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Abstract—In this paper we analyze the performance of two
different routing protocols specifically designed for Wireless
Sensor Networks (WSNs) for real-time estimation, control an
monitoring. These protocols are designed to compensate for the
lossy nature of the wireless links and the delay from sending
messages over multiple hops from the sensors to the controller.
The routing protocols are designed to reduce packet delay and
packet loss using either retransmissions or multicasting, and
for some routing topologies one protocol may be better than
the other at reducing the worst case packet delay but may have
a worse packet loss rate. Here, we apply mathematical tools to
analytically compute the average real-time performance based
on end-to-end packet delay statistics for two recently proposed
routing strategies and we show that the performance is strongly
related to the dynamics of the systems being estimated. This
suggests that routing protocols are to be designed based on
the specific real-time estimation and control application under
consideration.

Index Terms— packet drop, random delay, remote estimation,
wireless sensor networks, routing, multipath

I. INTRODUCTION

Wireless Sensor Networks (WSNs), i.e. large networks of
smart devices that can sense and control the environment and
can exchange information with their neighbors via wireless
communication, are being employed for a number of very
diverse applications. In particular, WSNs have started to be
employed for real-time estimation, control and monitoring
applications since they can be deployed and installed more
rapidly and cheaply than standard wired networks. However,
WSNss suffer the same problems in wireless communications
such as time-varying channels and large packet loss probabil-
ities. Moreover, this is exacerbated by the need to multi-hop
messages through intermediate nodes to communicate with
far away nodes or the base station. As a consequence, multi-
hopping potentially increases the end-to-end packet loss rate
and induces varying delay due to retransmission, multiple
path routing, and out-of-order packet arrival. These problems
pose two main challenges: the first challenge is how to design
routing protocols which give rise to low end-to-end packet
loss and small delay (latency), and the second challenge is
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how to design real-time estimation algorithms which can
cope with random delay and packet loss. In the following,
we briefly review the most relevant literature in these two
areas and our contribution.

A. WSN Routing for Estimation and Control

WSN routing protocols developed for estimation and con-
trol need to provide good reliability with low latency. As
a result, many protocols like to use a TDMA scheduling
scheme, as opposed to CSMA schemes with randomized
contention schemes to access the network. For instance, both
Time Synchronized Mesh Protocol (TSMP) [1] and RT-Link
[2] schedule link transmissions across the network to bound
end-to-end latency of a packet. However, RT-Link is less
robust to link failure than TSMP because RT-Link is a single-
path routing protocol while TSMP is a mesh routing protocol.

Other WSN protocols designed for industrial control, such
as SERAN [3], Breath [4], and DSF [5] use cluster-based
routing to get higher reliability. Cluster-based routing is a
form of constrained flooding, where copies of a packet are
passed between groups of nodes. SERAN and Breath assume
the independence of links, node wake up times, and random
attempts to access the channel so that the Central Limit The-
orem can be employed to get probabilistic guarantee on end-
to-end delivery and reliability. DSF assumes independence of
links and uses individual link probabilities to get end-to-end
connectivity as a function of latency.

B. Estimation and control subject to random delay and
packet loss

Recently, there has been a considerable effort in analyzing
and designing estimation and control schemes in networked
control systems (NCS) subject to packet loss and packet
delay, as surveyed in [6] and [7] and the references therein.
Most of the results are concerned with finding stability
conditions for filtering and control, and in general very
few results provide a quantitative measure of performance
based on packet delay and loss statistics. Among these, in
[8] the authors provided upper and lower bounds for the
optimal mean square estimator in systems subject to packet
loss but not to packet delay. On the other hand, Nilsson et
al. in [9] considered designing an optimal LQG regulator
when packets are subject to random packet delay with
known statistics, but not to packet loss. Recently, in [10] we
proposed different estimation algorithms with quantifiable
performance if the packet delay statistics are known and i.i.d.

Another important related area of research addresses the
problem of finding numerically efficient algorithms to com-
pute the optimal mean square estimator subject to delayed



measurements, as in [11] and [12]. These are general al-
gorithms which require little memory and are also valid
for time-varying dynamics and out-of-order packet arrival.
However, they do not provide performance evaluation tools
based on packet delay statistics, which is of primary concern
in our work.

C. Contribution

In this paper, we will study the performance of real-time
filtering running over two of the most promising routing
protocols: Directed Staged Flooding (DSF) and Unicast Path
Diversity (UPD), which is a specific implementation of a
protocol based on TSMP [5]. In particular, we show how to
derive the end-to-end packet loss latency and connectivity
statistics in terms of ), the probability that a packet sent
from the sensor is delivered to the estimator with a delay 7
less than h (i.e. A, = P[7 < h]). These statistics are used off-
line to compute the performance, in the sense of estimation
error covariance, of a class estimators which use a Kalman-
like filter with a buffer of dimension N that stores the
measurements that arrive with different delays. These types
of filters have been proposed in [10], and here we extend
them to consider a shifted buffer, i.e. only measurements
with a delay between between M and M + N, where M
is the buffer shift. Through some numerical examples, we
show that there is a trade off between performance, compu-
tational complexity and system dynamics, which might lead
to regimes where one routing protocol is better than the other
and vice versa. This implies that protocols must be chosen
with the specific application in mind.

II. NETWORKING PROTOCOLS FOR WSN: UPD AND DSF

This section provides brief descriptions and Markov Chain
models of two mesh routing protocols designed to provide
high reliability for industrial control applications. For more
details and examples, see [5].

A. Unicast Path Diversity

Dust Networks, Inc. proposed Unicast Path Diversity
(UPD) over Time Synchronized Mesh Protocol (TSMP)
[1], which exploits frequency, time, and space diversity for
reliable networking in sensor networks. UPD is a many-to-
one, multi-path routing protocol where each node in the
network has multiple parents and the routing graph has
no cycles. The links selected for routing are bidirectional,
hence every link transmission can be acknowledged. If a
packet transmission is not acknowledged, it is queued in the
node for retransmission. To schedule the network, time is
divided into time slots, and grouped into superframes. At
each time slot, pairs of nodes are scheduled for transmitting
a packet on different frequencies. The superframe containing
the schedule of transmissions is repeated over time. Our
model uses frequency hopping to justify the assumption that
links are independent over retransmissions.

To model UPD to calculate )\;, we construct a general
Mesh TDMA Markov Chain (MTMC) model for UPD
that assumes knowledge of the routing topology, schedule,

and all the link probabilities. MTMC models single packet
transmission in the network without the effects of queuing.

1) Mesh TDMA Markov Chain Model: Let us represent
the routing topology as a graph G = (V,€), and denote a
node in the network as ¢ € V =1,..., N, and a link in the
network as [ € £ C {(i,5) | ¢,5 € V}, where | = (4,7) is
a link for transmitting packets from node i to node j. Time
h will be measured in units of time slots, and let H denote
the number of time slots in a superframe. The link success
probability for link [ = (4, 7) at time slot i is denoted pl(h),
or pgl). We set pl(h)
transmit at time h.

For a packet originating from a source node a routed to
a sink node b, we wish to compute A, the probability the
packet reaches b at or before time h has elapsed. This is
done by a time-varying, discrete-time Markov chain.

Definition 1 (MTMC Model): Let the set of states in the
Markov chain be the nodes in the network, V. The transition
probability from state ¢ to state j at time A is simply pz(»?),

with pil) =13, pi". Let P = [pi]7 & [0,1)NV >N
be the column stochastic transition probability matrix for a
time slot and P = pH) p(H-1) _ p(1) pe the transition

probability matrix for a repeating superframe. Assume

= 0 when link [ is not scheduled to

plH+d) — p(cH+d) Ve,d € 7., (1)
meaning that the link probabilities in a time slot do not vary
over superframes.

A packet originating at node a is represented by p(©) =
el?l, where el is an elementary vector with the a-th element
equal to 1 and all other elements equal to 0. Then,

\h — p(h) ... pH+1) p(2H) p(2H-1) . p(H+1)

PH)

PO p© @

pH) p(H=1) |

P(H)

represents the probability distribution of the packet over the
nodes at time /. W

B. Directed Staged Flooding

Directed Staged Flooding (DSF) uses simple constrained
flooding for one-to-many or one-to-one routing. Unlike UPD,
DSF provides increased end-to-end connectivity with less
latency by multicasting packets instead of using acknowl-
edgments and retransmissions.

Like UPD, DSF also assumes that the nodes follow a
TDMA routing schedule. During a transmission each node
transmits to a subset of its neighboring nodes. Furthermore,
we group the nodes along the end-to-end transmission path
such that a packet is modeled as being passed between groups
of nodes, and we call each group of nodes a sfage. For
instance, looking at the node topology for one time slot on
the right of Figure [} each column of nodes is a stage. For
simplicity, in this paper we assume nodes are not shared
between stages, although this is not required (see [5]).

We use a Directed Staged Flooding Markov Chain
(DSFMC) model to find A,. As with UPD, we build the
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Fig. 1. (left) UPD and (right) DSF schedules for routing on a grid of width
3, used in the calculations for the graph in Figure |Z|
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Fig. 2. Calculated end-to-end connectivity as a function of latency using the
routing schedules described in Figurem where all the links have probability
pr = 0.6.

model assuming we are provided with a routing schedule,
the way nodes are grouped into stages, and all the link
probabilities. Our DSFMC model of DSF requires the sets
of link transmissions between distinct pairs of stages to be
independent. Like UPD, DSF uses frequency hopping over
time to help justify this assumption. However, the model
allows the link transmissions between the same pair of stages
to be correlated. Our DSFMC model also assumes that all
nodes in one stage transmit their copy of the packet before
the nodes in the next stage transmit their copy of the packet.

1) Directed Staged Flooding Markov Chain Model: As
before, we represent the routing topology as a graph G =
(V, €) and denote a node in the networkasi € V =1,..., N
and a link in the network as | € £ C {(¢,7) | 4,57 € V},
where [ = (i, 7) is a link for transmitting packets from node
1 to node j. Because each link is used only once when
transmitting a single packet, the link success probability
for link [ = (4,7) is treated as being time-invariant and is
denoted p;, or p;;.

Unlike the MTMC model, in the DSFMC model a state
in the Markov chain at a stage represents the set of nodes in
the stage that successfully received a copy of the packet. The
transition probabilities between the states depend on the joint
probability of successful link transmissions between stages.
Below is the DSFMC model for the special case where the
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Fig. 3. Mapping of states to nodes that received a packet in the DSFMC
model. On the left is an example of a state o(®) and on the right is the
state w(¥) where no packets have been received.

links are all independent.

Definition 2 (DSFMC Model): Let’s assume we have a
routing topology with K + 1 stages O, ..., K. Each stage k
has N nodes, and the set of 2™V* possible states in stage k is
represented by the set of numbers S®*) = {0, ..., 2N — 1},
Let K£*) be the set of nodes in stage k and for each state
o®) e S®) let R¥ < K® be the set of nodes that have
received a copy of the packet and ué’“) = IC(k)\RE,k) be the
set of nodes that have not received a copy of the packet (See
Figure . Let w(®) denote the state where no nodes received
a copy of the packet in stage k.

The conditional probability of the next state X(**1) being
state o(*+1) given that the current state X(*) is ¢(*) can be
expressed as

p(x(kﬂ) - J(kJrl)|X(k) - w(k)) -
1 olkth) = (k+1)
0 : otherwise
if o®) £ k)
PX*+D) = J(k+1)|X(k) — U(k)) —
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ieRP

3)
The transition probability matrices between stage k£ and k +
1 are P+ ¢ [0, 1)Ve+1 XNk where the entry in position
(oD o(F)) of the matrix is P(X#+1) = g+ X (*) =
o).

The initial state X(?) is the state ¢(°) corresponding to
RE,O) = {a}, where a is the node sending the initial packet.
Then, the probability distribution p*) € [0, 1]V of the state
at stage k is

p*) = pk) ... p() p() 50) 4)
| ——
P&

|

Let us assume the transmissions of nodes within a stage
must be scheduled in separate time slots so they do not
interfere with each other. We can obtain the probability that
a copy of the packet is at a node ¢ at time h directly from our
model by translating / to k from the relation h = Zf:_(]l N;
and looking at 3= ;e P(p*) = ().



C. UPD and DSF Comparison

UPD has the potential to deliver packets from the source
to the sink in a shorter period of time than DSF, but the
packet delivery time has a larger variance. Also, because
limp,_, oo Ay, = 1 for UPD and A, for DSF is a fixed value
less than 1 after the last stage transmits (assuming p; # 1),
UPD can always provide better end-to-end connectivity at
high latencies h. DSF tends to perform well when there are
very poor links in the network. Figure 2| compares \;, for
UPD and DSF under the schedules in Figure [1| where all
links have probability p; = 0.6.

III. MINIMUM VARIANCE ESTIMATORS SUBJECT TO
PACKET LOSS AND DELAY

Consider the following discrete time linear stochastic
plant:

Tyt Azy +wy @)
vy = Cxy+ vy, (6)

where t € N, z,w € R", y € R™, A € R"™*" y € R™,
C € R"™* "™ (g, ws,vy) are Gaussian, uncorrelated, white,
with mean (Z, 0,0) and covariance (P, Q, R) respectively.
We also assume that the pair (A, C) is observable, (A4, Q'/?)
is reachable, and R > 0.

Measurements are time-stamped, encapsulated into pack-
ets, and then transmitted through a digital communication
network (DCN), whose goal is to deliver packets from a
source to a destination. Time-stamping of measurements is
necessary to reorder packets at the receiver side since they
can arrive out of order. The arrival process is modeled via
the random variable 7}, defined as follows (from now on k
will indicate a time):

1
v :{ 0
N

We also define the packet delay 75, € {N, oo} for observation

Yy as follows:
L]
T t—k otherwise, where t, = min{t | 7} =1}
®)
where tj, is the arrival time of observation ¥y, at the estimator.
If the delay of the arriving packets is bounded, ie. if
there exists N such that 7} = ~*' for t — k + 1 >
N, then it has been shown in [10] that the minimum
variance estimator j7§| , = E[z|arrived measurements| =
Elz¢ |V, .., 7%, 4, - Jf) (where §f = ~Lyi) and its corre-
sponding prediction error covariance Pttﬂ‘ . = El(r —
Aii\t)(xtH*Ajat)T [vE ] is given by a time-varying
Kalman filter with a buffer of size N whose equations are:

if yi received before or at time ¢, ¢ > k
otherwise

if 7L =0,Vt >k

Fonp-y = B oyun Prmses = Py s
fﬁqk = Af%?cfl\kfl“}"ylthli(gltc7CA§7271\I€71)
Ky = PO (CPyp1CT + R)™
Pipe = APipa AT+ Q — AKC Py AT

where k =t — N +1,...,t, and 522\},, = jO’PItL\h—l =P,

for h < 0. Because the error covariance Pttﬂ‘ , depends on
the packet arrival sequence ~/, it is time-varying and does
not converge to a steady state, unlike the standard Kalman
filter with no packet loss. Moreover, it requires the inversion
of up to N matrices at every time step t and might be
too expensive for on-line implementation. Also, the buffer
size N needed for the optimal estimator might be too large.
Although in theory even very old measurements help reduce
the estimation error, in practice their contribution is marginal.
Based on these considerations, in the next section we propose
a filter which does not require any matrix inversion and
whose buffer size can be reduced to trade off performance
with computational complexity.

IV. ESTIMATORS WITH SHIFTED BUFFER AND CONSTANT
GAINS

In this section we propose a suboptimal estimator design
strategy which does not require any matrix inversion and has
a buffer with length smaller than the maximum packet delay
N in the WSN. Since we want to quantify the performance
of the estimator, we need to specify the statistics of the
arrival process. We assume that the packet arrival process
at the estimator is stationary and i.i.d. with the following
probability function:

Plr < h]l = A 9

where ¢ > 0, 0 < )\, < 1 is non-decreasing in h =
0,1,2,...,N, and 7, was defined in Equation . Equa-
tion (9) corresponds to the probability that a packet sampled
h time steps ago has arrived at the estimator. Although
in reality packet arrivals might not be i.i.d. because of
correlation in packet delays, the i.i.d. assumption allows
us to explicitly compute the performance of the proposed
estimators and to find the optimal gains within this class.
Starting from the buffer of the optimal filter described
in Section we consider the subset of the measurements
inside the same with time delays in M,..., M + N (the

subset will be called shifted buffer), where M = 0,..., N is
the starting point of the shifted buffer, and N = 1,..., N —
M —1 is its length (an example is shown in Figure ). The
estimation scheme has the following structure:

~t _at—1
Lo N-Mt—N-M — Tt N_M|t—-N-M

Thp = ATy Kk (G — CAfZ_uk_l)’
k= t—N—M+1,... t—M
Ty = AMjLM\th (10)

which mimics the time-varying estimator with the buffer
in the previous section, but with gains {Kj}N "M~ not
depending on the packet arrival sequence 7}, unlike the gains
{K}} of the optimal filter of Section [}

The performance of this new estimator is measured in
terms of its prediction error covariance 15t+1‘t =E[(z441 —
A.%i‘t)(xt+£ — Azj,)" [ 71, -, 7{]. Obviously we must have

P! < P!

P .
1)t 1)t for every sequence v since the filter in



the previous section is the minimum variance linear filter.

Just like PttJrl\t’ the prediction error covariance pt is a

t+1|t
random variable since it depends on the specific realization
of the arrival process 7i. Therefore, we are interested in
computing the expected prediction error covariance with

respect to all possible realizations of 7}, i.e. ﬁiﬂ‘t =
E"/[Ptt+1\t] = ?;w(f(,N, M), where we made explicit
the dependence on the gains K = (Kus, ..., Kyin—1),
the length of the buffer N, and its initial position M.
The following theorem provides stability conditions for the
proposed filter.

Theorem 1: Consider the following modified Algebraic
Riccati Equation:

P = ®,(P) = APAT+ Q- APCT(CPCT+R)"'CPAT
(1)
and the gain Kp = g(P) = PCT(CPCT + R)"L. If A
is unstable, then there exists a unique positive semidefinite
solution if and only if A > A\, where:
o A depends only on the pair (4, C);
e ). satisfies the following inequalities (where the

o (A)’s are the unstable eigenvalues of A):
- L <1-X < ! =
CILIeEAP T maxfop (AP
e Dmin = 1 — A if C is rank one;
e Dmaz = 1 — A¢ if C is invertible.

Pmin

If A is strictly stable, then there always exists a unique pos-
itive semidefinite solution. Consider also the class of filters
defined by Equation (I0), and suppose the packet arrival
process is i.i.d. and following the probability function (9).
If Aprynv—1 < Ac then limy_oo sup, Py, (K, N, M) = 00
for any choice of the gains K. If AM+N—1 > A then
consider the following semipositive definite matrices:

VJV1+N*1 = @)\]W+N71(VM+N71)

Vk:(I)/\k+1(Vk+1); k=M+N-2,...,.M

Vi, = AVk_;,_lAT +Q=0(Vig1), k=M—-1,...,0
(12)

and the gains K = (Vk),k=M+ N —1,...,M. Then:

. —t =
limy e Py gy (K*, N, M) = Vo(N, M)
limy—ce Pyyq o (K, N, M) > Vo(N, M), VK

Finally Vo(N, M) > Vo(N + 1, M).
Proof: The proof is a straightforward application of the
results presented in [10] and is therefore omitted. |
The previous theorem states that if the packet arrival
probability for the last slot in the buffer Ap;yn—1 is suf-
ficiently high, then there exists a stable estimator within the
class of filters proposed in this section. The theorem also
shows how to find the best estimator in terms of minimum
variance within this class. The best expected prediction error
covariance V, (N, M) is a function of the buffer length N and
initial position M. The memory and computational complex-
ity for such estimators do not depend on M. Therefore, we
would like to find the best M which minimizes Vo (N, M).
Unfortunately it is not possible to guarantee that there exits

M* such that Vo(N, M*) < Vo(N, M), and indeed this is
actually false in general. To overcome this limitation, we
will consider a cost function which is linear and positive in
V >0, i.e. a function f : R®*"™ — RT. Some examples are
F(V) =trace(V) and f(V) = 2TV 2, where z € R". Using
this cost function we will compute the optimal shifted buffer
M for any fixed N as:

M*(N) = argj\}}linf (Vo(N, M))

and the corresponding minimum cost v*(N) =
minys f(Vo(N,M)). Since M is an integer, it is not
possible to find the minimum in closed form. Therefore,
we need to explicitly compute f(Vo(N,M)) for all M.
However, this can be done off-line and then be used for
on-line estimation.

\

r—T1-T —T-T- - - - whole buffer
1o |4 d
.__|__|__ -L-L- — shifted buffer

Fig. 4. Example of shifted buffer with M/ = 3 and N = 4; the elements of
the buffer and the A¢’s used in Equation (TT)) are plotted with a continuous
line. The dashed A¢ function refers to the trivial buffer with M = 0 and
N = N.

V. ESTIMATION PERFORMANCE UNDER UPD AND DSF
ROUTING PROTOCOLS

In this section we apply the tools developed in the previous
section to the protocols proposed in Section [[I| to evaluate
their performance in a typical application of target tracking.
A popular model for the dynamics of a moving target is given
by a double integrator subject to white noise, i.e. &,(t) =
w,(t) where &, is the position of the moving target along
the x-axis and w,(t) is continuous time white noise with
zero mean and variance g. We also assume that the position
is measured through noisy sensors, i.e. y,(t) = £,(¢) +v(¢),
where v(t) is zero mean white noise with variance I. The
dynamics along the y-axis is modeled similarly and the
noises are assumed to be uncorrelated along the two axes.
The discretized dynamics of the moving target with period
T can be written in state space form as follows:

G 0 H 0
$t+1:[0 G]xt+wt7 ytz{o H]xt+vt

1 T r
G:[O 1},1{:[1 o],sz[;: z

where 27 = [¢, Ty &y :my] w; and v; are white Gaussian
. . . S 0
noise with covariance () = ¢ 0 S and R = rl

respectively, and [ is the identity matrix. It is easy to verify
that (A, Q'/?) is reachable, and (A, C) is observable. Also
the critical packet arrival probability defined in the previous



section is A\, = 0, since the eigenvalues are all ones. The
ratio ¢/r regulates the importance of measurements with
respect to the state dynamics. Without loss of generality, we
fix the variable ¢ = 1 and we evaluate the performance of the
estimators as a function of the variable r. The performance is
evaluated in term of the mean square prediction error on the
position of the moving target v*(N) = f(Vo(N, M*(N)) =
2TVo(N, M*(N))z, where z¥' = [1010] and Vo(N, M) is
the expected prediction error covariance of the estimator with
a shifted buffer with size N and initial position M defined
in the previous section.

First we compare the best achievable performance of
estimators with constant gains as a function of the ratio
g/r for the two protocols UPD and DSF. The performance
of the filters with constant gains and a shifted buffer are
computed using the end-to-end packet delay statistics shown
in Figure 2] In particular, from the figure we see that
ANJPD = 0 for h < 10 and A/PP ~ 1 for h > 40.
Therefore NUPP = 40, i.e. almost all packets arrive with
a delay between 10 and 40 time steps. On the other hand,
)\ESF = 0, for h < 22 and /\hDSF = Apy1 = 0.81 for
h > 24, which implies that NDSEF — 94 and that with
probability plDOfSF =1—-0.81 = 0.19 some packets are lost
and all the others arrive with a delay between 22 and 24.

Figure [5] compares the best achievable performance, mea-
sured in terms of the prediction error v*(N) = zTVy(N, 0)z,
as a function of the ratio ¢/r between the process noise and
the measurement noise. It shows that U PD always perform
better that DSF for our given routing topology and link
probabilities. This is to be expected for the two extreme
regimes, i.e. for large ¢/r an for small ¢/r. In fact, for large
q/r the old measurements do not help reduce estimation error
since z; changes rapidly from one time step to the next.
Since U PD delivers some packets with much smaller delay
than DSF, it should perform better. In the other regime, i.e
for small g/r, the state x; does not change very rapidly.
Here, the old measurements help to reduce the estimation
error. Therefore, the only relevant parameter is the end-to-end
packet loss probability, which for U P D is almost zero, while
for DSF is about p;,ss = 0.19. The fact that U PD performs
better that DSF also for all other values of ¢/r, is not
obvious since A\P5F is sometimes greater than \YFP. For
this reason the mathematical tools developed in Section
are particularly relevant.

We now evaluate the trade off between estimation and
computational complexity by adopting a measurement buffer
of size¢ N < N, which is shown in Figure @ This figure
shows the performance of the filters as a function of the
buffer length N for three different noise ratio ¢/r regimes:
small, medium, and high. The buffer shift A/*(N) has been
chosen optimally for each buffer length. As expected, the
performance for D.SF becomes constant for buffers of length
N > 3 since all packets arrives with delay h € {22,23,24}.
On the other hand, the performance of U PD should continue
to improve until NV = 30, the range of delay of the packets
that arrive at the receiver, while it appears to be constant for
N > 30. Indeed the performance improves monotonically

g
g 12
o
T |
LT
\
\
\
8-y
.
|}
A
6 \\
N~~~
ar TNse———n
2 ‘ ‘ : ‘ : : ‘ : ; s
0 1 2 3 4 5 6 z 8 9 10
q/r ratio [adim.]
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Fig. 6. Estimation error cost v*(N) as a function of the buffer length
N considering optimally buffer shift M* (V) evaluated for three different
ratio of g/r.

until N = 30, but the improvement after N > 20 is so small
that it is irrelevant to use longer buffers. These curves can
be used by the control designer to choose the proper buffer
size to tune the computational complexity and performance.
Note that if ¢/r is sufficiently small, then using DSF and a
very small buffer performs better than UPD. Therefore, it is
not possible to claim that UPD is always superior to DSF,
but it depends on several factors such as the ratio of ¢/r, the
dynamics given by the matrix A, and the size of the buffer
N.

Finally, in Figure [/| we show the optimal buffer shift
M*(N) as a function of the buffer length. As one would
expect, the optimal Mg, (V) is around 22, which is the
minimum delay experienced by the measurements. For NV >
3, the performance becomes constant as explained above, and
the optimal M*(N) is not unique, since any buffer which
includes packet with delay h = 22,23,24 would perform
optimally. Therefore, after N = 3, every point between the 2
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branches labeled as “descending” and “constant” and relative
to the DSF curve is equivalent to the others. More interesting
is the curve for UPD, since it is not clear for small N which
is the optimal buffer shift A/ *. In fact if M is chosen to be
small, then only a small fraction of the measurements will be
used since Ay is small. On the other hand, if M is large so
that A,y is large, then the packets used for the estimator have
a large delay 7 ~ M and therefore provide little information
about current target state x;. The curve of M* for UPD
shows how the optimal shift A* initially becomes smaller
and smaller as IV increases, indicating that the buffer grows
mostly leftward, in order to add packets with smaller delays.
However, it stops when M* = 10 since A/"P = 0 for
h < 10, i.e. no packets arrive with delay smaller than 10.
After this point, the buffer grows to the right and include the
small fraction of packets that arrive with larger delays; once
the growth to the right is anymore feasible, we encounter
a situation similar to the DSF case; each point between the
descending and the constant branches of the UPD curve is
equivalent to the others.

VI. CONCLUSION

In this paper we apply recent tools developed for evaluat-
ing the performance of filters when measurements are subject
to packet loss and random delay [10] to two different WSN
communication protocols specifically designed for real-time
monitoring and tracking [5]. We also propose a new set of
estimators with constant gains and a shifted buffer, which
allows the design to trade off computational complexity and
performance. In particular, we show that unless all the packet
delay probabilities A$ of a communication protocol a are
greater than the relative \?’s of another protocol b, it is not
possible to claim that one protocol is better than the other
in absolute terms. The performance of a communication
protocol for a NCS depends on the ratio between process
noise and measurement noise ¢/r, the dynamics of the
system A, and the buffer length N. Nonetheless, the tools

developed in this paper can be readily used by a control
engineer to compare protocols for a specific application.

There are still several research avenues which deserve to
be explored. The first is that the performance was evaluated
in terms of estimation error covariances averaged over all
possible packet delay realizations, while it would be impor-
tant also to know the spreading of these covariance along a
typical realization. This spreading is directly related to the
jitter experienced by the estimation error which is known
to give rise to poor control performance. A second research
direction is to extend this work to handle non-i.i.d packet
arrival processes. In fact, correlated delays between consec-
utive packets is very typical in most WSN communication
protocols.
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