data-oriented content query system - searching for data into text

on the web. In WSDM’10.

https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2008T19
https://learning.blogs.nytimes.com/on-this-day/
https://www.wikipedia.org/
https://github.com/lemire/JavaFastPFOR
https://www.gnu.org/software/grep/manual/grep.html

	Abstract
	1 Introduction
	2 GyanI
	2.1 Data Model
	2.2 Semantic Annotations
	2.3 Query Language
	2.4 Index Design
	2.5 Query Processing

	3 Evaluation
	3.1 Evaluation Setup
	3.2 Knowledge-Centric Tasks
	3.3 Experimental Results

	4 Related Work
	5 Conclusions
	References

