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Abstract— We present a Stochastic Model Predictive Control1

(SMPC) algorithm that maintains predefined comfort levels in2

building Heating, Ventilation and Air Conditioning (HVAC)3

systems while minimizing the overall energy use. The strategy4

exploits the knowledge of the statistics of the building occupancy5

and ambient conditions forecasts errors and determines the6

optimal control inputs by solving a scenario-based stochastic7

optimization problem. Peculiarities of this strategy are that8

it does not make assumptions on the distribution of the9

uncertain variables, and that it allows dynamical learning of10

these statistics from true data through the use of copulas, i.e.,11

opportune probabilistic description of random vectors. The12

scheme, investigated on a prototypical student laboratory, shows13

good performance and computational tractability.14

Index Terms— Model predictive control, thermal control,15

weather forecasts, building modeling, building occupancy, Cop-16

ula17

I. INTRODUCTION18

Buildings account for approximately 40% of the total19

energy use in industrialized countries [1]. To reduce this con-20

sumption while satisfying occupants comfort requirements it21

is possible to develop building control strategies that incorpo-22

rate occupancy and weather forecasts, time-dependent energy23

costs, bounds for control actions, and comfort ranges for the24

controlled variables. A natural scheme to achieve systematic25

integration of all the aforementioned components is Model26

Predictive Control (MPC) [2], [3].27

Several studies show that predictive control strategies can28

significantly decrease energy consumption when considering29

both real-time measurements and foreknowledge of upcom-30

ing weather conditions and occupancy [4], [5], [6], [7],31

[8], [9]. Experimental results on real buildings are also32

encouraging and suggest that MPC yields better control33

performance (in terms of energy use and comfort levels) than34

current practices [10], [11].35

Nonetheless exploiting nominal deterministic forecasts, as36

in the MPC schemes proposed in the aforementioned studies,37

can lead to inadequate control actions. The amplitude and38

statistics of the unavoidable forecasts errors can in fact39

severely affect the performance of predictive controllers. To40

improve the control performance one can thus explicitly41

consider the probabilistic distribution of the plausible future42
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evolutions of the system, and develop building controllers 43

that account also for uncertainties in the forecasts. 44

Literature review 45

Here we specifically review MPC control schemes for 46

building temperature regulation which account for uncer- 47

tainty. A first example is [12], where authors incorporate 48

stochastic occupancy models within the control loop. An- 49

other example is [13], proposing a stochastic predictive 50

building temperature regulator where weather and load dis- 51

turbances are modeled as Gaussian processes. The resultant 52

nonlinear program is then solved with a tailored sequential 53

quadratic programming which exploits the sparsity of the 54

quadratic sub-problems. 55

Also [14] integrates stochastic MPCs and weather pre- 56

dictions. Here authors firstly compute the control action by 57

solving a non-convex problem which exploits linearizations 58

of the nonlinear system model around nominal trajectories, 59

and then apply a disturbance feedback. We notice that in [14] 60

the predictions of internal gains are assumed to be perfect, 61

i.e., the realization is equal to the prediction. Thus the only 62

considered uncertainty is in weather predictions. Also [14] 63

assumes Gaussianly distributed variates. Nonetheless this 64

assumption does not generally hold in practice. 65

Statement of contributions 66

In this work we present a method to develop stochastic 67

indoor climate controllers, where the control objective is to 68

minimize the energy use while satisfying thermal comfort 69

and air quality requirements. 70

We provide a control-oriented building model and a 71

tractable formulation of a Heating, Ventilation and Air 72

Conditioning (HVAC) Stochastic Model Predictive Control 73

(SMPC) which addresses the uncertainty both in weather 74

predictions and occupancy. The proposed strategy uses pre- 75

dictive knowledge of weather and occupancy and manages 76

generic statistic of the weather and occupancy forecasts. 77

Importantly, we do not assume the uncertain variables to 78

be Gaussians, but rather allow every plausible distribution. 79

Technically this is performed by the usage of copulas, see 80

Section III, which allow either to exploit apriori information 81

on the statistics of the forecasts or also to implement dynam- 82

ical learning schemes from true data. This eventually allows 83

the strategy to adapt to the environment and to self-tune parts 84

of its parameters. 85

Organization of the paper 86

We start proposing a tailored building model in Section II, 87

and then outline a learning scheme to continuously and 88



dynamically infer the statistics of the forecasts errors from1

real data in Section III. We then build our SMPC controller2

on top of these results and propose it in Section IV. Section V3

eventually provides simulation results and comparisons with4

other MPC schemes. We collect some concluding remarks5

and draw plausible future extensions in Section VI.6

II. PHYSICAL MODELLING7

A. Room model8

To decrease the computational burden, MPC controllers9

need sufficiently simple models. Similarly to previous works10

in the field, [15], [16], [17], [18], [19], we base our MPC11

scheme on a simplified general building physical model that12

can be used for whole building simulation both in cooling13

and heating conditions. The model has been developed in14

Matlab and then verified against the results provided by IDA-15

ICE [20], a commercial software program for energy and16

comfort calculations in buildings. The model used in this17

work is based on the following main assumptions:18

• no infiltrations are considered, so that the inlet airflow19

in the zone equals the outlet airflow;20

• the zone is well mixed;21

• the thermal effects of the vapor production are ne-22

glected.23

The room temperature is calculated via the following energy24

balance of the zone, modelled as a lumped node:25

mair,zonecpa
dTroom

dt
= Qvent +Qint +

∑
j Qwall,j

+
∑

j Qwin,j +Qheating

+Qcooling.

(1)26

In (1) the left-hand term represents the heat stored in the27

room air. Qvent is the heat flow due to ventilation. Qint are28

the internal gains, sum of the heat flows due to occupancy,29

equipment and lighting. Qwall,j and Qwin,j represent the heat30

flows exchanged between walls and room and windows and31

room respectively. Qcooling and Qheating are the heating and32

cooling flows necessary to keep the room environment within33

thermally comfortable conditions.34

(1) can be manipulated to yield the following explicit35

dependence between room temperature variation and heat36

flows:37

dTroom

dt
=

ṁvent∆Tvent

mair,zone
+

+
∑

j

hiA
j
wall

(
T j

wall,i − Troom
)

mair,zonecpa

+
∑

j

(
Tamb − Troom

)
Rj

winmair,zonecpa
+

cNpeople

mair,zonecpa

+

∑
j G

jAj
winI

j

mair,zonecpa
+
Aradhrad∆Th,rad

mair,zonecpa

(2)38

where39

Qvent = ṁventcpa∆Tvent = ṁventcpa
(
Tair,sa − Troom

)
,40

Qint = cNpeople,41

Qheating = Aradhrad∆Th,rad = Aradhrad
(
Tmr − Troom

)
.42

The parameters involved in (2) are described in Table I, 43

reported in appendix and presenting the parameters in al- 44

phabetical order for reading convenience. 45

The indoor wall temperature T j
wall,i in the j-th surface is 46

calculated by means of the following energy balance on the 47

wall outdoor (3) and indoor surface (4). Walls are modelled 48

as two capacitance and three resistance (2C3R) systems [16], 49

[17]. The three resistances 1/ho, Rj
wall and 1/hi are between 50

the equivalent temperature T j
ee, T j

wall,o , T j
wall,i and Troom. 51

dT j
wall,o

dt
=

[
hoA

j
wall

(
T j

ee − T
j
wall,o

)
+

(
T j

wall,i − T
j
wall,o

)
Rj

wall

]
C j/2

(3) 52

53

dT j
wall,i

dt
=

[
hiA

j
wall

(
Troom − T j

wall,i

)
+

(
T j

wall,o − T
j
wall,i

)
Rj

wall

]
C j/2

(4) 54

In (3) and (4), Rj
wall [◦C/W] and C j [J/◦C] are the ther- 55

mal resistance and the thermal capacity of the j-th wall 56

respectively. The thermal capacity C j is calculated after 57

the model of Active Heat Capacity proposed by [21]. The 58

equivalent external temperature T j
ee accounts for the different 59

radiation heat exchange due to the orientation of the external 60

walls. The outdoor temperature is modified by the effects of 61

radiation on the j-th wall, according to (5) adapted from [22]. 62

Tee,j = Tamb +
aI j

αe
. (5) 63

The air mass flow for ventilation ṁvent in (2) is determined 64

by the CO2 concentration in the room, calculated after the 65

model proposed in [23] as: 66

V
dCCO2

dt
=
(
ṁventCCO2,i + gCO2

Npeople
)
− ṁventCCO2

. (6) 67

The Matlab model has been validated for the Stockholm 68

climate against results from simulations carried out in IDA 69

with climate data from the Swedish Meteorological and 70

Hydrological Institute (SMHI). The comparison has been 71

performed under the same conditions of ventilation, solar 72

radiation, internal gains and occupancy. In both cases, ther- 73

mal bridges and infiltrations have been neglected. To clearly 74

display the effects of the thermal behavior of the room model, 75

no heating and cooling systems have been simulated. In 76

Figure 1 the room temperature calculated with the Matlab 77

model and IDA is displayed for two months and shows good 78

accordance between the two models. 79

B. Control oriented model 80

Nonlinearities in the dynamic equations of SMPC schemes 81

can lead to intractable problems. To address this issue we 82

derive linear equivalent formulations of the nonlinear CO2 83

concentration model (in Section II-C) and of the nonlinear 84

room thermal model (in Section II-D). 85
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Fig. 1: Validation results. The thick gray line represents the
room temperature calculated with the Matlab model while
the thin black line is the room temperature calculated with
IDA.

C. Linear formulation of the CO2 concentration model1

To linearize the CO2 concentration dynamics (6) we2

replace the nonlinear term ṁvent ·(CCO2
−CCO2,i) with uCO2

,3

where CCO2,i is a constant and CCO2−CCO2,i is a nonnegative4

variable. The obtained linear continuous system is further5

discretized by the trapezoidal rule with a ∆T = 1 hour6

sampling time. It should be pointed out that, since the7

sampling time ∆T = tk+1 − tk is constant, there exists a8

constant ratio between energy and power at each interval.9

To meet the physical bounds on the control input in the10

original nonlinear model, the following constraint on the11

input uCO2
in the linear formulation must be satisfied at12

each time step k:13

ṁmin
vent (k) · (CCO2

(k)− CCO2,i) ≤ uCO2
(k) ≤

≤ ṁmax
vent · (CCO2

(k)− CCO2,i).
(7)14

The original inputs can then be obtained as:15

ṁvent(k) =
u

(CCO2
(k)− CCO2,i)

.16

Hence, the CO2 concentration dynamics can be described by17

the discrete Linear Time Invariant (LTI) system:18

xCO2
(k + 1) = axCO2

(k) + buCO2
(k) + ewCO2

(k)

yCO2
(k) = xCO2

(k),
(8)19

where xCO2(k) = CCO2 is the state and wCO2(k) =20

Npeople(k) is the disturbance at time step k, and a, b, e are21

appropriate scalars. Constraints (7) can then be rewritten as:22

gu,CO2
u(k) + gx,CO2

x(k) ≤ gCO2

yCO2
(k) ≤ ymaxCO2

,
(9)23

where the matrices gu,CO2
, gx,CO2

are easily derived24

from (7) and yminCO2
is the upper bound on the CO2 con-25

centration.26

D. Linear formulation of the room thermal model27

Consider the room thermal model presented in Section II-28

A. The heat flow due to ventilation can be expressed as:29

ṁventcpa∆Tvent = ṁventcpa
(
∆Th −∆Tc

)
= cpa(uh − uc),30

where the nonnegative variables ∆Th and ∆Tc represent the31

temperature difference through the heating and cooling coils32

respectively. The obtained linear continuous system is then 33

discretized by the trapezoidal rule with a ∆T = 1 hour 34

sampling time. Hence the inputs uh(k) and uc(k), multiplied 35

by cpa, model the portion of the ventilation heat flow due to 36

heating and cooling respectively. 37

Hence, the room temperature dynamics can be described 38

by the Linear Time Invariant (LTI) system: 39

x(k + 1) = Ax(k) +Bu(k) + Ew(k)

y(k) = Cx(k),
(10) 40

where x(k) ∈ Rnx is the state vector con- 41

taining the room temperature and the inner and 42

outer temperatures of all the walls, u(k) := 43(
uh(k), uc(k),∆Th,rad(k)

)
∈ Rnu is the input vector, and 44

w(k) :=
(
Tamb(k), I1(k), . . . , Inwall(k), Npeople(k)

)
∈ Rnw 45

is the vector of random disturbances at time k, and the 46

matrices A,B,E,C are of appropriate sizes. The output 47

y(k) is the room temperature at time k. 48

III. MANAGEMENT OF THE WEATHER AND ROOM 49

OCCUPANCY FORECASTS 50

The proposed MPC scheme exploits statistics of the 51

forecasts errors by means of so-called scenarios, i.e., in- 52

dependent extractions of the errors from their distribution. 53

Thus the algorithm implicitly requires the knowledge of the 54

joint distribution of these forecasts errors. Unfortunately, 55

the forecasters generally exploited to predict the external 56

temperature, the solar radiation and the room occupancy do 57

not provide the users with the distributions of their errors. 58

We thus here propose the possibility of learning the 59

statistics of the forecasts by means of copulas, i.e., opportune 60

probabilistic description of random vectors, applied on real 61

data. Here we describe the basics of this technology, aiming 62

to allow the reader to implement our schemes. 63

Section III-A describes formally the concept of copulas. 64

Section III-B then recalls how it is possible to estimate them 65

from real data. Section III-C eventually describes how to 66

generate the i.i.d. scenarios needed in our MPC schemes. 67

A. Copulas 68

Formally, copulas are particular probabilistic descriptions 69

of random vectors. Here the marginal distributions of the 70

components of the vectors and their joint moments are 71

modelled independently. The relative theory is based on 72

Sklar’s representation theorem [24], that ensures that the 73

Cumulative Distribution Function (CDF) of any T -uple of 74

continuous r.v.’s w(1), . . . , w(T ) can be written in terms of 75

the marginal distributions P [w(1) ≤ a1] , . . . ,P [w(T ) ≤ at] 76

and an opportune copula (i.e., a function C : [0, 1]N 7→ [0, 1]) 77

as 78

P [w(1) ≤ a1, . . . , w(T ) ≤ aT ] =

= C
(
P [w(1) ≤ a1] , . . . ,P [w(T ) ≤ aT ]

)
.

(11) 79

Assume then the marginals P [w(t) ≤ at] to be continu- 80

ous. Then to reconstruct P [w(1) ≤ a1, . . . , w(T ) ≤ aT ] it is 81

sufficient to independently reconstruct the marginals of the 82



w(t)’s and the function C(·). Let in fact Qt(bt) denote the1

quantile function of w(t), i.e.,2

Qt(bt) := inf
at
{at | P [w(t) ≤ at] ≥ bt} . (12)3

Then it follows immediately from (11) that4

C
(
b1, . . . , bT

)
= P [w(1) ≤ Q1(b1), . . . , w(T ) ≤ QT (bT )] .

(13)5

B. Estimation of copulas from real data6

We now show how to learn C(·) in (11) from real data7

using empirical methods1. Notice that we treat temperature,8

solar radiation and occupancy as independent processes.9

Thus each of these signals has its own C(·), decoupled and10

learnt independently of the other ones.11

Let then the generic temperature / solar radiation / occu-12

pancy process be indicated with w(k), where k is a discrete13

time index. Let its t-steps ahead predictor be ŵ(k + t|k),14

and the corresponding forecasting errors be e(k + t|k) :=15

w(k + t)− ŵ(k + t|k).16

Assumption 1 The errors e(k + 1|k), . . . , e(k + T |k) are
independent of w(0), . . . , w(k), i.e.,

p (e(k + 1|k), . . . , e(k + T |k) | w(0), . . . , w(k)) =
= p (e(k + 1|k), . . . , e(k + T |k)) .

(14)
Moreover each e(k + t|k) is a stationary ergodic random
process in k.

Assumption 1 is simplificative but fundamental for our17

learning purposes2. Assume in fact to own a database Dt18

containing some e(k + t|k)’s for several k’s and t’s. Let19

for simplicity Dt = {e(1 + t|1), . . . , e(K + t|K)} . Thanks20

to Assumption 1, the marginal distributions of all the21

e(k + t|k)’s are all equal for different k’s (not t’s), i.e.,22

P [e(1 + t|1) ≤ a] = P [e(2 + t|2) ≤ a] = . . . for all a’s.23

We can thus approximate the marginals p (e(k + t|k)) with24

the empirical marginals25

P̂ [e(κ+ t|κ) ≤ a] :=
1

K

K∑
k=1

1 {e(k + t|k) ≤ a} (15)26

where 1 {·} is the indicator function and e(κ+ t|κ) is a r.v.27

(and not an element of Dt). See Figure 2 for an example28

of empirical probability mass function of the 12-hour ahead29

temperature forecasts errors in the NDFD database.30

1In this manuscript we focus on constructing empirical copulas rather
than fitting datasets to existing types of copula. The latter approach in fact
needs tailored analyses, far beyond the scope of this article.

2We notice that actually the solar radiation and room occupancy processes
are highly heteroskedastic. E.g., usually there is neither sun nor people in
the testbed at midnight. Here we addressed this issue by clustering the data
in time zones, e.g., morning, afternoon, night, and by assuming 1 in each
cluster. A more detailed analysis of this strategy is in our future works.

Denoting the empirical marginals P̂ [e(κ+ t|κ) ≤ a] with 31

P̂t(a), we can express the empirical copula Ĉ(·) as 32

Ĉ(b1, . . . , bT )

:=
1

K

K∑
k=1

1
{
P̂1

(
e(k + 1|k)

)
≤ b1, . . . ,

. . . , P̂T
(
e(k + T |k)

)
≤ bT

}
.

(16) 33

−2 −1 0 1 2

error, [◦C]

Fig. 2: Empirical density of the 12-hour ahead temperature
forecasts errors for the database considered in our simula-
tions (100.000 samples). It can be noticed how the empirical
density of the temperature error cannot be satisfactorily
approximated with Gaussian PDFs.

C. Generation of scenarios from copulas 34

We now show how to generate the scenarios exploited in 35

the next Section IV. The algorithm for the generation of Ns 36

scenarios can be summarized as follows: 37

1) consider a point forecast [ŵ(k+1|k), . . . , ŵ(k+T |k)]T , 38

provided by the temperature / solar radiation / occu- 39

pancy forecasting algorithm; 40

2) consider Ĉ(·) and P̂t(·), computed applying (16) 41

and (15) on a database that does not contain the current 42

point forecast [ŵ(k + 1|k), . . . , ŵ(k + T |k)]T (this 43

implicitly states that Ĉ(·) and P̂t(·) have been computed 44

before generating the current scenarios); 45

3) generate Ns i.i.d. T -dimensional vectors 46[
b1,i, . . . , bT,i

]T
, i = 1, . . . , Ns from Ĉ(·); 47

4) transform these vectors by means of the marginals 48

P̂t(·), and obtain the Ns i.i.d. T -dimensional vectors 49e1,i...
eT,i

 =

 Q̂1

(
b1,i
)

...
Q̂T
(
bT,i
)
 , i = 1, . . . , Ns (17) 50

where Q̂t(·) is the empirical quantile function, i.e., the 51

quantile function corresponding to P̂t(·) computed as 52

in (12); 53

5) obtain the Ns scenarios by summing the 54

[e1,i, . . . , eT,i]
T ’s to the point forecast [ŵ(k + 55

1|k), . . . , ŵ(k + T |k)]T . 56

IV. CONTROL PROBLEM FORMULATION 57

We now present the main features of our SMPC approach, 58

which aims at increasing energy efficiency in buildings 59

while meeting the occupants comfort levels constraints. The 60

strategy is formalized precisely in Sections IV-A and IV-B. 61



• The inputs of the control scheme are, at every time1

instant, weather conditions and occupancy forecasts, and2

measurements of the current state of the system. The output3

is instead a heating, cooling and ventilation plan for the next4

N hours. Notice that only the first step of this control plan5

is applied to the building. After that, the whole procedure6

is repeated in a receding horizon approach. This introduces7

feedback into the system, since the optimal control problem8

is a function of the current state and of any disturbances that9

acted on the building at the current time step.10

• Building climate control leads naturally to probabilistic11

constraints, commonly called chance constraints. Consider12

also that current standards, e.g., [25], explicitly state that13

rooms temperatures should be kept within a comfort range14

with a predefined probability. To have a tractable SMPC15

problem, here the probabilistic constraints will be translated16

into a series of deterministic constraints.17

• The control strategy decouples the control of the tem-18

perature and of the air quality in two separated subproblems.19

This is possible because the dynamics of the air quality are20

significatively faster than the ones of the room temperature3.21

Formally thus we have 2 controllers in cascade: (i) the22

first SMPC aims at satisfying the required air quality at a23

minimum energy usage, (ii) the second SMPC controls the24

indoor temperature control.25

A. SMPC for Room Temperature Control26

1) Constraints: let x0 denote the current state. It follows
from the linear model (10), that the room temperature
dynamics over the prediction horizon N can be written as:

x(k) = Akx0 +

k−1∑
i=0

Ak−i−1Bul(i) +

k−1∑
i=0

Ak−i−1Ew(i).

(18)

Define27

Y :=
[
yT0 , . . . , y

T
N−1

]T
, Y ∈ RnyN

28

U :=
[
uT0 , . . . , u

T
N−1

]T
, U ∈ RnuN

29

W :=
[
wT

0 , . . . , w
T
N−1

]T
, W ∈ RnyN

30

A :=
[
(A)T . . . (AN )T

]T
31

B :=

 B 0
...

. . .
AN−1B . . . B

32

E :=

 E 0
...

. . .
AN−1E . . . E

33

C := diag(C, . . . , C)34

g̃ :=
[
ymin(k)T · · · ymin(k)T ymax(k)T · · · ymax(k)T

]T
35

Gx :=
[
CA

]
Gu :=

[
CB

]
36

Gw :=
[
CE

]
g := g̃ −Gxx037

38

3Incidentally, we also notice that the controllers must satisfy above all
the air quality requirements.

39

F :=

[
−INnu

INnu

]
40

f :=
[
uTmin · · ·uTmin uTmax · · ·uTmax

]T
41

42

where 0 is a zero matrix with appropriate dimensions and 43

INnu
∈ RNnu×Nnu is the identity matrix. Hence we can 44

express the output Y over the whole prediction horizon, 45

given the initial state x0, as: 46

Y = C(Ax0 + BU + EW ) (19) 47

and the constraints on the output and the inputs over the 48

whole prediction horizon N as: 49

GuU + GwW ≤ g 50

FU ≤ f . 51

Notice that we consider time varying bounds on the room 52

temperature, ymin(k) and ymax(k), which account for the 53

occupancy. 54

2) Problem Formulation: the SMPC room temperature 55

control problem can be formulated as the following stochas- 56

tic problem with joint chance constraints: 57

Problem 2 (SMPC for Temperature Control)

min
U

EPT
roomU

s.t. P [GuU + GwW − g ≤ 0] ≥ 1− α
FU ≤ f

(20)

where 1−α is the predefined probability level for constraint
satisfaction and EPT

roomU is the energy use vector over the
whole prediction horizon, EProom ∈ RnuN containing the
specific heat of the dry air, cpa, and the product Aradhrad
between the emission area and the heat transfer coefficient
of the radiators.

Problem 2 has to be solved at each time step k. Moreover 58

the initial state x0 is updated at every step using current 59

measurements from the field. 60

Probabilistic constraints require multi-dimensional integra- 61

tions and generally induce non-convex feasibility regions. 62

Chance constrained problems are thus generally intractable, 63

especially if joint chance constraints are included. A gen- 64

eral way to build computationally tractable approximations 65

of these problems is the scenario-based approximation ap- 66

proach, where the scenarios are i.i.d. samples of the random 67

variables. Nevertheless, this approximation is not necessarily 68

conservative, meaning that a feasible solution of the approx- 69

imation problem might be non feasible for the original one 70

[26]. Hence, computing reliable solutions using scenario- 71

based approximation approaches requires a large number 72

of samples. This can eventually lead to computationally 73

intractable problems. 74

A possible solution to address these difficulties is to 75

formulate conservative, computationally tractable and convex 76



approximations of the original problem [26]. Here we follow1

this scheme and apply the Conditional Value at Risk (CVaR)2

approach, one of the most widely used strategies. Hence,3

we approximate the joint chance constraint in Problem 2 as4

follows:5

E(α, τ) := E
[
τ + α−1 [GuU + GwW − g − τ ]+

]
6

CVaR(α) := min
τ

(E(α, τ) ≤ 0) , (21)7

where τ ∈ R and [a]+ := max {0, a}.8

The expected value constrained stochastic problems can9

be solved by resorting to a sample approximation problem.10

This means that the expectation in (21) is replaced with the11

empirical expectation obtained from random i.i.d. samples.12

Thus, assuming that Ns i.i.d. samples W 1, . . . ,WNs are13

provided, the non-convex Problem 2 can be approximated14

with the following deterministic linear problem [27]:15

Problem 3 (CVaR SMPC for Temperature Control)

min
U ,τ

EPT
roomU

s.t. FU ≤ f

τ + α−1
∑Ns

i=1N
−1
s zi ≤ 0

Gj
uU + Gj

wWi − gj − τ − yji ≤ 0

zi ≥ yji yji ≥ 0 zi ≥ 0

(22)

where i = 1, . . . , Ns is the scenario index and Gj
u,G

j
w, g

j

indicate the jth row of the corresponding matrices.

We notice that exponential convergence results for the16

sample approximation methods of expected value constrained17

stochastic programs are available [28], [29].18

B. SMPC for Air Quality Control19

Analogously to Section IV-A, we express the CO2 con-
centration dynamics over the whole prediction horizon as:

YCO2
= XCO2

= ACO2
x0,CO2

+BCO2
UCO2

+ECO2
WCO2

.

and the constraints (9) over the whole prediction horizon N20

as:21

Gu,CO2UCO2 + Gw,CO2WCO2 ≤ gCO2 . (23)22

where gCO2
contains the upper bound on the CO2 concen-23

tration. The SMPC problem for air quality control can then24

be initially formulated as:25

Problem 4 (SMPC for Air Quality Control)

min
UCO2

‖UCO2
‖1

s.t. P [Gu,CO2
UCO2

+ Gw,CO2
WCO2

≤ gCO2
] ≥

≥ 1− αvent

where 1− αvent is the probability level.

Then Problem 4 can be cast as a deterministic problem by26

resorting to its scenario-based approximation:27

Problem 5 (Scenario-based SMPC )

min
UCO2

‖UCO2
‖1

s.t. Gu,CO2
UCO2

+ Gw,CO2
W i

CO2
≤ gCO2

where i = 1, . . . , Nvent is the scenario index.

Remarkably, from αvent it is possible to compute a Nvent 28

that ensures (with high probability) the solution of the 29

approximation problem to be feasible also for the original 30

one [26] (and references therein). Importantly, even if the 31

so-computed Nvent is high our air quality control problem 32

remains computationally tractable. 33

We then remark that the optimal control sequence

UCO2
= [ṁvent(0), . . . , ṁvent(N − 1)]T,

computed in Problem 5, provides the lower bound on the air 34

flow rate in Problems 2 and 3. Hence, the mass air flow rate 35

and the supply air temperature at each k are easily computed 36

from the obtained values of either uh(k) or uc(k) considering 37

both the requirements on the air quality and the comfort 38

requirements on the supply air temperature. 39

V. SIMULATION RESULTS 40

We consider a laboratory room in a university building, 41

used intermittently for lecturing and experiments. The room, 42

pictured in Figure (3), has 9.4m × 9m footprint dimensions 43

and south-east external aerated concrete walls (0.4m thick) 44

while all the other walls are internal. The south-east external 45

facade comprises 4 windows, totalling approximately 2.6 m2
46

of glazed surface. The zone is heated by waterborne radiators 47

and cooled via ventilation air. The balanced ventilation 48

system is equipped with a rotary heat exchanger for heat 49

recovery. The ventilation air temperature is controlled by 50

cooling and heating coils.

Fig. 3: Sketch and picture of the room considered in our
simulations.

51

The copulas modelling the uncertainties of the solar radi- 52

ation and outside temperature forecasts are based on the data 53

collected from the NDFD database NDFD database, http: 54

//www.nws.noaa.gov/ndfd/. The same quantities, re- 55

lated to occupancy measurements, have instead been ob- 56

tained from vision-based people counting devices mounted 57

in our testbed4. 58

4Scripts for downloading and processing the NDFD database can be found
at http://hvac.ee.kth.se/.



We thus implement, in Matlab and CPLEX [30] on an1

Intel Core 2 Duo CPU 2 GHz, the three following MPC2

strategies:3

Performance Bound (PB) MPC: an ideal MPC, used as a4

theoretical benchmark, endowed with error-free fore-5

casts;6

Certainty Equivalence (CE) MPC: a common practice7

MPC that simply neglects the uncertainties in the fore-8

casts;9

Stochastic Model Predictive Control (SMPC): the MPC10

described in Problems 3 and 4 with inputs the CE MPC11

forecasts and the copula-based scenarios.12

In Problem 4 we set the confidence that the computed13

solution will be feasible to 0.99 and the constraint satisfac-14

tion level 1− αvent to 0.91, leading to a number of required15

scenarios of Nvent = 1223. In Problem 3 we instead test16

various sample sizes from 30 to 120 and various constraint17

satisfaction levels from 90% to 95%. For sake of brevity we18

will show just the results for the representative cases:19

• SMPC1, with a constraint satisfaction level of 91% and20

60 uncertainty scenarios;21

• SMPC2, with a constraint satisfaction level of 94% and22

120 uncertainty scenarios.23

We point out that the CO2 concentration is always kept24

within the comfort range (below 850 ppm).25

A. Assessment Procedure26

Wrong predictions can lead to constraints violations.27

Therefore, control performance is assessed in terms of both28

energy usage and constraint violation.29

Figure 4 depicts the resulting room temperature profile30

through the whole day obtained using SMPC1, CE MPC31

and PB MPC. It can be seen that our Stochastic MPC has32

a smaller amount of thermal comfort violations. This also33

indicates that the energy use can be still reduced with respect34

to the deterministic CE MPC controller. Further, notice that,35

in this simulation experiment, the resulting room temperature36

is significantly close to the theoretical benchmark.37

Figure 5 shows the energy use versus the amount of38

violations for the two simulation cases for all the MPC con-39

trollers. The SMPC can be tuned by varying the parameter α,40

which describes the probability level of constraint violation.41

Further, increasing the number of scenarios yields more42

accurate results at the cost of a higher computational burden.43

Then, by changing both α and the number of scenarios, the44

SMPC can trade off energy use vs. probability of constraint45

violations, and solution reliability vs. computational effort.46

Using a higher constraint satisfaction probability, as in47

SMPC2, provides less violations at the cost of a significant48

increase of the energy use. Moreover, increasing the number49

of scenarios does not lead to meaningful improvements in50

the quality of the solution. We thus conclude that selecting a51

constraint satisfaction level of 91% and 60 scenarios can be52

enough for the SMPC to perform better than the deterministic53

controller and to be close to the benchmark. Hence, simula-54

tion analysis can help finding a suitable controller in terms55
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of energy use and occupant comfort while being sufficiently 56

computationally tractable. 57

We eventually notice that solving our optimization routines 58

required on average ∼ 18 seconds per iteration, making the 59

problems affordable even with higher number of scenarios. 60

VI. CONCLUSIONS AND FUTURE STUDIES 61

To improve the building thermal control performance of 62

Certainty Equivalence (CE) MPC schemes we proposed a 63

Stochastic Model Predictive Control (SMPC) that accounts 64

for the distribution of the weather and occupancy forecasts 65

errors. This is performed by means of independent scenarios 66

extracted from the copulas of the forecasts errors, i.e., oppor- 67

tune representations of their joint distributions. Importantly, 68

these copulas can be learned in a on-line and continuous 69

fashion, leading to a dynamically self-calibrating strategy. 70

Numerical experiments indicate that the resulting SMPC 71

strategy leads to lower energy use than the CE scheme. The 72

offered controller moreover performs closely to the Perfor- 73

mance Bound (PB) MPC, a theoretically optimal scheme that 74

exploits perfect knowledge of the future. The experiments, 75

based on a room model that involves active heat capacities 76

and that has been proven providing an accurate description 77

of the behavior of buildings, indicate that it is eventually 78

possible to figuratively convert information into energy sav- 79

ings at the cost of a more complex – but still feasible and 80

solvable with normal hardware – problem. 81

This work thus motivates us to implement the proposed 82

strategy on real testbeds, and evaluate performance improve- 83

ments w.r.t. the current practice. 84

The manuscript suggests also that it is crucial to have an 85

accurate knowledge of the statistics of the errors. Namely, 86

poor descriptions of the uncertainties of the forecasts could 87

lead the SMPC to perform worse than classic CE MPC 88



schemes, or even worse than current practices. It is then nec-1

essary to understand which degree of knowledge eventually2

ensures a performance gain.3

Another important question is whether the model and4

controller can be used for large systems, e.g., entire buildings5

or buildings communities, and still preserve their feasibility,6

implementability, and favorable performance w.r.t. CE MPC7

schemes.8
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APPENDIX 104

αe [W/m2◦C] external heat transfer coefficient
a [−] absorption factor for shortwave radiation
Arad [m2] emission area of the radiators
A

j
wall [m2] wall area on the j-th surface

A
j
win [m2] area of the window on the j-th surface
c [W ] constant related to equipment and occupants

activity
CCO2,i [ppmV] inlet air CO2concentration, assumed equal

to outdoor CO2concentration
CCO2

[ppmV] concentration of CO2 within the room
cpa [J/kg◦C] specific heat of the dry air
gCO2 [m3

CO2
/pers.] generation rate of CO2 per person

Gj [−] G-value (SHGC) of the window on the j-th
surface

hi [W/m2◦C] indoor heat transfer coefficient
ho [W/m2◦C] outdoor heat transfer coefficient
hrad [W/m2◦C] heat transfer coefficient of the radiators
I j [W/m2] solar radiation on the j-th surface

mair,zone [kg] air mass in the room
ṁvent [kg/s] ventilation mass flow
Npeople [−] number of occupants in the room
Ns [−] number of scenarios for the temperature

problem
Nvent [−] number of scenarios for the ventilation

problem
R

j
win [◦C/W] thermal resistance of the window on the j-th

surface
Tair,sa [◦C] supply air temperature
Tamb [◦C] outdoor temperature
T

j
i [◦C] indoor surface temperature of the wall on

the j-th surface
Tmr [◦C] mean radiant temperature of the radiators
V [m3] volume of the air inside the room

TABLE I: Summary of the parameters involved in the
building model.


