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Abstract—Women affected by pain during penetrative sexual
intercourse are often treated using fixed-size vaginal dilators
that are regularly perceived as uncomfortable and leading to
premature treatment drop-outs. These dilators could be improved
by making them adaptive, i.e., able to exert dynamically different
pressures on the vaginal duct to simultaneously guarantee com-
fort levels and achieve the medical dilation objectives. Implement-
ing feedback control would then benefit from models that connect
the patients’ comfort levels with their experienced physiological
stimuli.

Here we address the problem of data-driven quantitative
modelling of pain/pleasure self-assessments obtained through
medical trials. More precisely, we consider time-series records
of Pelvic Floor Muscles (PFM) pressure, vaginal dilation, and
pain/pleasure evaluations, and model the relations among these
quantities using statistical analysis tools. Besides this, we also ad-
dress the important issue of the individualization of these models:
different persons may respond differently, but these variations
may sometimes be so small that it may be beneficial to learn from
several individuals simultaneously. We here numerically validate
the previous claim by verifying that clustering patients in groups
may lead, from a data-driven point of view, to models with a
significantly improved statistical performance.

Index Terms—dyspareunia, modelling of psychological systems,
support vector classification, clustering

I. INTRODUCTION

PAIN during penetrative sexual intercourse for prolonged
periods of time as a consequence of Genito-pelvic pain /

penetration disorders (GPPPD) or other conditions is estimated
to affect 30-40% of women at least once in their life [1,
Chap. 2]. The pain can be caused by physiological causes (e.g.,
complications after cervix cancer surgeries, vaginal radiother-
apies, Mayer-Rokitansky-Küster-Hauser syndromes, male-to-
female gender confirmation surgeries) and psychosocial causes
(e.g., traumatic sexual experiences) [1, Chap. 3]. Observations
from practitioners indicate also that psychological mecha-
nisms (e.g., anxiety, catastrophising pain and avoidance of
sexual intimacy) and interpersonal factors (e.g., hostile partner
responses, relationship conflict) may maintain, prolong and
exacerbate the suffering.
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Treatments may combine psychological (e.g., Cognitive
Behavioral Therapies (CBTs)) and physiological treatments,
the latter potentially including stretching the vaginal duct,
desensitizing the vestibulum, and relaxing the pelvic floor
muscles [2]–[4] through vaginal dilators. However, since these
therapies are perceived as invasive, lengthy and uncomfortable,
patients often delay, avoid or stop treatment and hence prolong
their suffering [5].

Improving these treatments is however non-trivial: on the
one hand patients shall feel sufficiently comfortable to avoid
dropping out. On the other hand there is the need to dilate
the duct and stimulate the pelvic floor as much as possible
to achieve the medical target while making the treatment
as temporally short as possible. A primary issue is thus to
design individualized optimal dilation strategies that account
for this intrinsic tradeoff and that can be executed using
vaginal dilators that are adaptable in size.

Several adaptable dilators have been developed: The Vaginal
Pressure Inducer (VPI), developed at Maastricht University
hospital, consists of a flexible balloon whose size can be
gradually adjusted by inflating it with warm water [6]. Another
example is the Milli dilator [7], a dildo that can expand
its width (controlled by buttons on its base) and hence re-
sponds to the need for a more gradual and gentle stretching
of the duct. These solutions, however, do not implement
feedback concepts, i.e., do not adapt the dilation patterns to
the patient’s response starting from measurements, references,
and –potentially– quantitative models connecting stimuli with
physiological and psychological outcomes. In contrast, feed-
back control may simultaneously accommodate a patient’s
physiological response and medical needs while preventing
pain and anxiety. An expected positive side effect is increased
motivation due to increasing the patients’ self-efficacy.

To be able to compute individual and adaptive vaginal dila-
tion patterns, there is the need for individualized quantitative
models that describe how patients will most likely respond
to vaginal dilation and possibly other stimuli in conjunction
with measurements of physiological and subjective signals.
Ideally, these models should enable not only implementing
model-based control strategies, but also interpretation by both
medical personnel and patients.

Existing models in the literature: The medical literature
comprises several physiological models that analyze some
cause-effect implications (e.g., [2], [8]–[17]). But all these
models describe static cause-effect relationships and lack
describing the dynamics of the processes. Towards closing
this gap, data-driven dynamical models of female response
to vaginal dilation were derived in [18], where time-series of



pelvic floor pressure collected from healthy patients during
ad-hoc medical trials were used to investigate which type of
dynamical models can accurately describe the recorded data.
[18], however, focused on physiological responses, leaving the
psychological side completely unexplored.

Only few models the psychological or subjective response
of women to vaginal dilation are available. The relations
between sexual arousal and sexual desire seem to be complex
and the existing literature orbits around the Basson’s non-
linear model of the female sexual response [19], that states
that the sexual desire is affected by several psychological
inputs (e.g., satisfaction with the relationship, self-image,
previous sexual experiences), so that the desire is not just
governed by biological factors. Indeed in this model the
goal of sexual activity for women is not necessarily orgasm,
but rather personal satisfaction, which can manifest itself as
physical satisfaction (orgasm) and/or emotional satisfaction
(e.g., a feeling of intimacy and connection with a partner).
As for how the sexual desire relates to sexual arousal, some
psychological factors (e.g., desire for increased emotional
closeness and intimacy, etc.) may trigger a predisposition to
participate in sexual activity. Sexual arousal may be triggered
by conversations, music, reading or viewing erotic materials,
or direct stimulation, which may lead to an increasing desire to
continue the activity. Nonetheless, some other psychological
factors may work as turn-off factors and diminish (up to
vanishing) experienced sexual arousal and desire.

The alternative Masters & Johnson’s sexual response
model [20] distinguishes between various phases (“excitement
/ arousal”, “plateau”, “orgasm” and “resolution”): it describes
the physiological responses of the female body in all these
phases, but does not include quantitative descriptions of the
dynamics of the system. Both Basson’s and Masters & John-
son’s models moreover focus on sexual responses of healthy
women that do not suffer from pain during penetrative sexual
intercourses. Hence, variables such as perceived fear or pain
are not included.

For now the unique dynamical model describing the inter-
play of several key variables seems to be published in [21]
and consists of two distinct loops, named the Circle Of Fear
(COF) and Circle Of Pleasure (COP). The COF describes the
facts that: i) pelvic muscle activity before or at the beginning of
penetration may lead to pain; ii) fear induces muscular tension;
and iii) inducing positive erotic stimuli may reduce fear.
The COP instead relies on the Basson’s model and describes
that i) the physiological arousal increases if the patient is
sexually stimulated and subjectively aroused; ii) the subjective
arousal increases with sexually stimulation and pleasurable
physical sensations; and iii) physiological arousal affects the
subjective arousal indirectly via the intermediate state variable
of physical pleasure. The model in [21] is solely based on
known cause-effect relationships from the medical literature,
informed guesses from experts in the field, and the objective of
striking a balance between accuracy and simplicity to enable
mathematical analysis. However, the model in [21] is neither
directly based on specific medical tests nor measurement data,
and is hence not validated from field experiments.

Contributions: Towards obtaining individualized quanti-
tative models of the psychological responses to vaginal dilation
stimuli, we analyze data-driven learning strategies based on
experimental data recorded at Maastricht university hospital
(described in Section II). We thus: i) cast the learning problem
using a Support Vector (SV) framework that enables imple-
menting dilation-control strategies and interpretations by med-
ical personnel and patients, analyze the predictive performance
of Support Vector Machine (SVM) on the available data, and
draw some practical conclusions from these performance; ii)
consider that, as often happens, we face a big constraint on
the amount of available data. We thus consider the additional
problem of understanding if (and how) grouping different
patients into clusters and learning the models from different
“clustered” datasets may help improving the learning process.

Organization of the manuscript: After describing the
medical data set in Section II, we summarize the modelling
choices in Section III. Sections IV and V contain the strategies
for modelling individual patients and for extending these
models to groups of patients and our quantitative results.
Conclusions are drawn in Section VI.

II. MEDICAL DATA SET

This study is based on medical data recorded at Maastricht
University Hospital and described in more detail in [6].
The data include participants’ responses to a gradual vaginal
dilation that is forced by the VPI, an inflatable balloon to be
inserted at the introitus as graphically summarized in Figure 1.
Patients undergoing the trial were also watching sequences of
5-minutes long erotic or non-erotic movies in the (tentatively)
neutral environment.

The study included 36 women without sexual problems,
aged between 18 and 45 years, in a steady heterosexual
relationship for at least 3 months, and being sexually active in-
cluding coitus. Each individual participated in single sessions
where, while using the VPI and watching movies sequences,
they recorded their perceived level of comfort/pleasure on
a scale from 0 to 100 with an opportune slider. As soon
as the pressure felt unbearable, participants could end the
experiment and force the deflation of the balloon by pressing

Figure 1. Picture of the VPI (left) and schematic description of its usage
(right). A pump can fill the balloon with water at body temperature; the
length of the inflated area is up to 6 cm. When filled, the balloon gives an
outward omnidirectional pressure to the surrounding tissues.
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Figure 2. Example of a typical dataset of time-series from one of the patients
in the considered clinical trial. The six movie clips described above are in
this case started at minutes 3, 13, 26, 35, 43 and 52. The VPI was inserted in
the duct during the whole trial but inflated only while watching the movies
(but the second one). The original sampling rate of the system is 10Hz; these
raw signals were then downsampled to 1Hz in our following derivations.

an emergency button. Sessions started with the presentation
of a neutral acclimatization movie with pressure induction
using the VPI. This was followed by one high-arousal sexual
movie without inducing vaginal pressure, then followed by
four randomized movies with inducing pressure (one high-
arousal and sexual, one low-arousal and sexual, one high-
arousal and nonsexual, and one neutral movie), see Figure 2.

Since the pressure is measured at the pump, it should
be considered an aggregated indication of the force exerted
by the Pelvic Floor Muscles (PFM). Due to the mechanics
of the system, the pressure data are subject to noise and
measurement inaccuracies. Since the perceived pleasure was
measured by a simple slider during the experiments, they are
also subject to noise. First of all, it is visible in the data
that women sometimes did not change their pleasure levels
for several minutes followed by sometimes rapid changes
or ending the inflation of the balloon. It is hence assumed
that they sometimes simply "forgot" to update their pleasure
levels through the slider. Further, one must keep in mind
that a subjective measure such as the perceived pleasure also
greatly depends on the individual expectation and definition of
pleasurable sensation (aspects that constitute a further human-
induced measurement noise). Statistically modelling this noise
in an accurate way is probably a formidably complex problem,
and thus we leave this issue for future work. In this paper we
then do not take these considerations explicitly into account,
and derive our models choosing the simple model structures
indicated in the following Section III.

III. THE MODELLING PROBLEM

Our focus is to obtain data-driven models that can describe
and predict changes in pleasure levels in women as a response
to vaginal dilation stimuli. While dynamical models such as
Hammerstein-Wiener are found to be suitable to describe
physiological models in several applications (see [18], [22],
[23]), as hinted in the previous section our datasets for
modelling the pleasure levels contains recorded pleasure data

that appear to be heavily affected by human-induced noise.
We thus avoid considering dynamics and formulate a function
estimation problem, i.e., assume that there is a static map
between the inputs and the output.

In details, the inputs of the system will be the measurable
physiological quantities (i.e., the volume of the dilator, denoted
with uvolume, the pressure of the pelvic floor muscles, upressure,
and their time derivatives). The output will be the subjectively
assessed (and typically non-measured) pleasantness level of
the treatment, ypleasure. Before identifying maps of the type
ypleasure = ψ (uvolume, upressure) there is the need to discuss the
structure of the model. To this purpose, visually inspecting
Figure 2 we notice that there exist:

• positive and negative jumps in the measured plea-
sure level ypleasure, i.e., sudden increases or decreases (above
a chosen threshold ȳpleasure) indicating that the subject has
been experiencing something pleasurable or unpleasant that
motivated or reminded her to report this;

• continuations, i.e., periods where users do not change
the perceived pleasure level ypleasure. Note that the available
information does not allow to differentiate between possible
reasons for such “continuations”: e.g., the subjects may be
experiencing changes that are too small to be worth recording,
or simply forget to update their indications;

• stops, i.e., situations where the patients press an emer-
gency stop button to indicate that the experienced pressure or
other sensations were considered unbearable. “Stops” are in a
sense the limit case of “negative jumps”.
Intuitively, high volumes, pressures, and positive derivatives of
these signals should increase the likelihood that the user will
press the stop button or set a negative jump in ypleasure. Letting
u(t−T : t) indicate a signal u in the time window [t−T, t], this
intuition says that if there is a “stop” event happening at time
ta and a “continuation” happening at time tb, then the norms of
upressure(ta −T : ta), u̇pressure(ta −T : ta), uvolume(ta −T : ta)
and u̇volume(ta − T : ta) should be statistically higher than
the norms of upressure(tb − T : tb), u̇pressure(tb − T : tb),
uvolume(tb − T : tb) and u̇volume(tb − T : tb) for an opportune
(and to be determined from the data) window length T whose
physical meaning is a particular type of human reaction
time. As Figure 3 shows, the collected datasets confirm this
intuition, indicating that there are zones of volume, pressure
and their derivatives that are clearly associated to specific
events.

Recall then that the original and foreseen control problem
is to design uvolume, upressure, u̇volume and u̇pressure so that i)
the user does not experience feelings considered unbearable
(i.e., avoid stop events), and ii) to minimize/avoid unpleasant
experiences (i.e., avoid negative jumps events). Thus, the
modelling problem is not to find a model for ypleasure, i.e., a ψ
s.t. ypleasure = ψ (uvolume, upressure), but rather to find a model
that can predict positive and negative jumps, continuations and
stops. In other words, we cast the modelling problem as finding
a φ s.t.

y =φ (uvolume, upressure) , with
y ∈{pos. jump, continuation, neg. jump, stop} . (1)
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Figure 3. Illustration of the features corresponding to the time-series signals
shown in Figure 2 (due to space limitations we omit plotting the couples
uvolume-u̇volume and u̇pressure-u̇volume). In our experiments we empirically
determined the time window T = 10 seconds and the threshold ȳpleasure = 2
by manually minimizing the Frobenius norm of the cross classification matrix
M defined in the following Section V.

Following the intuition developed above, this problem corre-
sponds to finding partitions of the features space, a problem
that can be cast naturally as a Support Vector Classification
(SVC) problem.

IV. INDIVIDUAL MODELS OF THE PATIENTS REACTIONS

Assume the availability of P individual time-series datasets
of P women (denoted, for simplicity, with the IDs 1, . . . , P )
as, e.g., the one in Figure 2. Given the features defined
in Section III, for each p ∈ {1, . . . , P} it is possible to
transform the associated time-series dataset into a features-
oriented dataset Dp similar to the one represented in Figure 3.
For each p ∈ {1, . . . , P} we can moreover divide Dp into
a training set Dtrain

p and a test set Dtest
p . In our setup, Dtrain

p

corresponds to the periods relative to the third and fourth
movie, and Dtest

p corresponds to the last two movies. The
first two movies are disregarded since they correspond to an
acclimatisation period. Given Dtrain

p we can train an individual
SVC machine φp(·). Each classifier φp(·) can then be applied
on any dataset Dtrain

j , which corresponds to testing how well
the model of patient p can classify the features of patient
j. Testing all possible combinations of p and j leads to a
cross-Classification Error (CE) matrix Mtrain whose (p, j)-th
element is the classification error when using φp to classify
Dtrain

j :

Mtrain :

Dtrain
1 Dtrain

2 · · · Dtrain
P

φ1 CE11 CE12 · · · CE1P

φ2 CE21 CE22 · · · CE2P
...

...
...

. . .
...

φP CEP1 CEP2 · · · CEPP

The problem of determining the structure of φ in (1) becomes
thus the problem of finding the best SVC type, kernel and
hyperparameters, that, for our specific problem, can be cast
in several ways. The extremes are: a) select individual and
potentially different optimal structures φp through individual

Leave-One-Out (LOO) Cross Validation (CV) strategies for
each patient p; b) constrain all φp’s to share the same type and
kernel, and choose them by minimizing the Frobenius norm of
Mtrain (the hyperparameters being again potentially tunable in
an individualized manner). Here we choose strategy b, since it
increases the possibilities of introducing concepts of distances
between different machines, e.g., by comparing them by the
respective support vectors. For completeness, for our dataset
the best SVC structure (among linear, polynomial up to degree
4 and radial basis kernels) was empirically determined as
linear and based on the four features upressure, uvolume, u̇pressure,
and u̇volume defined over time windows of 10 seconds. The
actual values of the cross-classification error matrix Mtrain are
graphically reported in Figure 4. Finally, note that up to now
the quantities have been defined using the training sets Dtrain

p .
The test sets Dtest

p will indeed be used in Section V to assess
the predictive performance of the final classifiers.

Figure 4. Cross-classification error matrix Mtrain relative to the considered
clinical trials, expressed as a greyscale image. Note that the pixels on the
diagonal of this image correspond to classification errors in the training
set for each individual patient. The minimum, average, and maximum cross
classification errors were respectively 0, 0.446, and 1.

V. FROM INDIVIDUAL MODELS TO GROUP MODELS

Inspecting the cross-classification error matrix shown in
Figure 4 we can find couples of patients p and j that have
low cross-classification errors, i.e., such that φp classifies
well Dtrain

j and φj classifies well Dtrain
p . Intuitively, this is an

indication that these patients share similar models, and that
thus they may be in a sense “clustered” together (see also [24]
for other applications of the concepts developed hereafter).

The natural questions are then:
1) Do patients tend to fall into a finite set of well defined

categories?
2) If so, assuming that patients p and j belong to the same

category, would a “group” classifier φpj trained with
the dataset Dtrain

pj = Dtrain
p ∪ Dtrain

j have better predictive
capabilities than the individual machines φp and φj , i.e.,
better performance in classifying the test sets Dtest

p and
Dtest

j ? (Note that this concept can obviously be extended
to groups of an arbitrary number of patients.)

The questions above may be answered through data-driven
methodologies that check if partitioning the set {1, . . . , P}
into K disjoint groups leads to models with greater approxi-
mation capabilities, and thus a better usage of the available
datasets. Determining the groups {G1, . . . , GK} can then



naturally be performed through first introducing an opportune
concept of “distance” between the various patients, and then
using classical clustering approaches based on the set of so-
defined distances.

Defining these distances can be made by exploiting the
structure of the classifiers (e.g., the different positions of the
various support vectors across different machines), or intu-
itions based on the performance of the classification. E.g., the
more the classification errors on the training sets CEpj , CEpp,
CEjp, and CEjj are similar (i.e., the more the machines φp and
φj can be swapped) the less the two patients p and j may be
considered different (at least from a training sets perspective).
Among the various possibilities, due to limitations in space we
focus only on this last strategy, that we prefer over the others
since it is more prone to intuitive interpretability for medical
personnel.

To define the concept of distance between two patients from
the cross-classification error matrix Mtrain in Section IV, we
start by verifying from Figure 4 that Mtrain is not guaranteed to
be symmetric. This means that Mtrain does not define a metric
(i.e., a function satisfying non-negativity, symmetry and the
triangle inequality). It is however possible to transform Mtrain

into a dissimilarity matrix whose element (p, j) is given by

dtrain
ij :=

max (0,CEpj − CEpp) + max (0,CEjp − CEjj)

2
.

(2)
Even if the dtrain

pj ’s in general do not satisfy the triangle
inequality, (2) is a proxy for how much the models of patients
p and j differ (or, more precisely, how much the models
based on their training sets differ). The dtrain

pj constitute indeed
a pseudo-distance, and can be used to run k-medoids [25,
Sec. 14.3.10], an opportune generalization of k-means for the
case of clustering through pseudo-distances.

To use k-medoids, though, there is the need to define the
number of groups K. In compliance with classical clustering
approaches, we thus propose to cast the problem as a nu-
merically optimization problem where the solution minimizes
within-cluster variances, i.e., to let

{G∗
1, . . . , G

∗
K∗} := arg min

K̃,G̃1,...,G̃K

K̃∑
k=1

 ∑
p,j∈G̃k

dtrain
pj

 (3)

where the superscript ∗ denotes optimality w.r.t. the just
introduced cost function. Because this is a notoriously NP-
hard problem, for which obtaining the optimal solution be-
comes rapidly numerically infeasible even for small dataset
sizes, we solve (3) in an approximate way leveraging on the
existing clustering algorithms available in the literature. More
precisely, for every plausible number of groups K, we propose
to:

1) compute, starting from the set of dissimilarity indexes
dtrain
pj ’s, a corresponding clustering of the patients in
K groups {G1, . . . , GK} using a K-medoids clustering
strategy;

2) for each group Gk =
{
p1, . . . , p|Gk|

}
(whose physical

meaning is “persons with similar models”) form the
group-wide training set Dtrain

Gk
= ∪j∈Gk

Dtrain
j , train the

group-wide SVC φGk
, and compute the classification er-

ror CEGkGk
that the classifier φGk

commits in classifying
its own training set;

3) compute the weighted average of the training errors
CEGkGk

’s, where the weights correspond to the cardinal-
ities of the various groups Gk’s, and denote this average
with CEK . (Recall that K indicates in how many clusters
the original set of patients was divided and the clusters
are indexed by k.)

Choosing that number of groups K∗ that minimizes the
average training errors CEK means thus choosing that K∗

(and that composition of the groups G∗
k) that maximizes the

statistical performance of the classifiers from a training per-
spectives. The question is whether K∗ and the corresponding
groups compositions G∗

k lead to good prediction performance,
i.e., if they perform better on the test datasets Dtest

p than the
individually trained machines. The answer to the question is
plotted in Figure 5, where we compare the weighted average
errors both in training and in test.
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Figure 5. Weighted average classification errors for the learned classifiers in
the training sets and in the test sets as a function of the number of patients
groups K.

Our strategy indicates that, for the available datasets, the
best number of groups is 7, corresponding to an average
classification error in the training sets of 22.9%, and in the
test sets of 26.9%. Inspecting the graph, some conclusions
follow: From a test sets perspective, the best would seem
to be 3 groups, for a classification error of 26.2%. These
numbers, though, slightly depend (even if not very heavily) on
the hyperparameters of the estimation scheme (e.g., the length
of the time window T chosen for computing the features, cf.
Figure 3). Nonetheless, varying these hyperparameters does
not change the trends for which the curves have minima around
5 to 10 groups (training case) and 3 to 5 groups (test case). The
chosen K∗ tends thus to overestimate the one that is optimal
according to the performance in the test sets. Yet, that K∗ leads
also to considerable improvements of the performance against
learning each patients individually (a strategy that would lead,
as shown in Figure 5, to an average classification error of
38.3% in the test sets).

Summarizing, even if we have been using a rather small
dataset whose statistical significance is insufficient to make
claims valid for the whole human population, the evidence
seems to indicate that grouping patients together and perform-
ing joint learning is, in this particular medical framework,
beneficial from statistical perspectives.



VI. CONCLUSIONS

Towards the technological goal of developing vaginal dila-
tors that can autonomously adapt to patients and maximize
the medical exercising while respecting the comfort levels, we
studied how to derive quantitative models for effectively fore-
casting changes in pain/pleasure levels in patients subject to
measurable vaginal dilation inputs. Specifically, we focused on
the very important concept of how to automatically determine
individualization levels of the aforementioned models: Since it
is known that persons tend to respond differently, one should
learn individual models. At the same time, differences among
specific persons may sometimes be very small. Hence, it may
be beneficial to learn from several individuals simultaneously.

We thus investigated how to structure such type of models
as opportune support vector classifiers, and how to group
patients starting from physiological measurements and subjec-
tive indications of pleasure / pain together. We then applied
our strategies to data from 36 patients collected through ad-
hoc medical tests, and obtained numerical results that seem
to indicate that grouping patients is, in our specific medical
context, actually improving the overall statistical performance
of the models. Average classification errors on test sets passed
indeed from 38.3% in the “non-grouped-patients” case to a
26.9% in the “grouped-patients” one.

Despite obtaining results that are in accordance with what
intuition would suggest, we encountered technical and theo-
retical problems that deserve dedicated future investigations.
For example, we have completely neglected discussing the
case where a new patient is added to the dataset, and thus
how to assign her to a group and potentially adapt the
composition of the groups in a recursive (and non-naïve) way.
Moreover, the used measurements are subjective, and thus
contain psychological factors (e.g., forgetting about updating)
that are non-observable in the settings considered in this
paper. Modelling these factors corresponds in other words to
modelling psychological systems, a subject that is poised to
be very challenging and probably requiring the development
of new ad-hoc mathematical tools for data-driven learning
of psychological responses. We nonetheless consider these
important topics and aim at investigating them in deep in our
future works.
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