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Abstract—When cooling and exhaust air flows in air-
cooled datacenters mix, the energetic efficiency of the
cooling operations drops. One way to prevent this mix-
ing of happening is by augmenting the air tightness of
the hot and cold aisles; this, however, requires installing
opportune hardware that may be expensive and require
time consuming installations. Alternatively, one may
try to minimize cooling and exhaust air flows mixing
by opportunely controlling the speeds of the fans of
the Computer Room Air Handling (CRAH) units so
that the distribution of the air pressure field within
the computer room is favorable.

Implementing this type of flow control requires both
detecting when there actually is some type of flow
mixing somewhere, plus understanding how to operate
the cooling infrastructure so that these mixings do not
happen. To this aim, there is the need for models that
can both help deciding whether these mixing events
occur, plus designing automatic control strategies for
reducing the risks that they will happen.

In this manuscript, we propose an ad-hoc methodol-
ogy for the data-driven derivation of control-oriented
models that serve the purposes above. The method-
ology is built on classical Prediction Error Method
(PEM) approaches to the system identification prob-
lem, and on laddering on the peculiarities of the physics
of the phenomena under consideration. Moreover, we
test and assess the methodology on a industrial-scale
air-cooled datacenter with an installed capacity of 240
kW, and verify that the obtained models are able to
capture the dynamics of the system in all its potential
regimes.

Index Terms—Datacenters cooling, statistical learn-
ing, energy efficiency, switching systems
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I. Introduction
In datacenters´ cooling equipment has an energy con-

sumption comparable to the electrical power fed in the
computing part [1]. A sound strategy for improving
air-cooling based datacenters’ efficiency is to implement
cooling schemes that avoid overprovisioning cooling flows
to the servers [2]. However, detecting the occurrence of
these phenomena and modeling their effects on the thermal
dynamics of the computer room are both non-trivial tasks.

We then notice that, to the best of our knowledge, there
are no structured and datacenter-oriented methodologies
for finding models of the airflows that simultaneously:

• do not require programming Computational Fluid
Dynamics (CFD) simulations or implementing tests
that use air flows speed measurement systems;

• return control-oriented models, so that the results
will enable implementing model predictive control
strategies for the operation of the datacenters’ CRAH
units;

• are flexible enough to be implementable in a large
variety of datacenters designs.

A. Literature review
The EU began making efforts in data center power

efficiency by the end of 2010 through the launch of the
projects All4Green and CoolEmAll. Since then, 6 more
projects aiming to reduce the environmental impact of
data centers have been launched [3].

The high number of extensive projects reflects the com-
plexity of the issues associated to the modeling of the
thermal dynamics in datacenters, which involves large
models based on physics first principles [4] or ad-hoc
CFD simulations. Thermal principles have also different



temporal and dimensional scales: from the ones referring to
the internal thermal behavior of servers, as described in [5],
the ones referring to the dynamics within single racks, as
described in [6], to the ones of the air flows within the
entire data center room, as in [7] or [8]. Complex thermal
dynamics are also present within the individual cooling
units, as confirmed in [9], [10], and in association with the
humidity levels of the coolant flows [11].

Dynamics can be also found in the management of
the cloud (i.e., of the various IT requests depending on
the queues of services that the compute infrastructure
has to serve). For example, [12] proposes a model for
estimating in real time the amount of resources (e.g., CPU
and memory) needed for satisfying a given service. These
models are very useful for service deployment, for real-time
identification of resource bottlenecks or with the objective
to maintain smooth operation of different services and
minimize downtime (e.g., [13]).

B. Statement of contributions

Despite the abundant literature on the modeling of dat-
acenters’ thermal dynamics, to the best of our knowledge
it seems that there is a lack of publicly available studies
on the general detection and data-driven modeling of flow
overprovisioning or underprovisioning phenomena. In this
manuscript, we address this issue, and more specifically
consider the specific flow modeling problem connected
to the identification of different air mixing regimes at
the computer room level in general room configuration
scenarios. In other words, we propose a strategy that is
in our intentions at least theoretically applicable to any
air-cooling based setup.

To effectively illustrate this general methodology, we
consider a standing example, graphically represented in
Fig. 1, where the CRAH is (arbitrarily) drawn on the left
and the servers racks are on the right.

In the setup shown in Fig. 1, the best situation from
a cooling flow provisioning point of view is when the
direct cold flow and the return hot air flow do not mix.
Flow overprovisioning can be then graphically described
though the left panel in Fig. 2; the right panel, obviously,
graphically represents a flow underprovisioning situation.

CRAHs flow overprovisioning or underprovisioning can
theoretically occur in all that plants that do not employ
dedicated hardware that ensure air tightness. This means
that, our standing example deals with a very specific room
configuration, the need for detecting and modeling these
phenomena is present also in other configurations (e.g.,
raised floor setups).

Among all the potential strategies for identifying (and
in a later stage controlling), these flow mixing phenomena,
we here consider the category of methodologies that want
to solve the issue without requiring the usage of additional
sensors or implementing ad-hoc CFD simulations, since
this is economically appealing.
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Figure 1. Schematic representation of the computer room that
will serve as a standing example for illustrating the methodology
proposed in this manuscript. Note that this scheme corresponds to
the physical testbed considered in our field tests and described in
Sec. II.

Figure 2. Schematic representation of the situations corresponding
to CRAH units overprovisioning cooling flows (in the left panel) or
underprovisioning them (right panel).

In this paper we thus propose a data-driven methodol-
ogy to:

• detect if there exist different mixing regimes in a
generic computer rooms;

• create data-driven models that can account and de-
scribe these different mixing regimes if they exist
and that can be used for designing tailored control
systems;

• implement and assess this methodology on field data
from a real system, using a standing example that can
help clarify how the strategy could be implemented in
other settings.

C. Organization of the manuscript

Sec. II describes the physical system where we did our
experiments. Sec. III describes the ad-hoc model describ-
ing different mixing regimes and to be identified using
data driven techniques. Sec. IV describes the methodology
for detecting different mixing regimes using data-driven
techniques plus reports our results from field data. Sec. V
concludes the manuscript reporting what we learned from
developing the methodology and applying it to field sit-



uations, and proposes which research and development
directions are opened by our contributions.

II. Testbed description
The experimental tests were performed in module 2 at

Research Institutes of Sweden (RISE) Swedish Institute
of Computer Science (SICS) North SICS-ICE facility, an
experimental 240kW wide datacenter intended for testing
innovative datacenters management strategies and situ-
ated in Luleå, Sweden [14]. The considered computer room
is composed by ten server-racks placed in two parallel rows
of five racks each. As is also represented in Figures 3, these
two rows are in their turn placed so to create a hot aisle
between them and two cold aisles between the racks and
the four CRAH units (for a total of two CRAHs in each
cold aisle). The setup can be thus graphically represented
through the scheme shown in Fig. 1. For more information
about the facility please see https://ice.sics.se/.

Figure 3. Photos of the cold aisles (left and right panels) and the hot
aisle (center panel) of the computer room used to test and validate
our methodology. In this setup the cold air exits from the various
CRAH units, enters into the servers, passes through them and cools
them down, then exits from the severs, rises and recirculates back to
the CRAHs by entering at their top. The air is then cooled down by
passing through an opportune cooling grid, so that the cycle can be
repeated.

Figure 4. Instrumentation diagram of the computer room used for
our experiments, together with the placement of two different types
of aisles temperature sensors (respectively green circles and blue
squares).

III. The proposed model
We consider control-oriented models of the combined

thermal and flow dynamics within computer rooms that
can be expressed through opportune time-invariant dif-
ferential equations leading to nonlinear dynamics. his can
be generically expressed as

ẏ = f (y, u) (1)

where the order of the differential equations may actually
be higher than one, y typically denotes temperatures,
and u denotes the operating condition of the computer
room (typically in terms of fan speeds and IT load per-
centages). More precisely, and given the intuitions about
the existence of flow overprovisioning / underprovisioning
phenomena illustrated in Figures 1 and 2, we consider that
the general thermal dynamics (1) can be expressed with a
switching Multi Input Multi Output (MIMO) Linear Time
Invariant (LTI) system defined by

y =


Bu(q)

Au(q)
u+ vu if u ∈ Ωu

Bo(q)

Ao(q)
u+ vo if u ∈ Ωo

(2)

where:
• the subscripts u and o follow the mnemonics

u ⇔ underprovisioning o ⇔ overprovisioning

so that, for example, the situation (x, u) ∈ Ωu indi-
cates a generic flow underprovisioning regime (like, for
example, the one in the right panel of Fig. 2). Note
that here for simplicity we consider only two models;
however, the procedure is actually general, so that if
desired we may consider a higher number of different
air flows regimes;

• the input and output vectors u and y are to be oppor-
tunely determined starting from a-priori information
about the plant and measured data (an operation
that will be described in details in Sections IV-B
and IV-D);

• the transfer matrices B?

A?
, the domains Ω? and the

spectra of the noises v? (with ? = u, o) are to be iden-
tified using field data (an operation that will be de-
scribed in details in Sections IV-C, IV-E, and IV-F).

In words, our modeling problem is thus twofold: i) find-
ing which u and y are appropriate for describing potential
flow mismatches occurrences in the system; ii) identifying
the thermal dynamics of the flow mixing in a data-driven
fashion. The second point serves the special purpose of
obtaining models that can help operating the CRAHs so
that they do not overprovision or underprovision coolant.

IV. Methodology
This section presents a methodology for obtaining mod-

els that have the aim of aiding to detect of if a system



is operating in a flow overprovisioning or flow underprovi-
sioning regime. More precisely, the methodology consists
of the following steps, each with its own aims, and each in-
dependently described in detail in the various subsections
below:

1) Identifying in which zones it is relevant to detect flows
mixing phenomena.

2) Listing the important sensors and actuators available
in the plant.

3) Designing and executing air flow experiments.
4) Identifying the most relevant signals through correla-

tion analysis.
5) Determining the regions where the flow models are

approximately linear.
6) Identifying and validating the models using data-

driven approaches.

A. Identifying in which zones it is relevant to detect flows
mixing phenomena

Given the wide variability of potential computer room
designs, there is a long list of places where one may
experience flow mixings. For example, in a computer room
designed like the one in Fig. 1 it is safe to assume that
these phenomena may happen as schematized in Fig. 2.
Situations may in any case greatly change depending on
the specific computer room under consideration. Other
configurations (e.g., raised floor or backdoor cooling)
would obviously lead to different situations. Our sugges-
tion is thus to do, as a first step, a visual analysis of the
plant using Piping and Instrumentation Diagram (P&ID)
to perform a first guess of what may happen from an air
flows mixing point of view.

Example: for our standing example of the room shown
in Figures 3 and 4, the most noticeable potential mixing
effects are intuitively as the ones in Fig. 2.

B. Listing the important sensors and actuators available
in the plant

After performing the step described in Sec. IV-A the
user should decide the structure of (1), i.e., decide what
shall be the composition of the input and output vectors
u and y of the model. This shall be performed once
again by visually inspecting the P&ID diagrams and the
tabulates from the Supervisory Control And Data Acqui-
sition (SCADA) systems so to understand which sources
of information are available in the plant and that may
either cause or be correlated to overflow or underflow
phenomena. More precisely, we suggest to consider:

• all the air temperature and air flow sensors that
are available in the computer room and that are at
least suspected to be measuring something related to
the flow overprovisioning / underprovisioning physical
phenomena that one wants to model;

• all the sources of information related to the thermal
and mass exchanges induced by the CRAH units
within the considered computer room (e.g., liquid
flows and temperatures at the inlet and outlet, tem-
peratures of the air at the inlet and outlet, etc.);

• all the ventilation actuation signals that are most
responsible for the air mixing phenomena, and thus
all the instantaneous rotational speeds of the various
air handling units within the considered computer
room or sufficiently close to the point where one may
suspect flow overprovisioning / underprovisioning to
happen (and thus the signals relatives to the fans
of the servers, of the CRAH units, etc., that are
close to that geographical zone under consideration).
Note that, from a practical perspective point of view,
fans speeds of geographically close servers should be
averaged into a unique signal, to reduce the number
of inputs to the system.

Regarding the last point, note that information about the
rotational speeds of the various fans of the various servers
is not always available. In this case, it is meaningful to use
as a proxy (and of course if measured) the instantaneous
power consumptions levels of the various fans. It is indeed
known both from physics-based laws and quantitative
evidence that the power consumptions increase cubically
with the rotational speed, with the coefficients of the
cubic polynomial to be identified through either opportune
experiments or the fans’ datasheets. To this aim, see also
the experimental setup in [5]. If also this information is
not available then one may resort to use as a proxy the IT
loads levels of the various servers.

Remark 1 Not all the identified inputs will be control-
lable by the user. For example, the rotational speed of
the fans of the servers are virtually always determined
by the internal cooling control systems of each individual
server. For this reason, in the following we will distinguish
between controllable inputs and non-controllable (but still
measurable) inputs.

Example: in our field case the relevant signals are: the
various CRAHs output temperatures (say y1), the racks
input temperatures (say y2), the racks output tempera-
tures (say y3), the cold aisle and hot aisle temperatures
(say respectively y4 and y5, shown with green circles in
Fig. 4), the temperature sensors in front of the racks
(say y6, shown with blue squares in Fig. 4), the CRAH
fans speeds (say u1), and the average IT loads of the
servers within the computer room (say u2). The outputs
y∗ with their corresponding references are also illustrated
in Fig. 1.

C. Designing and executing air flow experiments
To be descriptive, data-driven models need to be trained

on datasets that represent all the various working condi-



tions in which the system is expected to operate. This
implies that the user shall collect the dataset D =
{u1, . . . , um, y1, . . . , yp} of those signals corresponding to
the inputs and outputs listed in Sec. IV-B while running
the datacenter around all the various potential set-points
of its operating conditions. For our specific problem of
identifying flow overprovisioning or underprovisioning sit-
uations we suggest to design the controllable inputs as
follows:

1) divide the inputs in two different types: i) the CRAHs
fans speeds, and ii) all the rest of the various potential
controllable inputs (e.g., overall IT load within the
datacenter, temperature of the inlet water to the
CRAHs, etc.);

2) as for the controllable inputs of type ii, generate a
number of fixed operating conditions using a Latin
hypercube sampling approach (with a number of sam-
ples that depends on how much experimental time is
available);

3) for each of the operating conditions above, design
the CRAHs fan speeds as descending stair signals
that start from the maximum fan speed supported
by the CRAH units to arrive to that minimal fans
speed that guarantees the servers to remain within
their thermal comfort limits. We suggest to let these
CRAHs fans speeds be composed of approximately 10
steps in amplitude, with each step lasting sufficiently
long so that the datacenter reaches or is near to reach
a thermal equilibrium.

Letting the datacenter run for each of the operating
conditions (and thus also stairs signal on the CRAHs
fans speeds) above, we get a specific part of the overall
dataset, say Dc. We actually suggest to perform each of
these experiments twice, and visually inspect that there
is repeatability, (i.e., the same inputs lead to the same
outputs). This is something that one may think is guaran-
teed to hold, but that in our experience actually does not.
When repeatability does not hold, one may have failed
to take into consideration all the controllable inputs that
have some effect on the to-be-modelled dynamics, so that
step IV-B shall be repeated.

Example: for our field case, we consider the descending
stair signal shown in Fig. 5. Here, one of the CRAH
units fan speed is progressively decreased from 80% to
30% while the other CRAH units are kept running at
their maximum level (in this specific case, moreover, the
overall IT load within the computer room was kept at
50%). In this case, smaller steps have been made around
the zone where the system is expected to transition from
a flow overprovisioning situation to a flow underprovi-
sioning one.
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Figure 5. Example of an input signal used to command the CRAH
units in the datacenter room used in our field tests during the
collection of the datasets. For the sake of completeness, the figure
shows also the temperature of the air flow produced by that CRAH
unit.

D. Identifying the most relevant signals through correla-
tion analysis

By executing the steps listed in Sections IV-A and IV-B,
the user will get an intuitions-based listing of all the signals
involved in the dynamics (1). Importantly, the process of
creating this list:

• cannot be easily automated, and must thus rely on
human choices;

• may end up with a potentially overly large list of
inputs ui that are suspected to cause or correlate to
the flow overprovisioning / underprovisioning phe-
nomena, and outputs yj that are informative for
detecting these events.

We thus let the methodology include a step of pruning
this set of potential u’s and y’s, so that the user will
retain only that components that are having an actual
information content. Although more advanced approaches
may be performed, we suggest to start this pruning step by
performing a correlation analysis. More precisely, assume
to have merged all the datasets Dc described in Sec. IV-C
into a dataset D = {u1, . . . , um, y1, . . . , yp} of synchro-
nized time-series with every component in this dataset
being a specific signal. What can happen is then that:

• two distinct inputs ui and uj are highly correlated,
say, e.g.,∣∣∣∣E [(ui − E [ui]) (uj − E [uj ])]

st.dev (ui) st.dev (uj)

∣∣∣∣ ≥ 0.95. (3)

Then it may be beneficial to eliminate the input that
is, from numerical perspectives, least correlated to the
various outputs yl. Even if obvious, it is important
to remark that it is of paramount importance that
the dataset D captures all the operating conditions
that the datacenter is expected to experience in its
operations. This means that if one detects that two
controllable inputs ui and uj are highly correlated
then there is some mistake in the step of designing
the controllable inputs;



• similar concepts applies to couples of outputs yi and
yj : if there exist highly correlated outputs then it may
be meaningful to ignore one of the two;

• if instead an input ui is uncorrelated to all the various
outputs yj then this may be an indication that this
input is superfluous and that it may be discarded too.
Notice that using the conditional tense is mandatory
here, since the potential non-linearity of the dynamics
may lead to empirically uncorrelated signals even if
under the presence of deterministic causation;

• a similar concept applies when an output yi is simul-
taneously uncorrelated to all the various inputs uj

and other outputs ys. In this case this may be seen
as an indication that there may be no extractable
information from the sensor (something that in any
case can be double-checked during the data-driven
modelling step). If this happens, it means that the
sensor is, from a modelling perspective, badly placed.
It may thus be worth to investigate if in this case
it is meaningful to move the sensors into an other
geographical location.

Example: in our standing example, the first output that
we discarded was y6, because it was highly correlated to
y2 (mainly because of their geographical vicinity, see also
Fig. 4).

As for identifying which sensors provide most infor-
mation for the modelling purpose, we then compare the
readings from the various temperature sensors against
the CRAH fan speed signal. In this way, we note that
almost all these temperatures increase when the CRAH
fan speed drops. The unique exception is the temperature
of the air cooling flow in output from the CRAH, (i.e.,
y1, which decreases as the fan speed decrease, as shown
in Fig. 5).

Being the associated sensor directly connected to the
CRAH output, the signal y1 does not contain information
that is useful for detecting flow mixing. It can however
work as a normalization factor, in the sense that it can
be used to compute the temperature differences

∆21 = y2 − y1,

∆31 = y3 − y1,

∆41 = y4 − y1,

∆51 = y5 − y1,

that represent the change of temperature in the room
from the CRAH output to an other zone in the computer
room (see Fig. 1 for a physical interpretation of the
various ∆’s).

Among the various ∆’s, the signal that is most af-
fected by flow overprovisioning or underprovisioning phe-
nomena is ∆21. This can be seen both from intuitive

perspectives, by checking Fig. 1, but also by analyzing
quantitatively the collected evidence. In other words, and
as also Fig. 6 graphically confirms, ∆21 is the ∆ signal
that is most correlated with u1. This means that this will
be the signal that we will want to model when we will
perform our system identification step.
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Figure 6. Comparison of the temperatures measured by the various
sensors within the computer room used in our experiments while the
CRAH fans speed u1 was as in Fig. 5.

E. Determining the regions where the flow models are
approximately linear

The key point of this manuscript is to identify when the
overprovisioning or the underprovisioning of the cooling
flows happen, and obtain data-driven models that can
forecast the thermal dynamics of the room when these
phenomena occur. Referring to Figures 1 and 2 for an
intuitive explanation, these events happen depending on
the values of the air pressure field within the computer
room (something that is in turn affected by the speeds
of the various fans rotating within the computer room).
This intuitive explanation can then be mathematically
expressed by letting the domains Ωo and Ωu in model (2)
depend only on the values of the various fans speeds,
and not on the various temperatures measured within the
computer room. Incidentally, we also notice that typically
there are no or very little flow speed measurements sensors
within modern datacenters computer rooms. This means
that flows mixing can be detected only through the proxy
of checking how much the temperatures of these flows mix,
as suggested also in Sec. IV-D.

To this aim, we propose to determine Ωo and Ωu using
the following ad-hoc strategy: consider the controllable in-
puts of type ii defined in step 2 in Sec. IV-C, (i.e., consider
separately every set of fixed operating conditions on the
various controllable inputs). For each of the sets above,
consider the associated CRAHs fan speeds, consisting of
descending stair signal. Recall that every step of this signal
lasts enough to let the system reach or almost reach its
thermal equilibrium. It thus immediately follows that the



various output signals yj will be a series of step responses.
Consider then the physics of the flows overprovisioning /
underprovisioning phenomena: the intuition suggests that
the gains will typically be much smaller when the CRAHs
are overprovisioning the cooling flows. This implies that
these input-output gains are expected to be clearly dif-
ferent, depending on the flows region. This eventually
implies that from the step responses computed above it
should be immediately possible to not only compute the
input-output gains of the system for the various operating
conditions, but also verify for which operating conditions
the system experiences a shift from flow overprovisioning
to flow underprovisioning (i.e., determining the regions Ωo
and Ωu in model (2)).

Example: Fig. 7 shows one of the experiments described
above for our field case. From the figure we see that
the input-output gains from u1 to ∆21 are smaller when
considering the system when operating between t = 0
and t = 20 with respect to the gains from t = 20
to t = 70. This is a clear indication that the system
dynamics transitions from one regime to another. Then,
from an automatic control perspective there is the need
to describe the system using two different models. These
two models will therefore be called Mo and Mu and
they will transition around the operating conditions ex-
perienced by the system around t = 20.
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Figure 7. Comparison of the temporal evolutions of the temperature
difference ∆21 against the CRAH fans speed signal u1. ∆21 corre-
sponds to a set of step responses.

F. Identifying and validating the models using data-driven
approaches

Once the regions Ωo and Ωu in model (2) have been
determined, it is possible to identify the various transfer
functions for the various regimes in (2) using classical
PEM identification methods. To this aim, it is necessary to
extract, from the datasets determined in Sec. IV-C, those
parts that are relative to the various regions Ωo and Ωu.

Example: applying classical LTI system identification
strategies, we can at this point learn three distinct
models: Mo and Mu, which correspond to the models
described before, and Mj, which is a model that does not
assume that there exist two different and distinct regimes
in the system, but rather assumes that the behavior of
the system is uniform across all the potential operating
conditions.

Figures 8, 9 and 10 instead graphically describe the
simulation capabilities of the different models in repro-
ducing some test sets (i.e., data that has not been used
during the model learning steps). It is important to notice
how model Mj totally fails in capturing the dynamics of
the system in all its potential regimes, while the other
two models Mo and Mu have better approximation
capabilities. To improve the prediction capability of Mu
a future work can be to subdivide Figures 9 in two or
more areas with their respective linear models.

V. Conclusions
We considered how to construct data-driven models for

both detecting when the cooling flows from the CRAH
units mix with the exhaust air flows, and for understand-
ing how to operate the cooling infrastructure so that this
type of events does not happen.

The proposed methodology combines two main ingredi-
ents:

• first, it considers the peculiarities of the physics of
the phenomena under consideration: indeed the iden-
tification of the regions of the operating conditions
that lead to either flows overprovisioning or under-
provisioning is based on a input-output gains analysis.
In turn, this analysis is inspired by the consideration
that the input-output gains of the system heavily
depend on the type of flow mixing that occur within
the computer room;

• moreover, we apply classical PEM approaches to
the system identification problem, which are well-
established learning strategies for building the models
from the collected measurements once the different
mixing regions have been identified.

The methodology has been then tested and assessed on a
full scale field case. We compared two sets of models: i)
Mo and Mu, i.e., the models that should describe the
thermal behavior of the system under respectively flow
overprovisioning and underprovisioning regimes; and ii)
Mj, i.e., a model that was learned assuming that the
system does not experience changes of regime.

The results in Figures 8, 9 and 10 clearly indicate that
the identified Mo and Mu have better generalization
capabilities than Mj, suggesting thus that our assump-
tion that the system experiences two distinct and rather
different flow regimes was correct.
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Figure 8. Experiment for the validation of the identified model Mo
(in our case having an ARIX structure with orders 2 and 2). First
section of the experiment, between t = 0 and t = 20.
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Figure 9. Experiment for the validation of the identified model Mu
(in our case having again an ARIX structure with orders 4 and 4).
Second section of the experiment, between t = 20 and t = 70.
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Figure 10. Experiment for the validation of the identified model
Mj(in our case having a BJ structure with orders 1, 1, 1 and 1).
Complete experiment, between t = 0 and t = 70.

The here presented methodology opens up some poten-
tial new research directions: first, deriving suitable model-
predictive CRAH control strategies that exploit these
models. Moreover, here we limited ourselves to the case
of two distinct flows regimes. It is however meaningful to
assume that there may be more regimes; there is the need
then for procedures that also automatically identify the
number of different regimes that the system experiences.
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Table I
Fit of the validation tests in figures on the left side

Mo Mu Mj

89% 88% 86%

expertise.
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