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Abstract: We consider the distributed unconstrained minimization of separable convex cost
functions, where the global cost is given by the sum of several local and private costs, each
associated to a specific agent of a given communication network. We specifically address an
asynchronous distributed optimization technique called Newton-Raphson Consensus. Beside
having low computational complexity, low communication requirements and being interpretable
as a distributed Newton-Raphson algorithm, the technique has also the beneficial properties of
requiring very little coordination and naturally supporting time-varying topologies. In this work
we analytically prove that under some assumptions it shows either local or global convergence
properties, and corroborate this result by the means of numerical simulations.
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1. INTRODUCTION

The interests on systems where agents collaborate to
achieve a common goal are driven by the possibility of
synergies, i.e., coordinated actions whose total effects are
bigger than the ones achievable without coordination.
Thus it does not surprise that distributed optimization
received in the past years an increasing attention from
various research communities, being it a pervasive building
block for all the decision making processes, including
estimation and control.

We can trace back the roots of this topic to the seminal
work of Tsitsiklis (1984), and classify the literature into:
methods based on primal decompositions, methods based
on dual decompositions, and heuristic or ad-hoc methods.

Primal methods exploit suitable decompositions of the pri-
mal problem (Boyd and Vandenberghe, 2004, Chap. 5.2)
and operate explicitly on the values of the primal variables.
The most widely known ones are Distributed Subgradi-
ent Methods (DSMs) (Shor, 1985, Chap. 2) (Nedić and
Ozdaglar, 2009, and references therein). Their advantages
can be summarized in easy implementability and wide
applicability, while the drawbacks may lie in rather slow
convergence rates in practical applications (Johansson,
2008, Chap. 6).

Dual methods exploit instead decompositions of the dual
problem (Boyd and Vandenberghe, 2004, Chap. 5.2) into
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simpler tasks. The most widely known approach, the Al-
ternating Direction Method of Multipliers (ADMM), alter-
nates local dual ascents and communication steps (Bert-
sekas and Tsitsiklis, 1997, pp. 253-261). It usually has
faster convergence rates than DSMs, still maintaining a
widely applicability (Boyd et al., 2010; Erseghe et al.,
2011).

Heuristic or ad-hoc methods may use several different
techniques, e.g., swarm optimization (Van Ast et al., 2008)
or genetic algorithms (Alba and Troya, 1999). Other ap-
proaches are instead tailored for suitable classes of cost
functions, e.g., the Fast-Lipschitz methods (Fischione,
2011; Fischione and Jönsson, 2011), and may have con-
vergences faster than the ones of ADMMs or DSMs.

Importantly, these various algorithms require different
degrees of coordination among the agents. E.g., DSMs
may be implemented without requiring synchronized com-
munications (Nedić and Ozdaglar, 2009), while ADMM
generally requires the preservation of the order of the
operations.

Considering that the applicability of distributed algo-
rithms relates to how much agents must coordinate, our
aim is to consider the Newton-Raphson Consensus (NRC),
a promising primal-based distributed optimizer originally
proposed in Zanella et al. (2011), and lessen its coordina-
tion requirements. More specifically, we propose an asyn-
chronous version of it and prove its convergence properties.

The interest on the NRC technique can be motivated
as follows. First of all, at the best of our knowledge it
is the unique primal-based distributed algorithm whose
estimates evolve as driven by a Newton-Raphson opti-
mization scheme, and that can be implemented without



requiring a-priori knowledge about the topology of the
network (see, e.g., Jadbabaie et al. (2009)). Secondly, the
NRC exploits average consensus algorithms (Fagnani and
Zampieri, 2008, and references therein). Thus it inherits
all their favorable properties, like immediate adaptation
to time-varying topologies and extreme simplicity of im-
plementation.

The paper is organized as follows: we formulate the prob-
lem in Sec. 2 and summarize the notation in Sec. 3.
Then introduce the original NRC algorithm in Sec. 4, and
describe its asynchronous version in Sec. 5. In Sec. 6 we
perform some numerical comparisons between the NRC
and a DSM, and eventually draw some concluding remarks
and future research topics in Sec. 7. All the proofs are
collected in the technical report deposited in TODO.

2. PROBLEM FORMULATION

Let the N agents of a network be endowed with local
strictly convex cost functions fi : R 7→ R, so that the
following function

f : R 7→ R f (x) :=
1

N

N∑
i=1

fi (x) (1)

is a well-defined global cost. The aim of the agents is to
cooperate and distributedly compute the minimizer of f ,
namely

x∗ := argmin
x
f (x) . (2)

Due to memory / computational / communication con-
straints, the distributed optimization schemes must have
low-complexities and be based only on local communica-
tions.

The network underlying the information exchange pro-
cess is modeled as a graph G = (V, E) whose vertexes
{1, . . . , N} ∈ V and edges (i, j) ∈ E represent respectively
the agents and the available communication links. We pose
the following assumptions, some of which may be relaxed
to the detriment of notational simplicity: the graph is
undirected, connected and not time-varying. Moreover, we
assume the following:
Assumption 1. (Convexity). The function f : R → R
defined in (1) is smooth, closed, proper, and strictly convex

with positive second derivative, i.e., f
′′
(x) :=

d2f(x)

dx2
> 0,

∀x ∈ R.

Ass. 1 implies that x∗ in (2) exists and is unique. Moreover,
the positive second derivative is a mild sufficient condition
to guarantee that the minimum x∗ defined in (2) will be ex-
ponentially stable under the continuous Newton-Raphson
dynamics described in the following theorem 2. We notice
that in principle just the average function f needs to have
specific properties, and thus no conditions for the single
fi’s are required: in fact they might even be non convex.
We also notice that Ass. 1 allows us to apply standard
singular perturbation analysis techniques (Khalil, 2001,
Chap. 11) Kokotović et al. (1999). The following theorem
provides a preliminary results to apply such tools.
Theorem 2. Let

ẋ = − f
′
(x)

f
′′
(x)

=: ψ(x+ x∗), x(0) ∈ Dr (3)

describe a continuous Newton-Raphson algorithm with f
satisfying Ass. 1. Let Dr := {x ∈ R | f(x) ≤ r} be s.t.
r > f(x∗). Then x∗ is an exponentially stable equilibrium,
i.e., |x(t)| ≤ ce−γt|x(0)| for all t’s and x(0) ∈ Dr for
suitable positive constants c and γ possibly depending on
r.

We notice that the previous theorem can be used to show
that the point x∗ is actually globally stable. In fact the
properness of f implies that for any x ∈ R there exists
r such that x ∈ Dr. Thus one can start from any point
and have an exponential convergence, although a uniform
convergence rate in Rmight not exists. Nonetheless we can
notice that, locally and around the optimum, the rate of
convergence of the Newton-Raphson dynamics is γ = 1
independently of the convex function f . In fact, if we
linearize ψ around 0 (i.e., the dynamics around x∗) we
obtain
ψ(x) = ψ(0) + ψ′(0)x+ o(x)

= − f
′
(x∗)

f
′′
(x∗)

− f
′′
(x∗)f

′′
(x∗)− f ′(x∗)f ′′′(x∗)(
f
′′
(x∗)

)2 x+ o(x)

= −x+ o(x)

since f
′
(x∗) = 0 and f

′′
(x∗) 6= 0.

3. NOTATION

In the following we use bold fonts to indicate vectors or
functions whose range is vectorial, and plain italic fonts
to indicate scalars or functions whose range is scalar.
Furthermore we use the following shorthands:

f ′(x) :=
df(x)

dx

f ′′(x) :=
d2f(x)

dx2

gi
(
xi (k)

)
:= f ′′i

(
xi (k)

)
xi (k)− f ′i

(
xi (k)

)
hi
(
xi (k)

)
:= f ′′i

(
xi (k)

)
x (k) := [x1 (k) · · · xN (k)]

T

g
(
x(k)

)
:=
[
g1
(
x1 (k)

)
· · · gN

(
xN (k)

)]T
h
(
x(k)

)
:=
[
h1
(
x1 (k)

)
· · · hN

(
xN (k)

)]T
f ′(x) := [f ′1 (x1) · · · f ′N (xN )]

T
.

We use the division bar to indicate also the component-
wise division, e.g.,

g
(
x(k)

)
h
(
x(k)

) :=

[
g1
(
x1 (k)

)
h1
(
x1 (k)

) · · · gN(xN (k)
)

hN
(
xN (k)

)]T .
4. DISTRIBUTED NEWTON-RAPHSON

CONSENSUS: THE SYNCHRONOUS CASE

Consider a global cost function like in (1). Assume that it is
given by a sum of quadratic costs fi(x) = ai

(
x−bi

)2. Then
x∗ in (2) is computable by means of two average consensus
algorithms in parallel (Xiao et al., 2005; Bolognani et al.,
2010), since

argmin
x∈R

∑
i

ai
(
x− bi

)2
=

∑N
i=1 aibi∑N
i=1 ai

=
1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

. (4)



Notice now that aibi = f ′′i (x)x − f ′i(x) and ai = f ′′i (x).
The intuition then goes as follows: let each agent pick a
local xi, and compute the corresponding local quantities

gi(xi) := f ′′i (xi)xi − f ′i(xi), hi(xi) := h′′i (xi). (5)
We can ask whether the guess

x̂∗ =
1
N

∑N
i=1 gi(xi)

1
N

∑N
i=1 hi(xi)

, (6)

that can be distributedly computed by the agents as a
parallel of two average consensus, is equal to the global
optimum x∗ even if the fi’s are not quadratic.

In general, this is not. Nonetheless, x̂∗ corresponds to a
guess of the global optimum computed through quadratic
approximations of the local cost functions around the local
estimates xi. The consequent intuition is that alternating
steps that compute the averages of the various gi’s and
hi’s and steps that update the local xi’s will eventually
lead to get the global optimum.

A synchronous algorithm implementing this procedure
has been proposed in Zanella et al. (2011, 2012), and
is summarized in Alg. 1. Its synchronous communication
steps 6 and 7 rely on a symmetric consensus communi-
cation matrix P = PT , i.e., a matrix whose elements
are non-negative, where Pij > 0 only if (i, j) ∈ E , and
with the properties that P1 = 1 (1 := [1 1 · · · 1]T ) and
limk→∞ P k = 1

N 11
T . As a result, each k in Alg. 1 should

be treated as an event when all the agents synchronously
communicate and then update their local values.

Algorithm 1 Synchronous Newton-Raphson Consensus
(SNRC)

(storage allocation and constraints on parameters)
1: x(k),y(k), z(k)∈RN ; k=0, 1, . . .
2: P ∈ RN×N , positive and doubly stochastic
3: ε ∈ (0, 1)

(initialization)
4: x(0) = x0, y(0)=z(0)=g (x(−1))=h (x(−1))=0

(main algorithm)
5: for k = 1, 2, . . . do

(update of the auxiliary variables and consensus)
6: y(k) = P [y(k − 1) + g (x(k − 1))− g (x(k − 2))]
7: z(k) = P [z(k − 1) + h (x(k − 1))− h (x(k − 2))]

(update of the local guesses)

8: x(k) = (1− ε)x(k − 1) + ε
y(k)

z(k)
9: end for

Alg. 1 has two fundamental features: the first is that the
consensus steps on local variables yi and zi tracks the
changing values of the functions gi

(
xi(k)

)
and hi

(
xi(k)

)
.

The second is the presence of the parameter ε that acts as
a low pass filter. In fact it can be considered a forgetting
factor which regulates, in the update of the estimate of
the global minimum, the relative importance between the
past estimate xi(k) and the current estimate yi(k)/zi(k).
Additionally, the parameter ε slows the dynamics of xi(k)
and lets the consensus on the variables yi(k), zi(k) take
place.

As explained in Zanella et al. (2011, 2012), Alg. 1 can be
approximated with the continuous-time system

εv̇(t) = −v(t) + g (x(t))
εẇ(t) = −w(t) + h (x(t))
εẏ(t) = −Ky(t) + (I −K) [g (x(t))− v(t)]
εż(t) = −Kz(t) + (I −K) [h (x(t))−w(t)]

ẋ(t) = −x(t) + y(t)

z(t)

(7)

where K is a positive semidefinite matrix with kernel
generated by the vector 1 and with eigenvalues 0 = λ1 <
λ2 ≤ · · · ≤ λN < 2. (7) is thus a two-time scales dynamical
system combining fast dynamics, that make the gi’s and
hi’s converge to their averages, and slow dynamics, that
make the local xi’s evolve approximatively as the scaled
continuous Newton-Raphson algorithm

ẋ(t) = −ε
f
′(
x(t)

)
f
′′(
x(t)

) . (8)

Under Ass. 1, Alg. 1 (SNRC) has global convergence
properties (Zanella et al., 2011):
Theorem 3. Consider Alg. 1 (SNRC), with Ass. 1 holding
true and the initialization performed as in step 4. Then for
every open ball Bx

∗

r := {x | ‖x− x∗1‖ < r} there exist
two positive constants εr, cr such that if ε < εr, then
there exists γε > 0 such that

‖x(k)− x∗1‖ ≤ cre−γεk‖x0 − x∗1‖
for all x0 ∈ Bx

∗

r .

The proof of the previous theorem is based on singular
perturbation theory for continuous time systems and con-
sensus tracking. The critical value for the parameter εr
depends on r and the function f . The explicit computation
of the critical value based on Lyapunov theory is in general
very pessimistic and therefore of no practical use. However,
the proof shows that if r and ε are sufficiently small, the
rate of convergence of the algorithm tends to γε = ε, and
the dynamics of the local estimates is approximately given
by

xi(k) ≈ x∗ + (x(0)− x∗) e−εk ,
where x(0) := 1

N

∑N
i=1 xi(0).

In the following we extend these ideas to be amenable to
more realistic asynchronous implementations.

5. ASYNCHRONOUS NEWTON-RAPHSON
CONSENSUS

As noticed before, steps 6 and 7 of Alg. 1 rely on syn-
chronous communications and updates of the various yi’s
and zi’s. Thus this implementation requires a high degree
of coordination among the agents, being consequently of
limited practical applicability.

Here we propose an asynchronous version of the NRC that
is built upon the standard symmetric gossip consensus:
at every time a single agent is activated, then this agent
selects one of its neighbors and communicates with it. To
describe precisely this process we use the following nota-
tion: k = 1, 2, . . . correspond to the time instants t1, t2, . . .
where a generic agent i activates and communicates with
one of its neighbors j ∈ Ni. v(k) : N 7→ V and e(k) : N 7→ E
indicate which agent and which edge have been activated



at time k, respectively. wi(k) / u(i,j)(k) are instead flags
indicating whether agent i / edge (i, j) have been activated
ar time k or not. Thus wi(k) = 1 if v(k) = i, wi(k) = 0
otherwise, and u(i,j)(k) = 1 if e(k) = (i, j), u(i,j)(k) = 0
otherwise. Notice that we thus allow the activation of just
a single agent and single edge for each time instant k.

As for the agent activation process, we exploit either
uniform or persistent agent activation hypotheses:
Assumption 4. (uniform activation). There exist a strictly
decreasing function σ and a positive integer B s.t.∣∣∣∣∣ 1T

k+T−1∑
h=k

wi(k)−
1

N

∣∣∣∣∣ ≤ σ(T ), ∀i ∈ V,∀k ∈ N (9)

B+k−1∑
h=k

u(i,j) ≥ 1, ∀(i, j) ∈ E ,∀k ∈ N. (10)

(9) basically states that, on the long run, all the agents are
activated the same number of times. (10) instead states
that every edge is activated at least once in any window
of length B, which can be arbitrarily large but finite.
Assumption 5. (persistent activation). There exists a pos-
itive integer B s.t.

B+k−1∑
h=k

wi ≥ 1, ∀i ∈ V,∀k ∈ N (11)

and (10) simultaneously hold.

(11) is weaker than (9) in the sense that the former
states just that each agent activates at least once in every
sufficiently large time window.

Exploiting the previous definitions we introduce the agent
selection matrix S(k) ∈ RN×N , the edge selection matrix
E(k) ∈ RN×N and the symmetric gossip consensus matrix
P (k) ∈ RN×N as follows:

b(i,j) := [0 · · · 0
(i)

1 0 · · · 0
(j)

−1 0 · · · 0]T ∈ RN (12)

S(k) := diag
(
w1(k), . . . , wN (k)

)
(13)

E(k) :=
(
diag(bu(k))

)2 (14)

P (k) := I − αbu(k)bTu(k), α ∈ (0, 1). (15)
Basically, S(k) is zero everywhere except for a one in
the diagonal element (i, i) corresponding to the activated
agent i. E(k) is zero everywhere except for two ones in the
diagonal elements (i, i), (j, j), corresponding to the agents
of the activated edge (i, j). P (k) is the standard symmetric
gossip consensus matrix with weight 1 − α on the diag-
onals elements (i, i) and (j, j), and α on the (i, j) and
(j, i) elements. With this notation it is possible to derive
the Asynchronous Newton-Raphson Consensus (ANRC),
presented in Alg. 2, as a straightforward modification of
the SNRC.

Lines 7, 8 and 9 in Alg. 2 compactly represent the fact
that all agents do not perform any action except for the
selected ones i, j, updating their local variables yi, yj as

yi(k+1)=(1−α)
(
yi(k)+gi

(
xi(k)

)
−gi

(
xi(k−1)

))
+αyj(k)

yj(k+1)=(1−α)
(
yj(k)+gj

(
xj(k)

)
−gj

(
xj(k−1)

))
+αyi(k)

Algorithm 2 Asynchronous Newton-Raphson Consensus
(ANRC)

(storage allocation and constraints on parameters)
1: x,y, z ∈ RN
2: α, ε ∈ (0, 1)

(initialization)
3: x(0) = x0

4: y(0) = g (x(−1)) = g (x(0))
5: z(0) = h (x(−1)) = h (x(0))

(main algorithm)
6: for k = 1, 2, . . . do

(update of the auxiliary variables and consensus)

7:
y(k) = P (k)

[
y(k − 1)+

+E(k)
(
g
(
x(k−1)

)
−g
(
x(k−2)

))]
8:

z(k) = P (k)
[
z(k − 1)+

+E(k)
(
h
(
x(k−1)

)
−h
(
x(k−2)

))]
(update of the local guesses)

9: x(k) = x(k − 1) + εS(k)

(
−x(k − 1) +

y(k)

z(k)

)
10: end for

and zi, zj in a similar way. We notice that, among xi and
xj , just the former is updated: in the proposed version we
require the local guess to be updated just for the agent
that initiates the communication. Line 9 in Alg. 2 thus
reads as

xi(k + 1) = xi(k) + ε

(
−xi +

yi(k + 1)

zi(k + 1)

)
.

The convergence properties of Alg. 2 are summarized by
the two following theorems:
Theorem 6. (global stability). Consider Alg. 2 and let As-
sumptions 1 and 4 hold true. Then for every open ball
Bx

∗

r := {x | ‖x− x∗1‖ < r} there exist two positive con-
stants εr, cr such that if ε < εr, then there exists γε > 0
such that

‖x(k)− x∗1‖ ≤ cre−γεk‖x0 − x∗1‖
for all x0 ∈ Bx

∗

r .
Theorem 7. (local stability). Consider Alg. 2 and let As-
sumptions 1 and 5 hold true. Then there exist an open ball
Bx

∗

0 := {x | ‖x− x∗1‖ < r0} and two positive constants
ε, c such that if ε < εr then there exists γε > 0 s.t.

‖x(k)− x∗1‖ ≤ ce−γεk‖x0 − x∗1‖
for all x0 ∈ Bx

∗

0 .

Under the hypothesis of both the previous theorems, for
sufficiently small ε and initial points xi(0) sufficiently
close to the equilibrium point x∗, the dynamics can be
summarized in

(xi(k)− x∗) ≈ (xi(0)− x∗) e−ε
∑k−1

t=0
wi(t)

for all i ∈ V, i.e., all the local estimates show a linear
convergence to the global optimum, with rates depending
both on ε and on the number of local updates. As a con-
sequence, one would like to increase ε as much as possible,
however large ε might lead the system to instability if the



initial conditions are not sufficiently close to the global
optimum x∗.
Remark 8. In Alg. 1 we considered linear iterative average
consensus schemes for notational simplicity reasons. How-
ever, the proof of Prop. 6 does not rely on linear consensus
updates on a undirected graph. The only requirement is to
update the yi’s and zi’s with an algorithm that achieves
average consensus exponentially uniformly fast. Therefore
it is possible to exploit also convergence acceleration meth-
ods (see, e.g., Aysal et al. (2009)) or average consensus
algorithms for directed graphs ???.
Remark 9. The previous theorems are based on Assump-
tions 4 and 5, that are deterministic worst-case hypotheses
on the agent and edge activations processes. We conjecture
that substituting the previous deterministic assumptions
with randomized ones where i.i.d. agents and edge activa-
tions satisfy

E[wi(k)] ≥ w > 0, ∀i ∈ V,∀k ∈ N (16)

E[u(i,j)] ≥ u > 0, ∀(i, j) ∈ E ,∀k ∈ N (17)
for some positive constants w, u will lead to exponential
bounds holding almost surely.

6. NUMERICAL EXAMPLES

We compare the performance of the ANRC with the
asynchronous DSM summarized in Alg. 3.

Algorithm 3 DSM (Nedić and Ozdaglar, 2009)
(storage allocation and constraints on parameters)

1: x ∈ RN for k = 0, 1, . . .
2: ci = counter associated to agent i, i = 1, . . . , N

(c := [c1, . . . , cN ]T )
3: ρ ∈ R+

(initialization)
4: x(0) = 0, c(0) = 0

(main algorithm)
5: for k = 0, 1, . . . do

6: x(k + 1) = P (k)

[
x(k)− ρE(k)

f ′ (x(k))

c(k)

]
7: c(k + 1) = c(k) + E(k)1
8: end for

The aim is to show that, for the considered experiments,
the convergence rates of Alg. 2 are faster than the ones
of Alg. 3. We now present the quantities involved in the
simulations and the kind of experiments performed. Then
we describe the results in Sec. 6.1.

The tuning parameters of Algorithms 2 and Alg. 3 have
been manually selected in order to achieve the fastest
convergence rates possible while preventing divergence
effects. The empirically selected parameters are ε = 0.15
for the NRC and ρ = 100 for the DSM.

We also consider two particular graphs, both of N = 25
agents: the random geometric graph of Fig. 1 and a
complete one. We generate the local costs as

fi(x) = cie
aix + die

−bix, i = 1, . . . , N (18)
where ai, bi ∼ U [0, 0.2] and ci, di ∼ U [0, 1]. Some exam-
ples are shown in Fig. 1.

−20 0 20

0

2

4

xi

f i
(x
i)

Fig. 1. The random geometric graph used in the simula-
tions and some examples of local cost functions (18).

We use symmetric gossip for the consensus protocol as
in (15) with α = 0.5. The agents activation sequence is
obtained concatenating independent permutations of the
elements of V. Similarly, the edges activation sequence is
obtained concatenating independent permutations of the
elements of j ∈ Ni once a agent i is selected, so that Ass. 4
is ensured with B = Ndmax where dmax is the largest
agent degree of the network.

We then consider the following Monte-Carlo experiment.
RunM independent trials, where in each trial the network
and the set of cost functions (18) are fixed, x0 = 0, and
S(k), E(k), P (k)’s and generated based on the activation
strategy just described and are used in both Algorithms 2
and 3.

6.1 Experimental results

Let e(k) and v(k) be the average temporal evolution of the
mean error and of its dispersion, i.e.,

e(k) :=
1

MN

M∑
m=1

N∑
i=1

|xi,m(k)− x∗| (19)

v(k) :=
1

MN

M∑
m=1

N∑
i=1

(
|xi,m(k)− x∗| − e(k)

)2
. (20)

Fig. 3 plots the evolutions of the e(k)’s and v(k)’s rela-
tive to the outcomes of Algorithms 2 and 3 considering
respectively the graph of Fig. 1 and the complete graph
(some of the local costs are shown in Fig. 1). We can
notice that both Algorithms 2 and 3 always converge to
x∗, that the ANRC performs statistically better than the
DSM, and that the effect of the topology of the network
can play a crucial role on the convergence properties of
these algorithms (the intuition being that the faster the
consensus is, the faster the optimization converges).

200 400 600 800 1,000
0

0.2
0.4
0.6
0.8
1

k

x
1
(k
) NRC DSM x∗

Fig. 2. Temporal evolution of the local guess x1(k).

Fig. 2 considers instead the first Monte-Carlo simulation
used to generate Fig. 3-(b), and compares the temporal
evolutions of the local guess x1(k) for the ANRC and DSM,
supporting the claim that ANRC has faster convergence
rates capabilities than DSM.
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Fig. 3. Temporal evolution of the performance indicators
e(k) (solid lines) and e(k)± v(t) (dashed lines).

7. CONCLUSIONS AND FUTURE WORKS

We proposed an Asynchronous Newton-Raphson Consen-
sus (ANRC) algorithm, a second-order distributed convex
optimization technique with low computational and com-
munication requirements.

By proposing this extension we showed that NRC may
play an important role among the distributed optimization
algorithms. It has in fact a natural niche, composed by the
situations where the network topology is unknown and
possibly time-varying (for which ADMMs may suffer of
extremely complex implementations), and where the local
cost functions are sufficiently smooth (for which ANRCs
converge faster than DSMs due to the fact that the former
use also second-order information).

Remarkably, we showed that the proposed algorithm uses
average-consensus as a building block. Thus it naturally
supports the use of accelerated consensus techniques, that
can further improve its convergence properties.

Besides stating that NRC can be asynchronous and use
accelerated consensus strategies, this paper offers just pre-
liminary results. In fact it provides convergence proofs as-
suming deterministic communication protocols. Nonethe-
less numerical investigations lead to conjecture that the
algorithm preserves convergence properties for certain op-
portune stochastic protocols.

Future works, that need firstly to address this issue,
should also analyze the effects of numerical errors and
packet losses, the convergence speed under specific graphs
and local cost functions scenarios, and also extend the
technique to constrained problems.
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