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Abstract—We consider estimation of network cardinality by distributed
anonymous strategies relying on statistical inference methods. In partic-
ular, we focus on the relative Mean Square Error (MSE) of Maximum
Likelihood (ML) estimators based on either the maximum or the average
of M -dimensional vectors randomly generated at each node. In the case
of continuous probability distributions, we show that the relative MSE
achieved by the max-based strategy decreases as 1/M , independently
of the used distribution, while that of the average-based estimator
scales approximately as 2/M . We then introduce a novel strategy
based on the average of M -dimensional vectors locally generated from
Bernoulli random variables. In this case, the ML estimator, which is the
Least Common Multiple (LCM) of the denominators of the irreducible
fractions corresponding to the M elements of the average vector, leads
to an MSE which goes exponentially to zero as M increases. We then
discuss the effects of finite precision arithmetics in practical dynamic
implementations. Numerical experiments reveal that the MSE of the
strategy based on Bernoulli trials is two order of magnitude smaller
than that based on continuous random variables, at a price of one order
of magnitude slower convergence time.

Index Terms—Size estimation, sensor networks, distributed estimation,
privacy-preservation, number of nodes, number of agents, anonymous
networks, consensus.

I. INTRODUCTION

In the last decades we have been witnessing the success of
networked systems composed from hundreds to millions of electronic
devices or intelligent nodes, also called agents, that are capable of
interaction and cooperation. Examples are the mobile telephony, the
Internet, and more recently the wireless sensor networks and social
networks. As a consequence, there has been a shift from the design
of centralized architectures to decentralized and distributed ones
in order to improve scalability, robustness to failure and structural
flexibility. But beside performance and scalability, many distributed
architectures also need to ensure substantial security and privacy.
These peculiarities may be in conflict, since the preservation of the
anonymity of the nodes contrasts with the necessity of cooperation
to achieve a desired objective. Eventually, this kind of dichotomies
pose challenging questions in terms of architecture and algorithmic
design even for simple operations.

In this work we focus on the problem of computing the size of
a network, i.e., the number of nodes composing it, under privacy
constraints. The estimation of this quantity can be very important
for disparate examples: a first one is the detection of topological
changes, such as the disconnection of a part of the network into
non-connected subcomponents. An other is the estimation of how
many people in a group likes a specific item without explicitly
disclosing the opinion of each person. As a consequence, this problem
has attracted considerable research interests. The difficulty of this
problem strongly depends on the assumptions and features of the
network. In fact, if nodes are provided with unique IDs then the task
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can be accomplished with centralized or hierarchical algorithms in
finite time [1]. Differently, if IDs are not present or are not unique
to each node then these ID-based strategies cannot be used.

The framework analyzed in this work is exactly the one of the so-
called anonymous networks [2], where nodes are usually assumed
not to have unique IDs, but to be identical and to possess little
information on the topology, e.g., often just a bound on the network
size. This framework is often used to obtain computability proofs
for distributed algorithms, see, e.g., [3]. Concerning our estimation
problem, Cidon et al. [4], see also Hendrickx et al. [5], proved that
the size of an anonymous network cannot be estimated correctly with
probability one using algorithms that terminate in finite time and with
bounded computational complexity. It is instead possible to estimate
this quantity admitting the possibility of errors. The focus is then
on finding estimators having low errors probabilities and suitable
computational schemes.

In this work, we are interested in addressing the problem of size
estimation where nodes have bounded computational, memory and
bandwidth resources. Also we are interested in purely distributed
strategies where each node executes the same operations, i.e., where
there is no leader or overlay structures. Moreover, we assume that
each node has a very limited knowledge of the network topology as
in ad-hoc and mobile networks.

We notice that this size-estimation framework is important in
several distributed applications. For example in ad-hoc Wireless
Sensor Networks (WSNs) [6] pairing the initial number of nodes (that
might be known at the time of deployment) and consequent estimates
can be used to detect potential disconnections. Applications arise also
in distributed estimation contexts, e.g., [7], where the knowledge of
the number of measurements (or, equivalently, agents) helps to obtain
better estimation performance. Finally, indications on the size of the
network can be instrumental for coordination of robotic agents, that
may take different actions based on how many they are [8].

A. Literature review

The estimation of the size of a network, and more generally the
size of a group, using statistical inference is an old problem that
can be traced back at least to the German tank problem [9], i.e., the
problem of estimating the production of German tanks from the serial
numbers of the captured ones. Most of the strategies are based on
sampling a subset of the whole available information, an approach
that is motivated by the possible costs associated to querying the
whole network. A typical example is the estimation of network traffic
flow, which is usually computed from data packets that are randomly
sampled from the main stream [10].

An important family of such sampling methods is based on random
walk strategies [11], [12] which rely on passing a token through
the network to collect information each time it visits an agent. In
particular, in [13], two different approaches are proposed to estimate
the number of peers in network. The first is based on the return-time,
i.e., the number of steps made by the random walk of the token to
return to the sender. The second is based on the time-to-vanish, i.e.,
the number of steps required for a counter present in the token to
become zero: to connect the vanishing time with the network size,
the counter is decreased every time it is passed by a quantity that
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is (stochastically) proportional to the number of neighbors of the
receiving node. Statistical properties of the return-time and time-to-
vanish are then used to infer the network size.

Another approach within the class of sampling methods has been
proposed for networks of nodes provided with random IDs [14], [15].
For example, it is possible to map the random ID of each agent into
the real segment [0, 1]. Then, an agent interested in estimating the
network size asks who have its ID belonging to a certain interval
I ⊂ [0, 1]. Finally, the network size is inferred from the answer and
the size of I . We notice that the size of I dominates the (stochastic)
amount of information to be exchanged and the performance of the
algorithm.

A third strategy is based on the so-called capture-recapture strate-
gies, sometimes referred also as Lincoln-Petersen methods [16]. The
approach is to let a master disseminate a certain number of messages
called “seeds”, that are propagated through the network. The master
then queries a certain number of nodes asking whether they hold
a seed or not. From the number of seeds in the set of queried
nodes it is possible to estimate the size of the network [17]. These
capture-recapture methods are strongly connected to the estimation
of population totals through sampling of finite populations [18]
where S individuals are characterized by some weights yi from
which it is possible to define the population total τ :=

∑S
i=1 yi. A

classical estimation approach within this framework is then to select k
individuals from the whole set under the assumption that the selection
probabilities are pi, and then use the so-called Hansen-Hurwitz
estimator [19] τ̂ := 1

k

∑k
i=1

yi
pi

. In the network size estimation
problem yi = 1 and pi is the inverse of the quantity to be estimated. A
similar population total estimator is the so-called Horvitz-Thompson
estimator [20], defined as τ̂ :=

∑k
i=1

yi
πi

where πi is an suitable
modification of the previous pi’s, see, e.g., [21] for detailed insights.
We notice that capture-recapture methods have also strong links with
the so-called inverted birthday paradox. The direct birthday paradox
(or birthday problem) stems from the fact that in a group of 23
people the probability that two persons have the same birthday date is
approximatively 1

2
. The inverse problem is that, knowing how many

people have the same birthday, it is possible to estimate the size of
the group. Papers exploiting these ideas are, e.g., [22].

There are also specific approaches which leverage the peculiarities
of the environment where the network operates. For example, in [23]
underwater communications networks are studied: in this framework
it is necessary to avoid nodes interferences, thus the estimation
strategies let only a fraction of nodes to respond to queries. The
estimation of the network size is then performed based on the number
of received answers. Another ad-hoc strategy example is given by [24]
where it is shown that in Master/Slave ad-hoc networks random walks
strategies may perform better if they consider if tokens are sent by
masters or slaves. Finally, in practical applications sometimes the
size-estimation task is demanded to suitable ad-hoc devices rather
than to ad-hoc strategies. A typical approach in this context is to let
a mobile agent move and interrogate the static nodes with suitable
queries, as did, e.g., in [25], [26].

B. Contribution

The contribution of this work is twofold. The first is to extend
the results of [27], [28] which proposed a strategy, in the following
called Exponential-Maximum Strategy (EMS), that estimates the sum
of a set of numbers from the maximum of a set of exponentially
distributed random numbers. In particular, (i) we show that the size
estimator proposed in [28] is the Maximum Likelihood (ML) estima-
tor, (ii) we provide the closed form expression of the distribution of
this estimator, from which it is possible to compute exact confidence

intervals and all the statistical moments, (iii) we prove that, when
considering continuous random variables, the distribution of this
estimator is independent of the distribution of the generated random
numbers, (iv) we show that the relative Mean Square Error (MSE)
scales as 1/M where M is the number of trials locally generated
by each node, (v) we analyze the sensitivity of the estimator to
quantization errors. We notice that similar alternative strategies have
been proposed recently, see, e.g., [29], [30], [31], which are shown
to provide smaller estimation errors. Nonetheless all preserve the
same 1/M scaling in terms of relative MSE. We also show that
using continuous random variables as before but substituting the
computation of maxima with the computation of averages leads to
ML estimators with relative MSEs that scale approximately as 2/M .

Our second contribution sprouts then from substituting continuous
random variables with discrete ones. We propose in fact a novel
strategy, based on the average of M -dimensional vectors whose com-
ponents are Bernoulli trials independently generated by the various
nodes. We refer to this strategy as the Bernoulli-Average Strategy
(BAS). We show that in this case the ML estimate of the network
size is the Least Common Multiple (LCM) of the denominators of the
irreducible fractions corresponding to the M elements of the average
vector. Incidentally, the BAS is strongly connected with the Newton-
Pepys problem [32], and its MSE depends on the distribution of the
totatives of the network size, i.e., on how the integers that are smaller
than the network size and co-prime to it are distributed in N+ [33].
Exploiting this key fact we show that the relative MSE of the BAS
decreases exponentially in M , a feature that is, is to the best of our
knowledge, unique in the available literature.

We also address the problem of finite precision arithmetics in
practical implementations of both strategies. We thus show that BAS
is insensitive to quantization errors as long as the quantization is
sufficiently fine.

Finally, we provide realistic numerical simulations based on dy-
namic strategies for wireless sensor networks. In particular, we
explore asynchronous broadcast communications protocols that are
guaranteed to converge in finite time with probability one: for the
EMS we consider the implementation proposed in [28], while for
the BAS we consider the ratio average consensus proposed in [34].
The simulations then confirm that BAS outperforms EMS in terms
of MSE of at least two order of magnitudes, at the price of a slower
convergence rate.

The structure of the paper is the following. In Section II we
formulate the problem in mathematical terms, then propose the EMS
and BAS algorithms in Sections III and IV. Then we consider the
effects of finite precision arithmetics in Section V and propose
practical implementations (among with Monte Carlo (MC) charac-
terizations) in Section VI. Finally we summarize in Section VII the
main differences between the estimators and draw some concluding
remarks.

Remark 1. The results obtained in the paper are coherent with the
following impossibility result from [4], see also [5]:

Theorem 2 (Thm. 9 [4]). There exists no algorithm that is able
to compute the number of nodes in an anonymous network, that
terminates with the correct result for every finite execution with
probability one, and that has a bounded average bit complexity (i.e.,
s.t. the average number of bits used by the algorithm is bounded).

The coherency is given by the fact that all the strategies that we
will propose are estimators whose probabilities of error are not zero,
even if they can be made arbitrarily close to zero.
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II. PROBLEM FORMULATION

We model a network with a graph G = {V, E}, where V =
{1, . . . , S} is the set of nodes composing the network and E ⊆ V×V
is the set of the communication links between the nodes. We assume
that the graph G is undirected, i.e., (i, j) ∈ E ⇔ (j, i) ∈ E , and not
time-varying. Hereafter we moreover assume S to be a deterministic
but unknown parameter.

In our framework we impose the distributed estimation strategy
to rely only on local communications with limited coordination
among nodes. Through the paper we will use a strategy based on
the following 3-steps paradigm: 1) nodes locally generate a set of
random data, 2) then they distributedly compute a function that takes
as inputs the locally generated data, 3) finally, from the output of
this computation, nodes locally estimate S = |V|. More formally, we
will consider the following strategy:

1) each node i = 1, . . . , S locally generates M ∈ N+ i.i.d. random
values yi,m ∈ R, m = 1, . . . ,M , using a probability density
p (·) that is identical among all nodes and that does not depend
neither on the actual number of nodes S nor on the number of
generated values M . Each node is thus endowed with the vector
yi = [yi,1, yi,2, . . . , yi,M ]T ;

2) nodes distributedly compute a M -dimensional vector f =
[f1, f2, . . . , fM ]T ∈ RM starting from the various local
M -dimensional vectors yi = [yi,1, yi,2, . . . , yi,M ]T . More
precisely, each fm is computed from the set {y1,m, . . . , yS,m}
using an suitable function F : RS → R, i.e.,

fm = F (y1,m, . . . , yS,m) (1)

where F can be computed through local communication and
simple operations. Some examples for (1) are: fm is the arith-
metic mean of {y1,m, . . . , yS,m}, its maximum, its minimum
or its variance (see, e.g., [35]). In the following we will use
superscripts like “ave” and “max” to denote particular instances
of F and fm. We notice that F (·) does not depend on the index
m;

3) since the joint probability of the values fm’s depends on S, each
agent can locally compute an estimate Ŝ of S using f ∈ RM via
statistical inference. This is done through a function Ŝ : RM →
R generally indicated with

Ŝ := Ψ (f1, . . . , fM ) . (2)

Notice that while S is deterministic, Ŝ is a random variable.
This general strategy is illustrated in Figure 1, where local and
distributed operations are highlighted with suitable gray rectangles.

To compare different choices of the parameters p (·), F (·) and
Ψ (·), it is necessary to define appropriate measures of perfor-
mance. A typical choice is given by the Mean Square Error (MSE),

E
[(
S − Ŝ

)2
]

, where Ŝ is a generic estimator of S.

Consider then that the estimators that we consider depend on the
generating p.d.f. p (·), the consensus function F and the estimator
Ψ. Ideally we thus would like to minimize the MSE over all the
possible choices of the triple (p, F,Ψ) over all the values that S
may assume, but this is a formidable infinite dimensional problem.
In this work we focus on special classes of the triple (p, F,Ψ) and
study the behavior of the MSE in these classes, to get insights on
the optimization problem for the general case. More specifically, we
constrain the analysis to the case where Ψ is a Maximum Likelihood
(ML) estimator. In general, ML estimators are inadmissible in the
MSE sense (see, e.g., the so-called James-Stein estimator [36]) and
thus suboptimal. Nonetheless, they have two favorable properties:
a) they are consistent and thus asymptotically optimal, and b) they

local distributed
local

F

F

F

y1,1
y2,1

yS,1

y1,2
y2,2

yS,2
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y2,M
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p (·) Ψ Ŝ

f1

f2

fM

Figure 1: Graphical representation of the estimation strategy for the
number of sensors S when the various yi,m are generated using a
probability distribution p(·).

lead to close form solutions on which it is possible to speculate and
highlight tradeoffs between computational complexity and estimation
performance.

III. ESTIMATION USING THE MAXIMUM FUNCTION

Let F be the maximum, i.e.,

fmax
m = Fmax (y1,m, . . . , yS,m) = max

i
{yi,m} , (3)

and consider for now the following assumptions, removed in the
following:

Assumption 3. There are no quantization effects, i.e., numbers are
represented by an unlimited number of bits.

Assumption 4. Consensus algorithms are performed using an infinite
number of consensus steps.

Assumption 5. Communication among nodes is reliable, i.e., there
is no packet loss.

For the purpose of this section, we recall two basic results on order
statistics [37]. Let S to be the number of elements of the sample
y1,m, . . . , yS,m, and f

(k)
m to be its k-th order statistic. Let every

yi,m be i.i.d. with p (a) its probability density evaluated in a, and
with P (a) its probability distribution evaluated in a, i.e., P (a) =∫ a
−∞ p (x) dx. Then

p
f
(k)
m

(a) =
S!

(k − 1)!(S − k)!
P (a)k−1 (1− P (a))S−k p (a) .

(4)
Consider now data yi,m to be uniformly distributed, i.e., yi,m ∼
U [0, 1]. The probability density of the (duplicate-insensitive) S-th
order statistic fmax

m is given by (4) and is equal to p (fmax
m ; S) =

S
(
fmax
m

)S−1 for all m. Since the various fmax
m ’s are independent

p (fmax
1 , . . . fmax

M ; S) =

M∏

m=1

p (fmax
m ; S) = SM

M∏

m=1

(
fmax
m

)S−1
.

(5)
It follows that the ML estimator for S is given by

Ŝ = ΨML (fmax
1 , . . . , fmax

M )
:= arg maxS p (fmax

1 , . . . , fmax
M ; S)

=

(
1

M

M∑

m=1

−log (fmax
m )

)−1 . (6)
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Defining z := − log (fmax
m ), it is easy to see that z is an exponential

random variable with rate S, i.e.,

p (z ; S) =

{
Se−Sz if z ≥ 0
0 otherwise.

(7)

Recall also that the sum of M i.i.d. exponential random variables
with rate S is a Gamma random variable with shape M and scale
1
S

.
(
Ŝ
)−1

is thus a scaled version of this sum of exponentials, thus
MS

Ŝ
∼ Gamma (M, 1), that implies Ŝ

MS
∼ Inv −Gamma (M, 1).

This translates into

p
(
Ŝ ; S,M

)
= Γ (M)−1 1

Ŝ

(
MS

Ŝ

)M
exp

(
−MS

Ŝ

)
(8)

from which it follows, for M > 2,

E
[
Ŝ ; M

]
=

SM

M − 1
, var

(
Ŝ ; M

)
= S2 M2

(M − 1)2(M − 2)
,

(9)

E

[(
S − Ŝ
S

)2

; M

]
=

M2 +M − 2

(M − 1)2(M − 2)
. (10)

These results can be summarized in the following proposition:

Proposition 6. Assume yi,m ∼ U [0, 1] and consider the max-
consensus scenario, i.e., F = Fmax. Then the ML estimator is given
by

Ŝ = ΨML (fmax
1 , . . . , fmax

M ) =

(
1

M

M∑

m=1

−log (fmax
m )

)−1

(11)

and, using Landau notation,

lim
M→+∞

E
[
Ŝ ; S,M

]
= S

E

[(
S − Ŝ
S

)2

; S,M

]
=

1

M
+ o

(
1

M

)
for M � 1 .

The relative MSE in this case thus scales as 1/M . This is similar
to the MSE achievable by means of random walks strategies, see,
e.g., [13]. However the strategy presented here may be preferred in
some practical situations. In fact, in our framework estimates are
full parallel, i.e., for each time each agent has a local estimate that
becomes more and more accurate as the time passes. In random walk
strategies, instead, one must first obtain an estimate with a random
walk and then relay this information to all other nodes.

A reasonable question is then whether there are different random
generation distributions p(·) other than the uniform one that can lead
to better performance. Interestingly, the answer to this question is
negative as shown in the following proposition, which shows an
equivalence, in terms of MSE, of all the random variables whose
cumulative distribution P (·) is absolutely continuous:

Proposition 7. Let P be the class of random variables whose
cumulative distribution P (·) is absolutely continuous and let p (·)
be the corresponding probability density. Let also Ŝ(p, Fmax,Ψ) be
a generic estimator as in (2).

Then

min
Ψ,p∈P

E
[(
S − Ŝ(p, Fmax,Ψ)

)2
]

=

min
Ψ

E
[(
S − Ŝ(U [0, 1] , Fmax,Ψ)

)2
]
.

(12)

Proof. Let x be a random variable with probability density px (·) ∈
P and cumulative distribution Px(·). Letting y = Px(x) it fol-
lows that y ∼ U [0, 1] since P [y ≤ a] = P [Px(x) ≤ a] = a.
Moreover there exists a map P−1

x (·) such that x = P−1
x (y)

almost surely. Now, let Ψx be any generic function used to
compute Ŝx = Ψx(fmax

1 , . . . , fmax
M ), where fmax

m = maxi{xi,m}
and xi,m ∼ px(·). Let also f̃max

m = maxi{x̃i,m} with
x̃i,m ∼ U [0, 1] and define Ŝy = Ψy

(
f̃max

1 , . . . , f̃max
M

)
:=

Ψx

(
P−1
x

(
f̃max

1

)
, . . . , P−1

x

(
f̃max
M

))
. Then, using the monotonicity

property of the max-function Fmax and the fact that the proba-
bility densities of fmax

m and P−1
x (f̃max

m ) differ at most on a set
whose Lebesgue measure is zero, it is immediate to see that
Ŝx and Ŝy have the same probability distribution over the space
where S may assume its values. Hence, P

(
Ŝ(px, Fmax,Ψx)

)
=

P
(
Ŝ(U [0, 1] , Fmax,Ψy)

)
. Since this holds for any Ψx, it must hold

also for the minimizer of (12) and this concludes the proof.
This proposition basically states that there is no advantage in using

random number generators different from the uniform distribution in
terms of achievable performance for a large class of distributions.
For example, this class includes all the commonly used distributions
such as the exponential distribution proposed in [28], the Gaussian
distribution, and the beta distribution.

Another interesting property of the maximum function is that if
the goal is to estimate the inverse of the number of nodes S−1, then
the ML estimator coincide with the Minimum Variance Unbiased
Estimator (MVUE) estimator:

Proposition 8. Let p = U [0, 1] and Ŝ−1 = Φ (fmax
1 , . . . , fmax

m ),
where the fmax

m ’s are obtained under a max-consensus scenario as
in (3). Then the MVUE ΦMV for S−1 is its ML estimator, i.e.,

ΦMV := arg minΦ E
[(
S−1 − Ŝ−1

)2

; M,S

]

= arg maxS−1 p (fmax
1 , . . . , fmax

M ; S) =: ΦML .
s.t. E [Φ] = S−1

Moreover

Ŝ−1 = ΦMV (fmax
1 , . . . , fmax

M ) =
1

M

M∑

m=1

−log (fmax
m )

and

E
[
Ŝ−1 ; M,S

]
= S−1 ,

E

[(
S−1 − Ŝ−1

S−1

)2

; M,S

]
= var

(
Ŝ−1

S−1
; M,S

)
=

1

M
.

Proof. (11) indicates that ΦML = 1

Ŝ
= 1

M

∑M
m=1−log (fmax

m ) and

Ŝ−1 ∼ Gamma
(
M, (MS)−1

)
. Thus E

[
Ŝ−1 ; M,S

]
= S−1, i.e.,

the ML estimator is unbiased, and var
(
Ŝ−1

)
= S−2

M
. We then show

that the estimator is efficient, since it achieves the Cramér-Rao lower
bound, and thus that it is Minimum Variance. From the likelihood (5)
it follows that the Fisher Information for S is

I(S) := E
[
− ∂2

∂S2
log p (f ave

1 , . . . , f ave
M ; S,M)

]
=
M

S2
.

Considering then the Fisher Information reparametrization rule, i.e.,
if the transformation S = µ(S′) is differentiable then the Fisher

Information for S′ is I
(
µ(S′)

)(∂µ(S′)

∂S′

)2

, it follows that the Fisher

Information for S′ = S−1 is M
S−2 . Thus var

(
Ŝ−1

)
=
(
I(S−1)

)−1,
i.e., the ML estimator is efficient and thus MVUE.
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A. Discussion

We now comment on the results presented above. The first ob-
servation is that the MV estimator Ŝ−1 = Φ (f1, . . . , fM ) can be
decomposed into simpler blocks. In fact, all the quantities fm are
passed through the same nonlinear function ψ : R→ R transforming
each fm into an unbiased estimate Ŝ−1

m := ψ (fm) , m = 1, . . . ,M
of S−1. More specifically, under the max-consensus we have ψ (·) =
−log (·).

Now, since the fm are uncorrelated, also the Ŝ−1
m are uncorrelated.

This implies that, to obtain the global estimate Ŝ−1 using all the
available information, the various Ŝ−1

m have simply to be combined
through an arithmetic mean, i.e.,

Ŝ−1 =
1

M

M∑

m=1

Ŝ−1
m .

Since the ML estimator for the number of nodes Ŝ is simply Ŝ =
1

Ŝ−1
, then the estimate for S can be immediately obtained.

The second observation is that no prior information about S has
been exploited. Indeed, we have just assumed S ∈ R+ and not S ∈
N+ which is some sort of prior information. A possible generalization
is to consider a Maximum A Posteriori (MAP) estimator if prior
information about S is available, which of course may provide better
estimates. This generalization has been considered in [38] but it is
not reported here in the interest of space.

The third observation is that the probability distributions not
considered in Proposition 7 are relative to discrete or mixed random
variables. However, estimators as in (2) based on discrete or mixed
random variables and with F = Fmax are not going to provide better
MSE scalings. E.g., consider for simplicity the case where the yi,m’s
are Bernoulli and i.i.d., i.e.,

yi,m =

{
1 with probability 1− θ
0 with probability θ

m = 1, . . . ,M (13)

for an opportune θ, so that, applying Fmax,

fm =

{
1 with probability 1− θS
0 with probability θS

m = 1, . . . ,M. (14)

Also this case, similar to [39], has an ML estimator of S

Ŝ = logθ

(
1−

∑M
m=1 fm

M

)
(15)

that is characterized by a relative MSE scaling as β/M , where the
constant β depends also on the choice of the Bernoulli parameter θ.

In the next section we will then show that using the average
function it is possible to overcome this limit, and achieve estimators
with relative MSEs scaling exponentially in M .

IV. ESTIMATION USING THE AVERAGE FUNCTION

Consider now the consensus function F to be the average, i.e.,

f ave
m = Fave (y1,m, . . . , yS,m) =

1

S

S∑

i=1

yi,m m = 1, . . . ,M .

(16)
Similarly to the previous section, we start with ML strategies based
on continuous density distributions and show that, as in the Fmax case,
the relative MSE scales proportionally with 1/M . We then move to
discrete distributions and show that, differently from the Fmax case,
using Bernoulli distributions leads to drastic improvements in the
MSE scalings.

A. Continuous distributions

Consider again Assumptions 3, 4 and 5, and a zero-mean normal
distribution for the generation of the data yi,m, i.e., yi,m ∼ N (0, 1),
implying thus f ave

m ∼ N
(
0, S−1

)
for all m. With the same arguments

used in Section III it is possible to obtain the following result:

Proposition 9. Assume yi,m ∼ N (0, 1) and consider the average-
consensus scenario, i.e., F = Fave. Then the ML estimator is given
by

Ŝ = ΨML (f ave
1 , . . . , f ave

M ) =

(
1

M

M∑

m=1

(
f ave
m

)2
)−1

(17)

and, using Landau notation,

lim
M→+∞

E
[
Ŝ ; S,M

]
= S;

E

[(
S − Ŝ
S

)2

; S,M

]
=

2

M
+ o

(
1

M

)
for M � 1 .

This strategy thus provides an MSE worse than the one obtained
using strategy (6), based on max consensus. Since the distributed
computation of averages is also much slower than computing max-
ima, using Fave does not seem a sound choice. In fact, one could
be tempted to state that also in this case it is not possible to
do much better than the 1/M scaling, at least asymptotically in
S. In fact, the probability density pfm(·) of the average fm is
pfm(·) = p(·) ? · · · ? p(·) where ? indicates the convolution
operator, applied thus S times.

Assume then p(·) to be zero-mean and unit-variance. Since pfm(·)
converges to N

(
0, S−1

)
in distribution as S goes to infinity, under

reasonable regularity assumptions one would expect the performance
to be equivalent of that obtained by starting with a Gaussian density.
Actually this reasoning does not hold in general, since if p(·) is
very different from a Gaussian distribution and if S is small then
the central limit approximation does not hold. Indeed, as shown
below, using a discrete distribution with a weak prior information,
namely the knowledge of a bound on the size S ≤ Smax, it is
possible to construct an estimator whose relative MSE decreases to
zero exponentially fast with the number of experiments M .

B. Bernoulli trials: M = 1

Consider then the case where the yi,m are Bernoulli random variables.
In this section, in addition to Assumptions 3, 4, 5, we also include
the following:

Assumption 10. There exists an upper bound on the number of nodes
that actually constitutes the network, i.e., Smax ∈ N+ s.t. S ≤ Smax

is known.

We start analyzing the case M = 1, i.e., when each agent generates
only one scalar. Assume then that each agent i locally generates
yi ∼ B (p) i.i.d., where B (p) indicates the Bernoulli distribution
with success probability p. It follows that

S∑

i=1

yi ∼ Bin (S, p)

where Bin (S, p) is the binomial distribution of S experiments with
success probability p. Let

f ave :=
1

S

S∑

i=1

yi (18)

be the result of an average-consensus process that nodes per-
form on the various yi under assumptions 3, 4 and 5. Being
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(∑S
i=1 yi

)
∈ {0, . . . , S}, it follows that it must be f aveS ∈

{0, . . . , S}. In other words, with S unknown, f ave must belong to
the finite set

FSmax :=

{
k

S
s.t. k = 0, . . . , S, and S = 1, . . . , Smax

}
. (19)

Once S is fixed, f ave corresponds to the exact fraction of nodes that
generated ones. In mathematical terms, the probability mass function
for f ave is

P [f ave ; S, p] =





(
S

f aveS

)
pf

aveS (1− p)S−f aveS

if f aveS ∈ N+, f ave ∈ [0, 1]

0 otherwise

(20)

with the interpretation that P [f ave ; S, p] 6= 0 if and only if there
exists a network of S nodes compatible with the observed data, i.e.,
s.t. exactly f aveS of those generated yi = 1 while the rest generated
yi = 0.

If f ave is observed and p is known, (20) represents the likelihood
as a function of S. Let us define the set If ave of S for which the
likelihood is strictly positive, i.e.,

If ave := {S |P [f ave ; S, p] > 0} = {S | f aveS ∈ N+} =

=
{
S = `S | ` ∈ N+, f

aveS = k and (k, S) are coprime
}
.

(21)
Notice that for any average f ave generated according to the random-
ized strategy proposed in this section, the variable S = S (f ave)
introduced by definition (21) is unique and does not depend on p.
Moreover S ∈ If , therefore the true number of nodes S must be
a multiple of S. Figure 2 shows a graphical representation of an
instance of the likelihood (20). In the figure the ML estimate is S.

0 5 10 15 20 25

0

0.1

0.2

S

P
[f

=
0
.8

;
S
,p

=
0
.5
]

S

Figure 2: Graphical representation of the likelihood given in (20) for
f ave = 0.8, p = 0.5. In this case, S = 5.

This is not a consequence of the particular realizations of the yi,m.
Indeed, it turns out that S always corresponds to the ML estimator
for S, as formally stated in the following proposition:

Proposition 11. Given the likelihood in (20), the ML estimator is
given by

Ŝ(f ave; p) := arg max
S∈Ifave

P [f ave ; S, p] = min If ave = S (f ave)

(22)
for every p ∈ [0, 1]. Moreover, it cannot overestimate the true number
of nodes S and is also biased, i.e.,

Ŝ(f ave; p) ≤ S, E
[
Ŝ(f ave; p)

]
< S for S ≥ 2 ,

where the expectation is w.r.t. the r.v. f ave.

Proof. In this proof we will indicate the coprime representation k̂ =
f aveŜ with k = fS for ease of notation. We want to prove that

P [f ; S, p] ≥ P [f ; νS, p], i.e., that
(
S

k

)
pk(1− p)S−k ≥

(
νS

νk

)
p(νk)(1− p)(νS−νk) (23)

for every ν ∈ N and p ∈ [0, 1]. Exploiting

max
p∈[0,1]

p(νk)(1− p)(νS−νk) =
k(νk) (S − k)(νS−νk)

S(νS)

(23) can be rewritten as
(
νS

νk

)

(
S

k

) k(ν−1)k (S − k)(ν−1)(S−k)

S(ν−1)S
≤ 1 . (24)

We show now that (24) holds true by induction on S.
• Base case: it is immediate to check that (24) holds true for every

k = S.
• Inductive step: assume (24) holds true for S, k. Since

(
ν(S + 1)

νk

)

(
S + 1

k

) =

(
νS

νk

)

(
S

k

) ·

ν−1∏

j=1

(νS + j)

ν−1∏

j=1

(νS − νk + j)

,

k(ν−1)k (S + 1− k)(ν−1)(S+1−k)

(S + 1)(ν−1)(S+1)
=
k(ν−1)k (S − k)(ν−1)(S−k)

S(ν−1)S
·4

with

4 :=

(
S − k + 1

S + 1

)(ν−1)(
S − k + 1

S − k

)(ν−1)(S−k)(
S

S + 1

)(ν−1)S

,

to prove the inductive step it is sufficient to prove that
ν−1∏

j=1

(νS + j)

ν−1∏

j=1

(νS − νk + j)

· 4 ≤ 1 .

Introduce the change of variable x := S − k, x = 0 ⇔ k = S,
x = S ⇔ k = 0. Then (IV-B) can be rewritten as

g(x) :=

ν−1∏

j=1

(νS+j)

ν−1∏

j=1

(νx+j)

(
x+1

S+1

)(ν−1)(
1+

1

x

)(ν−1)x(
S

S+1

)(ν−1)S

.

Since g(S) = 1, to prove the inductive step it is sufficient to show
that g(x) is non-decreasing in x ∈ [0, S]. To prove this, we consider
h(x) := log (g(x)) where g(x) is g(x) deprived of the terms not
depending on x, i.e.,

h(x) = −
ν−1∑

j=1

log (νx+ j)+(ν−1)(x+1)+(ν−1)xlog

(
1 +

1

x

)
.

Considering its derivatives

h′(x) = −
ν−1∑

j=1

1

νx+ j
+ (ν − 1)log

(
1 +

1

x

)

h′′(x) = −
ν−1∑

j=1

ν

(νx+ j)2
− (ν − 1)

1

x(x+ 1)
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we observe that h′(0) = +∞, h′(+∞) = 0, h′′(x) ≤ 0 for all x.
Being thus h′(x) ≥ 0 for all x, h(x) is monotonically increasing.
Thus g(x) is monotonically increasing, eventually implying the
inductive step to hold true.

Proposition 11 assures that Ŝ is the ML estimator for S inde-
pendently of the Bernoulli parameter p, i.e., Ŝ = S(f ave). This is
coherent with Occam’s razor interpretations of (22), i.e., with the fact
that if f is the measured fraction of nodes that generated ones, then
Ŝ is the smallest (“simplest”) and hence the most probable network
that could have generated that fraction f ave. This is indeed consistent
with the fact that the ML estimator sometimes underestimates the true
number of nodes S. The following corollary can be derived using the
same techniques of Proposition 11.

Corollary 12.

P
[
f ave ; νŜ, p

]
≥ P

[
f ave ; κνŜ, p

]
∀κ, ν ∈ N, p ∈ [0, 1] .

Interestingly, corollary 12 is connected to the so called Newton-
Pepys problem, an old question about if it is more probable to have
at least one six when throwing six dice or to have at least two sixes
when throwing twelve dice [32].

We notice that the map Ŝ = S(f ave) is extremely nonlinear, as it
can be seen in Figure 3. Without assumption 10, this map is defined
over the positive rational numbers in [0, 1], i.e., f ave ∈ Q+ ∩ [0, 1].
Under assumption 10, Ŝ is defined over the set FSmax defined in (19).

The procedure just described provides an algorithm to compute the
ML estimator under the average-consensus scenario when samples are
generated from independent Bernoulli trials of success probability
p. Although the ML estimator does not depend explicitly on p, its
performance does. Since p is a design variable we are interested in
optimizing it. First, we need to define a performance index. In this
context, a sensible choice is the estimator error probability

α(p, S) := P
[
Ŝ 6= S ; S, p

]
= P [f /∈ FS ; S, p] (25)

where

FS := {f ave | f aveS = k with (k, S) coprime} .
The right hand side of (25) follows from the observation that
Ŝ = S(f ave) = S if and only if f aveS = k and the pair (k, S)
is coprime. This provides a numerical procedure for computing
the estimator error probability α(p, S): first, compute the set FS
which does not depend on p, and then compute the error probability
P [f ave /∈ FS ; S, p] exploiting (20).

Since S is not known, also error probability α(p, S) is not known
a priori, therefore a classical frequentists approach is to consider the
worst-case scenario by computing the largest error over all possible
S ≤ Smax, i.e., to consider

α∗(p, Smax) := max
S∈{1,...,Smax}

α(p, S) = max
S∈{1,...,Smax}

P
[
Ŝ 6= S ; S, p

]

and then to compute one of the minimizers p∗ of this error probability
and its corresponding error probability, i.e.,

p∗(Smax) := arg min
p∈[0,1/2]

α∗(p, Smax) (26)

α(Smax) := α∗ (p∗(Smax), Smax) . (27)

In (27) we used the fact that α(p, S) is symmetric with respect
to the point p = 1/2 and therefore the minimization can be
restricted to the interval [0, 1/2]. Although analytical expressions for
α(p, S), α∗(p, Smax), α(Smax) and p∗(Smax) are not available, some
considerations can be extrapolated from results on the distribution
of the totatives numbers. More precisely, the totatives of a positive

integer S are the positive integers that are relatively prime to S and
not bigger than S. The totient function, usually denoted with φ(S),
indicates the number of totatives of S. In our case φ(S) = |FS |, i.e.,
φ(S) indicates also the cardinality of the set FS . The function φ(S)
is usually called the Euler phi-function and it has been well studied
in the context of Number Theory [40, p. 15] [33], [41, Chap. 8]. As
shown in [33], for high S, the distribution of the totatives of S in
{1, . . . , S} is approximatively uniform. Moreover the number of the
totatives of S can be bounded exploiting [41, Thm. 8.7]

φ(S) >
S

eγ log logS + 3
log log S

(28)

where γ ' 0.577 is the so-called Euler-Mascheroni constant.
From (28) it is possible to obtain, by numerical inspection, φ(S)/S >
0.15 for S ≤ 1010, i.e., for all the networks with meaningful size.
With numerical computations it is also possible to show that, for the
same range of S’s, if p ∈ (0.25, 0.75) then P [f ave ∈ FS ; S, p] >
0.15. This implies that, for these S’s, α(p, S) < 0.85 uniformly in S
and p ∈ (0.25, 0.75). An example of this fact is shown in Figure 4.

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

p

α
(p
,S

) S = 9

S = 10

S = 11

S = 12

max
S∈{1,...,30}

α(p, S)

ᾱ(30)

p∗

Figure 4: α(p, S) = P
[
Ŝ 6= S ; p

]
as a function of p for various

values of S, and α∗(p, 30) = maxS∈{1,...,30} α(p, S). The star
indicates the optimal point (p∗, α(30)) ≈ (0.33, 0.72). We can notice
that if S is prime, e.g., S = 11, then α(p, S) can be close to zero.
This is due to the fact that, for prime S’s, φ(S) = S − 2. We notice
that φ(S) is particularly low for S whose prime factors are just 2
and 3.

As it can be seen in Figure 4, the choice for p ∈ (0.25, 0.75)
not very critical. In fact, for p in this interval, the gap between the
maxima and minima of maxS α(p, S) is small. The important point is
that the worst probability of error, which is a non-decreasing function
of Smax, is bounded away from one for reasonably large Smax.

In Figure 5 we plot how α∗
(

1
2
, Smax

)
and α(Smax) depend on

Smax. As noticed before, both the quantities stay always below 0.85,
with α(Smax) being just a little better than α∗

(
1
2
, Smax

)
, specially for

large S. The analytical connection between φ(Smax) and changes of
p∗ and α∗ are beyond the scope of this paper and will be considered
in future extensions.

C. Bernoulli trials: M > 1

When each agent generates a single sample yi ∼ B (p), the
error probability P

[
Ŝ 6= S ; p

]
might be equal to α(Smax), which

is fairly high, and thus estimation performance can be extremely
poor. In this section we see how, acting on M , performance can
achieve good rates. Assume then that nodes generate M i.i.d.
values yi,1, . . . , yi,M ∼ B (p) from which they compute f ave

m :=
1

S

∑

i

yi,m,m = 1, . . . ,M by means of average-consensus strate-

gies. We define f ave := [f ave
1 , . . . , f ave

M ]T . The ML estimator Ŝ can



8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
5

10
15
20

f

Ŝ
=

S̄
(f

)

Figure 3: ML estimator Ŝ as a function of f for Smax = 20.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Smax

p∗(Smax)

ᾱ(Smax)

α∗(0.5, Smax)

Figure 5: Dependency of p∗(Smax), α(Smax) and α∗(0.5, Smax) on
Smax. Circles on the abscissas axis indicate for which Smax the former
quantities change. We notice that the quantities vary only when the
increase of Smax implies to consider an S having very few totatives,
i.e., a particularly low φ(S).

be computed as follows: the independence between the various yi,m
implies that the likelihood can be written as

P [f ave ; S, p] =

M∏

m=1

P [f ave
m ; S, p] (29)

which is non zero only if S belongs to the intersection of the
hypotheses spaces If ave

m
, i.e., S has non-zero likelihood only if S ∈⋂M

m=1 If ave
m

. This observation indirectly suggests how to compute the
ML estimator Ŝ in the more general scenario of multiple experiments
M following the same Occam’s razor interpretation of Section IV-B:

Proposition 13. Given the likelihood in (29), then the ML estimator
is given by

Ŝ(f ave) := arg max
S∈⋂M

m=1 Ifave
m

P [f ave ; S, p]

= min

(
M⋂

m=1

If ave
m

)
= LCM

(
S(f ave

1 ), . . . , S(f ave
M )
)

(30)
for every p ∈ [0, 1], where LCM (·) is the least common multiple
operator. Moreover, it cannot overestimate the true number of nodes
S and is also biased, i.e.,

Ŝ(f ave) ≤ S, Ef ave

[
Ŝ(f ave)

]
< S for S ≥ 2 .

Proof. To prove Proposition 13 it must be shown that

P
[
f ave

1 , . . . , f ave
M ; Ŝ, p

]
≥ P

[
f ave

1 , . . . , f ave
M ; κŜ, p

]
(31)

for all κ ∈ N and p ∈ [0, 1]. It follows immediately that Ŝ =
νmŜm for an suitable νm ∈ N. Inequality (31) can then be proved
considering that

P
[
f ave

1 , . . . , f ave
M ; Ŝ, p

]
=

M∏

m=1

P
[
f ave
m ; νmŜm, p

]
,

P
[
f ave

1 , . . . , f ave
M ; κŜ, p

]
=

M∏

m=1

P
[
f ave
m ; κνmŜm, p

]
,

and considering that corollary 12 can be used for element-by-element
inequalities so that

M∏

m=1

P
[
f ave
m ; νmŜm, p

]
≥

M∏

m=1

P
[
f ave
m ; κνmŜm, p

]
.

The computation of the optimal probability p to minimize the error
probability of the novel ML estimator is even more difficult than the
one of the scenario M = 1, however some bounds can be obtained
based on the analysis of the previous section. In fact notice that, if
S(f ave

m ) is defined in conformity to (22), then

S̃(f ave) := max
(

min
m
If ave

m

)
= max

{
S(f ave

1 ), . . . , S(f ave
M )
}

is a valid estimator that has the property S̃(f ave) ≤ Ŝ(f ave) ≤ S.
This implies that the error probability for the two estimators satisfy

P
[
Ŝ(f ave) 6= S ; S, p

]
≤ P

[
S̃(f ave) 6= S ; S, p

]
.

For example, if S = 6 and M = 2, then the event f ave
1 = 1

2
, f ave

2 = 1
3

leads to Ŝ(2, 3) = LCM (2, 3) = S and S̃(2, 3) = max{2, 3} = 3 6=
S.

Since

P
[
S̃(f ave) 6= S ; S, p

]
= P

[
S(f ave

m ) 6= S ∀m ; S, p
]

=
(
P
[
S(f ave

m ) 6= S ; S, p
])M

= (α(p, S))M

the error probability of the estimator Ŝ exponentially decreases to
zero with the number of experiments M . This observation is the
basis to obtain the following bounds for the probability of error and
the MSE of the ML estimator:

Proposition 14. Let yi,1, . . . , yi,M ∼ B (p∗), with p∗ = p∗(Smax)
and α = α (Smax) defined in (27). Then

(1− p∗)SmaxM ≤ P
[
Ŝ(f ave) 6= S ; p∗,M

]
≤ (α)M (32)

(1− p∗)SmaxM ≤ E
[(
Ŝ(f ave)− S

)2
; p∗,M

]
≤ (Smax − 1)2 (α)M .

(33)

Proof. • case P
[
Ŝ 6= S ; p∗,M

]
≤ (α∗)M : a necessary condition

for the event Ŝ 6= S is Ŝm 6= S for all m, thus

P
[
Ŝ 6= S ; p∗,M

]
≤ P

[
Ŝ1 6= S, . . . , ŜM 6= S ; p∗

]
.

Being moreover the various Ŝm’s independent, we obtain

P
[
Ŝ 6= S ; p∗,M

]
≤

M∏

m=1

P
[
Ŝm 6= S ; p∗

]
≤ (α∗)M .

• case (1− p∗)SmaxM ≤ P
[
Ŝ 6= S ; p∗,M

]
: In general, f ave

m =

0 ∀m⇒ Ŝ 6= S. Being this a sufficient condition,

(1− p∗)SM = P [f ave
1 = 0, . . . , f ave

M = 0] ≤ P
[
Ŝ 6= S ; p∗,M

]
.
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The case is then proved considering that, ∀S ∈ [1, Smax],
(1− p∗)SmaxM ≤ (1− p∗)SM .

• case E
[(
Ŝ − S

)2

; p∗,M

]
≤ (Smax − 1)2 (α∗)M : derives im-

mediately from the inequality

E
[(
Ŝ − S

)2

; p∗,M

]
≤ (Smax − 1)2 P

[
Ŝ 6= S ; p∗,M

]
.

• case (1− p∗)SmaxM ≤ E
[(
Ŝ − S

)2

; p∗,M

]
: derives immedi-

ately from the inequality

P
[
Ŝ 6= S ; p∗,M

]
≤ E

[(
Ŝ − S

)2

; p∗,M

]
.

Due to the nature of α and p∗, the upper bounds in (32) and (33) are
pessimistic. For example, as shown in Figure 6, P

[
Ŝ 6= S ; p∗,M

]

appears to decay to zero faster than what indicated in Proposition 14.
The interpretation is the following: (α∗)M represents the worst-case
probability of the event Ŝm 6= S for all m, that is a necessary
but not sufficient condition for the event Ŝ 6= S. As soon as M
increases, the number of the cases where Ŝ = S even if Ŝm 6= S
increases, and this leads to discrepancies between (α∗)M and the
actual P

[
Ŝ 6= S ; p∗,M

]
. The same reasonings can be applied to

E
[(
Ŝ − S

)2

; p∗,M

]
.

In any case (33) implies directly that the relative MSE for the
current estimator scales at worst as αM . Eventually this scaling is
thus intrinsically different from the ones of the estimators based on
max consensus described in Section III, proportional to 1/M .

1 2 3 4 5

1 · 10−18

1 · 10−12

1 · 10−6

1

M

P
[ Ŝ

(f
)
6=
S

;
p
∗ ,
M
]

(ᾱ)M

(1− p∗)SmaxM

S = 9

S = 11

S = 12

S = 19

Figure 6: P
[
Ŝ 6= S ; p∗,M

]
as a function of M and for various

values of S, for the case Smax = 20, and its lower and upper bounds
described in (32).

V. EFFECTS OF FINITE PRECISION ARITHMETICS

In practical implementations Assumptions 3, 4 and 5 will surely
be violated, as mentioned at the end of Section II. Here we analyze
the effects of additive errors that model the effects of quantization
issues. We start by noticing that, based on the specific scenarios and
adopted algorithms, such errors can be estimated a-priori (see, e.g.,
[42], [43], [44], [45]). We then assume that, if fi,m, m = 1, . . . ,M ,
i = 1, . . . , S are the actual quantities computed by the various nodes,
then

fi,m = fm + ∆i,m m = 1, . . . ,M, i = 1, . . . , S (34)

where the ∆i,m’s is the quantization error. Under uniform quantiza-
tion, for example, these errors are bounded by an opportune ∆max,
i.e., |∆i,m| < ∆max.

A. Max-consensus case with uniform distribution

Consider that the Jacobian of transformation (6) is

∇Ŝ (f1, . . . , fM ) =

[
1

f1
. . .

1

fM

]
1∑M

m=1−log (fm)
Ŝ (f1, . . . , fM ) .

Exploiting then model (34) and using a first-order Taylor expansion
of Ŝ around the error-free values f1, . . . , fM it follows that

Ŝ (fi,1, . . . , fi,M )− Ŝ (f1, . . . , fM )

Ŝ (f1, . . . , fM )
≈
∑M
m=1 ∆i,mf

−1
m∑M

m=1−log (fm)
. (35)

In the worst case expressed by bound |∆i,m| < ∆max it follows that
∣∣∣∣∣
∆Ŝ

Ŝ

∣∣∣∣∣ . ∆max

∑M
m=1 f

−1
m∑M

m=1−log (fm)
.

This worst case scenario can thus be approximatively analyzed
considering the behavior of the random variables Ŝ (f1, . . . , fM ) and

∑M
m=1 f

−1
m∑M

m=1−log (fm)
=

1
M

∑M
m=1 f

−1
m

1
M

∑M
m=1−log (fm)

.

Recalling the results of Section III, −log (fm) is an exponential
random variable with rate S, while the density of fm is given
by p (fm ; S) = SfS−1

m , implying that E
[
f−1
m ; S

]
= S

S−1
.

Exploiting (9), (10) and the i.i.d.-ness of the −log (fm)’s and of
the f−1

m ’s, it holds that

Ŝ (f1, . . . , fM )
P−−−−−−→

M→+∞
S

1

M

M∑

m=1

−log (fm)
P−−−−−−→

M→+∞
E [−log (fm) ; S] =

1

S

1

M

M∑

m=1

f−1
m

P−−−−−−→
M→+∞

E
[
f−1
m ; S

]
=

S

S − 1

where the arrows indicate convergence in probability. Thus, in the
max-case scenario and for M sufficiently large, the (approximated)
worst case bound reads as follows∣∣∣∣∣

∆Ŝ

Ŝ

∣∣∣∣∣ . ∆max
S2

S − 1
≈ S∆max . (36)

which describes again a smooth relation between the relative estima-
tion error and the upper bounds on the computational errors.

B. Average-consensus case with Bernoulli distribution

In this case it is possible to prove the following:

Proposition 15. Let the actually computed averages fi,m be mapped
into an element fqi,m of the alphabet FSmax via the relation fqi,m :=
arg minf∈FSmax

|f − fi,m| . where FSmax was defined in (19). If

∆max <
1

2Smax (Smax − 1)
then fqi,m = fm .

Proof. Given |∆i,m| < ∆max, it holds that

|fm − fi,m| = |fm − (1 + δi,m)fm −∆i,m| ≤ ∆max .

The proposition then is proved as soon as ∆max is assured to be at
most half of the minimal distance between the elements in FSmax .
Given definition (19), the latter quantity can be in general expressed
as ∣∣∣∣

k1

S1
− k2

S2

∣∣∣∣ =

∣∣∣∣
S2k1 − S1k2

S1S2

∣∣∣∣

with S1, S2 ∈ 1, . . . , Smax, k1 ∈ 1, . . . , S1, and k2 ∈ 1, . . . , S2.
The smallest distance corresponds thus to the choice S1 = Smax,
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S2 = Smax − 1, k1 = k2 = 1, thus to (Smax (Smax − 1))−1, and this
eventually proves the proposition.

The intuition behind the previous proposition is that if ∆max is
sufficiently small then the measured average fi,m is mapped into
the correct element fqi,m, while if not then fi,m can be mapped
incorrectly. The consequences are the following: let the estimator
Ŝ to be defined on the various fqi,m rather than fqi,m, i.e., let
Ŝ = Ŝ

(
fqi,1, . . . , f

q
i,M

)
rather than Ŝ = Ŝ (fi,1, . . . , fi,M ). If now

∆max is sufficiently small then Ŝ is exactly the same Ŝ that would be
obtained in absence of errors. Vice versa, if ∆max is sufficiently big,
then the difference between the computed Ŝ and the Ŝ that would be
obtained in absence of errors may literally explode, due the strong
discontinuous nature of the map of Figure 3 and of the operator
LCM (·) in (30).

The strategy can nonetheless be implemented in real networks.
As an illustrative example, assume for simplicity the quantization of
the yi,m to be uniform in [0, 1] and the convergence to the average
values to be up to the size of the quantization bins (see, e.g., [45]).
Given Proposition (15), for a network of 200 nodes the quantization
error must be at most 1.25 · 10−5, that can be achieved using just
17 bits per each yi,m, while for a network of 1000 nodes then the
quantization error must be at most 5 · 10−7, that can be achieved
using just 21 bits.

VI. NUMERICAL EXPERIMENTS

We now propose practical implementation procedures that do not
rely on Assumption 4. We then evaluate their performance with
opportune Monte Carlo (MC) analyses.

A. Implementation

We focus on two specific asynchronous broadcast max and average
consensus schemes suitable for Wireless Sensor Networks (WSNs),
summarized in Algorithms 1 and 2 (the latter inspired by [34]). Notice
that we do not extensively analyze the multitude of average consensus
algorithms present in literature, being this beyond the purpose of the
paper. We recall that we model the network with the graph G =
{V, E}, where V = {1, . . . , S} is the set of nodes and E ⊆ V ×V is
the set of the communication links (G is assumed to be undirected,
i.e., (i, j) ∈ E ⇔ (j, i) ∈ E). We also let Vi be the set of neighbors
of node i (i /∈ Vi), and di := |Vi| its cardinality.

Algorithm 1 Maximum consensus

1: (initialization) for i = 1, . . . , S, m = 1, . . . ,M let fmax
i,m(0) =

yi,m ∼ U [0, 1] i.i.d.
2: for t = 1, 2, . . . do
3: (node extraction) select i ∈ V (i.i.d. and with uniform

extraction probability)
4: for j ∈ Vi do
5: (update of main variables: neighbors) for m = 1, . . . ,M

do
fmax
j,m(t+ 1) = max

{
fmax
i,m(t), fmax

j,m(t)
}

(37)

6: for j /∈ Vi do
7: (update of main variables: remaining nodes) for m =

1, . . . ,M do
fmax
j,m(t+ 1) = fmax

j,m(t) (38)

Notice that, assuming strongly connected communication networks
and finely quantized data, the uniform random node selection process
ensures finite time convergence in probability of the local variable of

Algorithm 2 Average consensus

1: (initialization) for i = 1, . . . , S, m = 1, . . . ,M let f̃ ave
i,m(0) =

yi,m ∼ B (p) i.i.d., zi,m(0) = 1, f ave
i,m(0) =

f̃ ave
i,m(0)

zi,m(0)

2: for t = 1, 2, . . . do
3: (node extraction) select i ∈ V (i.i.d. and with uniform

extraction probability)
4: (update of auxiliary variables: extracted node) for m =

1, . . . ,M do

f̃ ave
i,m(t+ 1) =

1

1 + di
f̃ ave
i,m(t) +

∑

j∈Vi

1

1 + dj
f̃ ave
j,m(t) (39)

zi,m(t+ 1) =
1

1 + di
zi,m(t) +

∑

j∈Vi

1

1 + dj
zj,m(t) (40)

5: for j ∈ Vi do
6: (update of auxiliary variables: neighbors) for m =

1, . . . ,M do

f̃ ave
j,m(t+ 1) =

1

1 + di
f̃ ave
i,m(t) +

dj
1 + dj

f̃ ave
j,m(t) (41)

zi,m(t+ 1) =
1

1 + di
zi,m(t) +

dj
1 + dj

zj,m(t) (42)

7: for j /∈ Vi do
8: (update of auxiliary variables: remaining nodes) for m =

1, . . . ,M do

f̃ ave
j,m(t+ 1) = f̃ ave

j,m(t) zi,m(t+ 1) = zi,m(t) (43)

9: (update of main variables: all the nodes) for j = 1, . . . , S,
m = 1, . . . ,M do

f ave
j,m(t+ 1) =

f̃ ave
j,m(t+ 1)

zj,m(t+ 1)
(44)

both Algorithms (see [28] for Algorithm 1 and [46] for Algorithm 2),
i.e.,

P
[
∃τ | fmax

i,m(t) = fmax
m , ∀t ≥ τ

]
= 1,

P
[
∃τ | f ave

i,m(t) = f ave
m ,∀t ≥ τ

]
= 1,∀i,∀m

where fmax
m = maxi {yi,m} and f ave

m = 1
S

∑S
i=1 yi,m.

It is then convenient to redefine following local dynamic estima-
tors:

ŜUMi (t) :=

(
1

M

M∑

m=1

−log
(
fmax
i,m(t)

)
)−1

ŜBAi (t) := LCM
(
S
(
f ave
i,1(t)

)
, . . . , S

(
f ave
i,M (t)

))

where S(·) is defined in (21) and where the superscripts UM and
BA indicate that the Uniform-Maximum strategy and the Bernoulli-
Average strategy, respectively. Since the arguments of these estima-
tors converge in finite time in probability, the also the estimators
inherit finite time convergence in probability. More formally,

P
[
∃τ
∣∣ ŜUMi (t) = ΨML (fmax

1 , . . . , fmax
M ) , ∀t ≥ τ

]
= 1

P
[
∃τ
∣∣ ŜBAi (t) = Ŝ (f ave) , ∀t ≥ τ

]
= 1, ∀i

where the right hand side of the equalities correspond to the asymp-
totic estimators defined in (11) and (30), respectively.
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B. Stopping criteria

The dynamic implementation of the estimators requires the defini-
tion of opportune stopping criteria. We notice that the approaches that
can be followed are mainly two: the first is to estimate an a-priori
stopping time τ that guarantees reaching consensus with an arbitrarily
large probability. For example, [28] and [42] provide bounds for such
stopping times for the max-consensus and the average-consensus,
respectively, that depend on the graph connectivity properties such
as the conductance or the spectral gap. However, these values are
either not known in advance or, even if known, they lead to very
conservative bounds with little practical use.

The second approach is to define a-posteriori stopping times based
on the observed evolution of the local estimates Ŝi(t). Considering
that the quantized consensus implementations described in this sec-
tion eventually converge in a finite number of steps, we propose the
following heuristic, which exhaustive analysis is beyond the scope
of this paper: each node i counts how many times it performed a
communication step (thus either step 3 or 5 in Algorithm 1 or step 4
or 6 in Algorithm 2) and then stops (i.e., become not selectable in
step 3) if the local estimate Ŝi(t) has not changed in a certain user-
defined number of steps T . We notice that it is meaningful to let this
interval depend on the current estimate, e.g., be of

⌈
TmŜi(t) + Tq

⌉

communication steps, with Tm and Tq some user-defined quantities.
Nonetheless in our experiments this dependency was in general not
incrementing the convergence performance.

C. Monte Carlo analysis

We consider random geometric graphs of S = 40 nodes obtained
by uniform placement in the [0, 1] × [0, 1] square, with nodes with
uniform communication radius ρ = 0.3 (a realization is shown in
Figure 7a). All transmitted data and local variables are encoded into
16 bits arithmetics. We also assume the knowledge of Smax = 80 as
an upper bound on the size of the network, and we choose T = 10
as the stopping parameter for both Algorithm 2 and Algorithm 1.

Figures 7b and 7c show respectively the evolution of a typical
realization of some of the local estimates ŜUMi (t) and ŜBAi (t) for the
network depicted in Figure 7a, as a function of the number of effective
communication steps of each node, as defined in Section VI-B. As
expected, the estimates obtained with the max-consensus based strat-
egy are monotonically increasing, and in general do not converge to
the true size S. Differently, the ones obtained with the Bernoulli-trials
based strategy show a peculiar behavior: before reaching consensus,
the f ave

i,m(t)’s might be associated to fractions whose denominators are
not factors of S. Due to the multiplicative effects of the underlying
Least Common Multiple (LCM) operation in (30), ŜBAi (t) might
thus temporarily be much bigger than both S and Smax. The situation
ŜBAi (t) > Smax, a clear sign that the consensus has not yet converged,
is thus handled in our simulations by putting ŜBAi (t) = 0. The time
evolution shows that initially ŜBAi (t) = 0, but as soon as the local
estimators provide a feasible output, i.e., 0 < ŜBAi (t) ≤ Smax, then
this is the exact network size S in most of the realizations.

Figures 8a and 8c plot the empirical distributions of the conver-
gence times of the estimators ŜUMi (t) and ŜBAi (t) obtained from
1000 MC experiments with M = 1 and M = 5. We notice that
the convergence times do not strongly depend on M , and that the
max-consensus based method requires much fewer communication
steps than the Bernoulli-trials based estimator, typically an order
of magnitude smaller. The latter algorithm compensates this slower
convergence, inherited by the convergence properties of the average-
consensus algorithm, with an extremely higher accuracy of the esti-
mates. Consider in fact Figures (8b) and (8d), showing the empirical
distributions of the estimates ŜUMi and ŜBAi at the stopping times

obtained from 1000 MC experiments with M = 1, 5. Here it is
immediate to notice how the estimates ŜUMi have a large variance
for both M = 1, 5, while ŜBAi for M = 5 provided the exact network
size S = 40 for 97.3% of the times.

To highlight this different behavior of the estimation error we plot
in Figure 9 the relative MSEs of the two estimators for various M ’s
(1000 MC runs for each M ). As expected, the MSE of the Bernoulli-
Average Strategy (BAS) estimator decays exponentially with M ,
while the one of the max-consensus based estimator scales as 1/M .
We also notice that ŜBAi always outperforms ŜUMi of at least two
orders of magnitude.

2 4 6 8 10
10−4

10−1

102

M

E
[ (

Ŝ
i
−
S

S

) 2
]

ŜUM
i

ŜBA
i

Figure 9: Comparison of the empirical MSEs of the estimators ŜUMi
and ŜBAi for different values of M and 1000 MC runs per M . The
plot does not show the MSE of ŜBAi for M = 10, since in our MC
simulations this estimator always detected correctly S.

VII. CONCLUSIONS AND FUTURE WORKS

In this work we characterized two strategies for estimating the
size of anonymous networks, based on first generating a set of i.i.d.
random numbers, then computing either their maximum or average,
and then exploiting the statistical correlation between these quantities
and the network size.

We characterized the intrinsic differences between the maximum
and the average consensus strategies. More precisely, we showed that
for the maximum consensus strategy the variance of the relative
estimation error is intrinsically proportional to the inverse of the
number of samples and is independent of the particular density chosen
to generate the data. For the average consensus strategy we instead
showed that when using discrete distributions, more specifically
Bernoulli trials, the probability of returning a wrong value of the
network size goes to zero exponentially with the number of samples.
However, this desirable property comes at the price of a slower
convergence, since distributed algorithms for computing averages
are intrinsically slower than distributed algorithms for computing
maxima.

It has been also shown how these distinct estimation strategies
exhibit drastically different sensitivities to numerical errors. In fact,
when the random numbers are realizations of continuous random vari-
ables the sensitivity is proportional to the amplitude of the numerical
errors. Instead, when the random numbers follow Bernoulli trials,
the estimation process is either insensible or completely unreliable,
depending again on the amplitude of the numerical errors.

This work leads to numerous plausible future research directions.
One is the implementation of fast average consensus algorithms such
the diffusive methods to reduce the converge time of the Bernoulli-
Average strategy. Another is the application of the algorithms for
real time tracking, network size change detection, and more generally
network topology discovery applications. For instance, the algorithms
here proposed could be used to check if a certain network is more
likely to be circulant than a star by looking at how and how fast the
estimates have been obtained.
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(a) Random geometric graph of S = 40
nodes in [0, 1] × [0, 1] and with communi-
cation radius ρ = 0.3.
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(b) Evolution of the local estimates ŜUMi (t)
(i = 1, . . . , 5) for M = 5.
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(c) Evolution of the local estimates ŜBAi (t)
(i = 1, . . . , 5) for M = 5.

Figure 7: Example of a single Monte-Carlo run with M = 5.
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ŜBA
i (t)
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(a) Frequencies of the convergence times of the estimators
ŜUMi and ŜBAi for M = 1 and 1000 MC runs (times S = 40).
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(b) Frequencies the asymptotic estimates ŜUMi and ŜBAi
for M = 1 and 1000 MC runs.
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(c) Frequencies of the convergence times of the estimators
ŜUMi and ŜBAi for M = 5 and 1000 MC runs (times S = 40).
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Ŝ

fr
eq

ue
nc

y
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(d) Frequencies the asymptotic estimates ŜUMi and ŜBAi for
M = 5 and 1000 MC runs.

Figure 8: Comparison of the asymptotic properties of the estimators ŜUMi (t) and ŜBAi (t) for different values of M .
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