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Detecting Broken Rotor Bars in Induction Motors
with Model-Based Support Vector Classifiers

Mohammed Obaid Mustafa, Damiano Varagnolo, George Nikolakopoulos, and Thomas Gustafsson

Abstract—We propose a methodology for testing the sanity of
motors when both healthy and faulty data are unavailable. More
precisely, we consider a model-based Support Vector Classifi-
cation (SVC) method for the detection of broken bars in three
phase asynchronous motors at full load conditions, using features
based on the spectral analysis of the stator’s steady state current
(more specifically, the amplitude of the lift sideband harmonic
and the amplitude at fundamental frequency). We diverge from
the mainstream focus on using SVCs trained from measured
data, and instead derive a classifier that is constructed entirely
using theoretical considerations. The advantage of this approach
is that it does not need training steps (an expensive, time
consuming and often practically infeasible task), i.e., operators
are not required to have both healthy and faulty data from a
system for checking it. We describe what are the theoretical
properties and fundamental limitations of using model based SVC
methodologies, provide conditions under which using SVC tests
is statistically optimal, and present some experimental results to
prove the effectiveness of the suggested scheme.

Index Terms—fault detection, model based methods, broken
rotor bar, three phase asynchronous motors, statistical character-
ization, Support Vector Classification, Motor Current Signature
Analysis.

I. INTRODUCTION

The interests in the on-line Fault Detection and Diagnosis
(FDD) of faults in induction motors is given by the fact that
more than 80% of industrial electromechanical converters are
Induction Motors (IMs) [1]. Despite being highly reliable,
these electromechanical devices are also subject to many types
of faults. Early detection is then crucial to reduce maintenance
costs, prevent unscheduled downtimes for electrical drive
systems, and prevent risks for humans.

Among the various possible faults in IMs, most of them
occur in their rotor and/or stator. The most common faults
are openings or shortings of one or more of the stator’s
phase windings [2], broken rotor bars or cracked rotor’s end-
rings [3], static or dynamic air–gap irregularities [4], and
bearing failures [5].

Many faults appear gradually, and sometimes it can be very
difficult to detect them before they induce faults in connected
processes. To ease the detection of these faults, a variety of
sensors can be used to collect meaningful information. The
most common sensors are measurements of stator voltages
and currents [4], external magnetic flux densities [6], rotor
position and speed [7], output torque [7], internal and external
temperatures [8], and vibrations [9].
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The main objective of on-line FDD schemes is to detect and
isolate the fault in its early stages. The aim of this manuscript
is then to develop and analyze a model-based scheme for the
detection of broken bars in IMs.

Literature review: FDD schemes aim at distinguishing
potential failure conditions from normal operating ones [10].
The main dichotomy separates the existing schemes in:
model-based methods: here one first determines analyti-

cally mathematical models from first-principles, and then
checks if the information obtained from measurements
comply with these models or not [15]. The advantages
of these methods are that they do not need observations
from both fault-free and faulty systems (that might not
be available) and can thus be implemented in already
existing plants;

model-free methods: here one gets measurements from a
fault-free, a faulty and a to-be checked motors, and then
decides whether the motor is healthy or faulty consider-
ing if the to-be checked measurements are (statistically)
closer to the fault-free or the faulty ones. The advantages
of these methods are that they potentially do not suffer of
imprecisions in the theoretical models describing the mo-
tor (due, e.g., to simplifications, construction tolerances
and wear of the machine). Disadvantages of model-free
methods are in the difficulty of obtaining data and in the
absence of generalization capabilities: indeed training a
method using a specific motor does not guarantee that
that method will work for other motors.

As stated more precisely in the statement of contributions,
our method exploits a model-based strategy that uses Support
Vector Classifications (SVCs) and evaluations of the sidebands
of the harmonics of the stator current (also known as Motor
Current Signature Analysis (MCSA)). In the next bulleted
paragraphs we thus review literature on model-based methods,
literature on model-free methods based on SVC strategies, and
literature on model-free methods exploiting properties of the
stator current.
• Model-based methods: among the few manuscripts in

this category, [16] performs fault detection and localization
of stator and rotor faults in IMs using model structures
that are derived from theoretical considerations as in this
manuscript, but using parametric estimation methods instead
of SVC strategies. Also [17] develops an empirical model-
based fault diagnosis system, but using recurrent dynamic
Neural Networks and multi-resolution signal processing meth-
ods, and lacks describing the theoretical properties of the
strategy. [12] exploits instead models obtained using finite-
element methods, and thus techniques and software tools not
always available to practitioners.
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• Model-free methods based on SVC strategies: Support
Vector Classifications are based on structural risk minimization
concepts [18], and require selecting opportune features, i.e.,
measurable and quantifiable characteristics to be exploited as
benchmarks (see Section VIII for more details). In literature
one can find reviews on the generic usage of SVC technologies
for the monitoring of machine conditions and for the diagnosis
of faults [19]. Other works instead deal specifically with mo-
tors. E.g., [20] tests unbalance, misalignment and mechanical
looseness in three phase induction motors using measurements
of vibrations as features. [21] instead detects broken bars by
using features that are based on discrete wavelet transforms
and wavelet packet transforms of the motor current signatures
(the benefit of using these transforms being to require lower
sampling rates). [22] also uses spectral information of the
phase current and phase voltage.
• Model-free methods based on properties of the stator

current: broken bars introduce distortions in the air-gap field
that eventually modify the envelope and the spectrum of the
current. Faulty spectra have indeed specific sideband compo-
nents around the main supply frequency; FDD schemes can
then act by checking the presence of these specific frequency
components [23], [24], [25], [26], [13]. One can also exploit
analysis of the envelope of the current, since faults cause
modulation effects in time that are not present in non-faulty
conditions. For example, [27] analyzes these envelopes using
Gaussian mixture models and reconstructed phase spaces to
identify motor faults. On the other hand MCSA is the optimal
choice for electrical machines under steady-state conditions
and rated load [1], while frequency analysis is a generally
exploited concept for checking industrial equipment [11].

Statement of contributions: We propose a model-based
SVC technique: more specifically, we construct SVCs starting
from features computed from models of fault-free and faulty
motors. In this way we therefore do not need collecting
training datasets, and thus address the situation in which there
is no possibility of collecting data from both fault-free and
faulty systems.

The selected features are the ones that are currently believed
to be the most powerful ones for motor fault classification
purposes, i.e., features based on the analysis of the spectrum
of the stator current at full load conditions. Remarkably, even if
we explicitly derive the technique for these specific features,
we also provide and discuss a general framework that can
be used also for other features. We are thus proposing a
methodology rather than simply a method.

We then also answer the question of why one should
use a SVC strategy, motivate under which assumptions it
is statistically correct to use SVC approaches, and perform
experimental evaluations on real case scenarios to prove the
validity of the technique for practical purposes.

At the best of our knowledge, thus, our contributions w.r.t.
to the existing literature are: i) we propose for the first time
and validate against real data a model-based SVC technique;
ii) we propose a broad methodology that can be applied to
generic features; iii) we clarify under which assumptions it is
statistically optimal to use SVC strategies.

Organization of the manuscript: Section II starts with
describing the effects of broken bars in IMs. Section III then
introduces in general terms our methodology. Sections from IV
to XI detail the specific steps defined by our methodology.
Section XI reports also a statistical analysis of the proposed
classification rule. Section XII describes some numerical re-
sults on artificially broken IMs. Section XIII then concludes by
summarizing some remarks on the findings and by outlining
future development lines.

II. EFFECTS OF BROKEN BARS ON INDUCTION MOTORS

Rotor bars break because of thermal, magnetic, residual,
dynamic, and mechanical stresses [2], [23], and constitute a
significant part of the problems in induction motors [28], [29].

According to the generalized rotating field theory [30],
healthy motors have symmetrical stator windings that produce
a field that is rotating at the supply frequency fs; this induces
an Electro-Magnetic Field (EMF) in the rotor circuits rotating
at frequency sfs, where s is the slip.

Broken rotor bars cause asymmetries in the resistance and
in the inductance of the rotor’s phases, that then generate
asymmetries in the rotating electromagnetic field in the air
gap between stator and rotor. Consequently, broken rotor bars
produce back-ward rotating field and additional non-sinusoidal
EMF components that induce frequency harmonics in the
stator current [24]. More specifically, changes are specially
in the amplitude of the sidebands [9], [23]

(1∓ 2ks)fs, k = 1, 2, . . . . (1)

Thus the spectrum of the stator currents contains information
useful for detecting faults, since the frequency spectra of
faulty and healthy motors differentiate in the sidebands, with
a magnitude of these variations that is also dependent on the
severity of the fault [24].

III. MODEL-BASED SUPPORT VECTOR CLASSIFICATION:
METHODOLOGY

Figure 1 summarizes the quantities involved in our method-
ology. More precisely:

• vms (t) is the measured signal of the stator voltages, and
represents the input of the motor. It is a directly measured
quantity returned by the measurement system;

• P is the real motor, i.e., the physical device;
• Ph and P f are mathematical models of P under healthy

(h) or faulty (f ) assumptions. They are directly computed
quantities derived from first principles. They thus do not
depend on any of the other quantities summarized in
Figure 1 rather than the nominal parameters of P ;

• ims (t) is the measured stator currents, and represents the
output of the motor.

• ihs (t) and ifs (t) are the stator currents obtained driving
the theoretical models Ph and P f with the measured
input vms (t). They are indirectly computed quantities, and
depend only on the measured signal vms (t) and the models
Ph and P f ;
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• Φ (·) maps stator currents (ims (t), ihs (t), or ifs (t)) into a
point in the features space. Formally, thus,

φ∗ = Φ (i?s(t)) where ∗ ∈ {m,h, f} . (2)

vms (t)

P Ph P f

ims (t) ihs (t) ifs (t)

Φ (·) Φ (·) Φ (·)

φm φh φf

features space

wTφ− b = 0

Figure 1. Summary of the quantities involved in our considerations.

We propose the following model-based SVC methodology,
where the execution of steps Step-1 to Step-5 are performed
a priori, before receiving the measurements:
Step-1: construct Ph and P f from the specifics of the motor

P ;
Step-2: compute, by means of Ph and P f , the currents ihs (t)

and ifs (t);
Step-3: define the currents-to-features map Φ;
Step-4: compute, by means of the map Φ, the features φh and

φf ;
Step-5: build from φh and φf the corresponding SVC rule;
Step-6: measure, by means of an opportune Data Acquisition

(DAQ) system, the stator voltages vms (t) and currents
ims (t);

Step-7: compute, by means of the map Φ, the features φm;
Step-8: decide if the motor is in healthy or faulty conditions

by classifying φm by means of the constructed SVC.

Each of the following sections describes one of the pre-
vious steps. Section XI, in particular, motivates the focus
on SVC paradigms, and provides theoretical considerations
on the robustness of the method against uncertainties in the
measurement system.

IV. STEP-1: CONSTRUCT Ph AND P f

A. Construct Ph

Assume that the system is healthy. As proposed in [31], a
generic single phase of the induction motor can be represented
with the equivalent circuit in Figure 2.

rs xs xr

xm
rr
s

vas(t) = Vm sin (ωst)

ias(t)

Figure 2. Equivalent representation of a single phase of a general induction
motor under healthy assumptions [31].

The parameters rs, xs, xr, xm, rr defining the circuit in
Figure 2 are computed directly starting from the nominal
specifics of the motor. The slip s can instead be computed
as

s =
Ns −Nr

Ns
(3)

where Ns = 60fs
p , p is the poles pair defining the motor model,

and Nr is the rotational speed of the induction motor.

B. Construct P f

We hypothesize that the faulty conditions are given because
of broken bars in the rotor cage so that, as described in
Section II, frequency harmonics appear in the stator currents.
As in [30], [32], we pose the following assumptions:

Assumption 1 The impact of broken rotor bars is modeled
by:
A1) unbalancing the rotor resistance;
A2) neglecting changes in the rotor inductances;
A3) neglecting effects from the end-ring;
A4) neglecting magnetizing currents;
A5) letting broken bars be contiguous;
A6) letting the slip value be near the rated one, so that

the rotor effective reactances are small with respect to
resistances.

Notice that Assumptions A1 to A4 can be safely posed since
their influence is insignificant compared to the changes in the
rotor resistance, while Assumption A5 can be safely posed
because it describes the typical breakage pattern.

As described in Section II, broken rotor bars induce fre-
quency harmonics in the stator current in the sidebands of the
supply frequencies described in (1). In a motor with N bars,
n broken bars will thus simply an increment of the phase a’s
resistance ∆rra equal to [33]

∆r = rr
3n

N − 3n
. (4)

V. STEP-2: COMPUTE ihs (t) AND ifs (t)

A. Compute ihs (t)

Thanks to the representation of Ph given in Figure 2, we
can compute the stator current in healthy conditions as

ihas(t) =
vas(t)

Zm
=
Vm sin (2πfst− ∠Zm)

|Zm|
(5)
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where Zm is the equivalent impedance of the circuit, given by

Zm = rs + jxs +


(rr
s

+ jxr

)
(jxm)

rr
s

+ j(xr + xm)

 . (6)

B. Compute ifs (t)

Consider the faulty model P f analyzed in Section IV-B, and
the simplificative assumption (motivated by the discussion in
Section IV-B and borrowed from [31], [30]) for which the
faulty current signal is given by

ifas(t) = Im sin
(
2πfst

)
+Il sin

(
2πflt− αl

)
+Ir sin

(
2πfrt− αr

)
(7a)

ifbs(t) = Im sin
(
2πfst− 2π/3

)
+Il sin

(
2πflt− αl − 2π/3

)
+Ir sin

(
2πfrt− αr − 2π/3

)
(7b)

ifbs(t) = Im sin
(
2πfst+ 2π/3

)
+Il sin

(
2πflt− αl + 2π/3

)
+Ir sin

(
2πfrt− αr + 2π/3

)
(7c)

where {
fl := (1− 2s) fs
fr := (1 + 2s) fs.

(8)

Practically speaking, by considering (7) we obtain an ap-
proximated spectrum that matches the faulty one around the
frequencies of interest fl and fs (the unique ones considered
in our methodology).

rs xs
rr
s xr

rs
2s− 1 xs

rr
s
xr

∆r

3s
vas(t) = Vm sin (ωst)

il(t)

Figure 3. Auxiliary circuit instrumental to compute the amplitude Il
introduced in (7) [31].

Thanks to this approximation the amplitudes Il and Ir (that
are assumed to be equal, as in [23], [30]) can be computed as
the maximal amplitude of the sinusoidal signal il(t) auxiliary
and circuit in Figure 3. We thus remark that the circuit in
Figure 3 is not representing the motor: it is an ancillary
circuit to compute the amplitudes Il and Ir. Notice that the
angular displacements αl and αr can be computed using
similar circuits, omitted here for brevity, but available in [30],
[34].

VI. STEP-3: DEFINE Φ(·)
The currents-to-features map Φ(·) computes the main and

left-side harmonics of the stator current. More specifically, the
features are computed starting from a generic stator current
i?as(t), with ? ∈ {m,h, f}, and using the following procedure:

1) window the signal i?as(t) in t = [0, T ], i.e., compute

i
?
as(t) =

{
i?as(t) for t ∈ [0, T ]
0 otherwise; (9)

2) compute the Fourier Transform (FT) of the windowed
current i

?
ac(t), i.e., compute

î?as(f) =

∫
R
i
?
as(t) exp (−2πjft) dt; (10)

3) compute the features φ∗ as the amplitude of the FT
evaluated at the supply frequency fs and at the frequency
fl defined in (8), i.e., compute

φ? = Φ (i?as) =


∣∣∣̂i?as (fs)

∣∣∣∣∣∣̂i?as (fl)
∣∣∣
 . (11)

VII. STEP-4: COMPUTE φh , AND φf

A. Compute φh

Consider ihas(t) computed in (5). Then the windowed stator
current i

h
as(t), i.e.,

i
h
as(t) =


Vm sin (2πfst− ∠Zm)

|Zm|
for t ∈ [0, T ]

0 otherwise.
(12)

is a windowed sinusoidal. This means that its FT îhas(f),

îhas(f) =

∫
R
i
h
as(t) exp (−2πjft) dt, (13)

is a sinc function centered around the fundamental frequency
fs, i.e.,

îhas(f) = ImT
sin
(
πT (f − fs)

)
πT (f − fs)

, Im =
Vm
|Zm|

. (14)

This means that

φh =

 ImT
sin
(
Tπfs

)
Tπfs

ImT
sin
(
2Tπsfs

)
2Tπsfs

 . (15)

B. Compute φf

Consider ifas(t) computed in (7). Then again the windowed
stator current i

f
as(t) is a sum of windowed sinusoidals. This

implies that its FT îfas(f) evaluated at the generic frequency f
is the sum of 3 sinc functions centered around the fundamental
frequency fs, i.e.,

îfas(f) = ImT
sin
(
πT (f − fs)

)
πT (f − fs)

+IlT
sin
(
πT (f − fl)

)
πT (f − fl)

exp (−2πjfαl)

+IrT
sin
(
πT (f − fr)

)
πT (f − fr)

exp (−2πjfαr) .

(16)
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This means that

φf =

 ImT + (IlT + IrT )
sin
(
2Tπsfs

)
2Tπsfs

ImT
sin
(
2πTsfs

)
2Tπsfs

+ IlT + IrT
sin
(
4Tπsfs

)
4Tπsfs

 .
(17)

VIII. STEP-5: BUILD THE SVC

Here we aim at building the separating hyperplane wTφ−
b = 0 that is depicted in Figure 1 and that corresponds to our
healthy / faulty classification rule. Let then the dataset D be
composed of just the two datapoints

(
φh,+1

)
and

(
φf ,−1

)
,

where the subscript h denotes “healthy” while f denotes
“faulty”. To derive the equations of the linear hyperplane
wTφ − b = 0 separating D, since the two datapoints will
surely be Support Vectors (SVs) we consider the equivalent
SVC optimization problem

argw,b min 1
2 ‖w‖

2

s.t. wTφh − b = 1
wTφf − b = −1.

(18)

The associated Lagrangian is then

Λ
(
w, b, λh, λf

)
:=

1

2
wTw

+λh
(
wTφh − b− 1

)
+λf

(
wTφf − b+ 1

)
.

(19)

The optimal values for w and b are then derived from getting
Λ’s critical points, i.e., from setting[

∂Λ

∂w

∂Λ

∂b

∂Λ

∂λh
∂Λ

∂λf

]
= [0 0 0 0] , (20)

or, equivalently, 
w + λhφh + λfφf = 0
λh + λf = 0
wTφh − b− 1 = 0
wTφf − b+ 1 = 0

(21)

that, expanded, leads to

λh = −λf

λf =
2

‖φh − φf‖2

w =
2
(
φh − φf

)
‖φh − φf‖2

b =

(
φh − φf

)T (
φh + φf

)
‖φh − φf‖2

(22)

and a margin of, as expected,

m =
2

‖w‖
= ‖φh − φf‖. (23)

IX. STEP-6: MEASURE vms (t) AND ims (t)

As for the stator voltages, we assume that vmas(t), vmbs(t),
and vmcs(t) are perfectly measured, and that the rotor voltages
vmar(t), vmbr(t) and vmcr(t) are zero. The maximum voltage Vm
and the supply frequency fs are also assumed to be perfectly
known. We thus assume that we do not need to measure vms (t).

As for the stator currents, we assume that imas(t), imbs(t), and
imcs(t) are measured by the DAQ system.

X. STEP-7: COMPUTE φm

Once imas(t) is given by the measurement system, φm is
computed numerically using the 3 steps (9), (10) and (11)
given above.

XI. STEP-8: DECIDE WHETHER THE MOTOR IS FAULTY OR
HEALTHY

Recall that at this stage the SVC rule (w, b) has already been
constructed from φh and φf . φm is then directly mapped into
a healthy / faulty decision by means of

g (imas) :=

{
H0 (healthy) if wTφm − b > 0
H1 (faulty) otherwise. (24)

A. Assess the quality of the decision rule g(·) – Intuitions

Let us postpone formal definitions to the following Sec-
tion XI-B. We then intuitively consider that our methodology
suffers of 3 sources of uncertainty:

1) measurement noise, that is present on φm;
2) parameters uncertainties, that are present on φh and φf .

These uncertainties then make the decision rule g(·) prone to
errors. But how much?

In the following section we analytically address the situation
for which only φm is uncertain. Due to space limitations, we
postpone addressing uncertainties also on φh and φf in future
works, that will focus entirely on robustness and sensitivity
issues.

B. Assess the quality of the decision rule g(·) – Formal
derivations

Assume that, independently of healthy or faulty conditions,
the measured current ihas(t) is corrupted by a white noise δi(t),
i.e., that

ihas(t) =

{
ihas(t) + δi(t) if H0

ifas(t) + δi(t) if H1
(25)

where δi(t) is a (potentially non-Gaussian) white noise with
finite variance σ2. Since the operations in steps 1, 2 and 3 are
linear, it follows that

φm =

{
φh + δφ if H0

φf + δφ if H1.
(26)

To describe then the probability density of δφ, consider
that δi(t) is assumed to be a white noise, i.e., to have a
distribution with spherical symmetry. Since FTs are orthogonal
transformations, the FT of δi(t) will be again white1 with the
same variance σ2.

1We recall that it is the power spectrum of white noise that is flat.
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Assume then for simplicity that δi(t) is zero-mean Gaus-
sian, so that

φm ∼
{
N
(
φh, σ2I2

)
if H0

N
(
φf , σ2I2

)
if H1

(27)

with I2 the 2 × 2 identity matrix. The probability of type I
errors (i.e., choosing H1 when H0 is true) is then

P [g (imas) = H1 under H0] .

Due to symmetry reasons, the probability of type II errors (i.e.,
choosing H0 when H1 is true) is equal to the probability of
type I errors.

Proposition 2 Letting ξ ∼ N (0, 1), and under the assump-
tions above,

P [g (imas) = H1 under H0] = P
[
ξ >

m

2σ

]
. (28)

Proof Consider that

P [g (imas) = H1 under H0] = P
[
wT
(
φh + δφ

)
− b < 0

]
.

Since φm is a support vector for problem (18), i.e., wTφh −
b = 1, the faulty condition reduces to wT δφ < −1. Define
then

u =

[
u1
u2

]
:=

φh − φf

‖φh − φf‖
(29)

and notice that u21 + u22 = 1. Exploiting then the definition of
the margin m in (23), the faulty condition reduces to u1δ1 +
u2δ2 < −mw , where δ1 and δ2 are the two components of δφ.
The proposition follows then from the fact that δ1 and δ2 are
independent, and thus that

ξ :=
u1δ1 + u2δ2

σ
∼ N (0, 1) (30)

and the fact that P
[
ξ < −m

2σ

]
= P

[
ξ > m

2σ

]
.

Summarizing, (28) can be seen as a map from the quality of
the DAQ measurement system (σ) and the difference between
theoretical healthy and faulty operations (m) to the probability
of committing type I or II errors. Graphically, this map is given
in Figure 4.

10−2
100

10−4
10−2

100
0

0.25

0.5

m σ

P
[ ξ
>
m 2σ

]

Figure 4. Dependency of (28), i.e., the probability of committing errors of
type I or II, on the measurements quality index σ2 and on the difference
between the theoretical healthy and faulty operations index m.

C. Interpreting (24) as a test between two simple hypotheses

It is immediate to interpret (24) using classical statistical
hypothesis testing frameworks. More specifically, the test is to
check hypotheses on the unknown mean of a Gaussian with
given variance (cf. (27)), where the hypotheses are simple (i.e.,
not sets of values but rather two simple vectors, namely φh

and φf ).
Rewriting then the statistical test (24) as

g (imas) =

{
H0 if

∥∥φm − φh
∥∥2 > ∥∥φm − φf

∥∥2 ,
H1 otherwise,

(31)

one recognizes that the condition for selecting H0 is

exp
(
σ−2

∥∥φm − φh
∥∥2)

exp
(
σ−2

∥∥φm − φf
∥∥2) > 1 (32)

i.e., a likelihood ratio. Thus, thanks to the Neyman-Pearson
Lemma [35, Thm. 4.2.1], the test g(·) is Most Powerful (MP)
given the level of errors of type I (i.e., given the size) (28).

This thus motivates why detecting broken bars from motor
current signatures using SVC concepts is, under these assump-
tions on the measurement noise, statistically optimal.

XII. EXPERIMENTAL RESULTS

In this section we evaluate the proposed methodology in a
particular real case by means of an experimental test bed that
is designed for detecting broken bars in squirrel cage induction
motors.

The experimental setup, depicted in Figure 5, consists of
a three phase induction motor, a DC generator that works
as a load for the motor, and a DAQ instrumentation that
measures and collects (with a 5-kHz sampling frequency) the
stator currents imas(t), imbs(t), and imcs(t), and the stator voltages
vmas(t), vmbs(t), and vmcs(t).

Figure 5. Photo of the experimental setup used for evaluating our broken bar
fault detection methodology. The induction motor used in our experiments is
on the right; the DC generator used as a load is on the left.

Our fault detection procedure starts with constructing the
SVC test by using the nominal parameters of the considered
IM available in Table I. This information is used to build
the circuits represented in Figures 2 and 3 in Section IV.
After building the circuits, one computes the currents ihas(t)
and ifas(t) (Section V), then their spectra (shown for our
experiments in Figure 6), and eventually the features φh and
φf through (15) and (11) (Section VII). This leads to obtain
a classifier of the form (24) without having exploited at all
measured signals.
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Figure 6. Amplitude of the Fourier Transforms (FTs) of the theoretical
windowed stator currents under faulty (top panel) and healthy (bottom panel)
conditions. It can be noticed that the two spectra markedly differ around the
lower and upper sidebands.

To test the classifier (24) we then collect data corresponding
to the following two situations:

1) a healthy and properly working motor under full load con-
ditions with the specifications given in Table I. We denote
the corresponding stator current signal with imhas (t);

2) the same motor under full load and faulty conditions cre-
ated by deliberately drilling a rotor’s bar (see Figure 7).
We denote the corresponding stator current signal with
imfas (t);

The spectra of the measured signals imhas (t) and imfas (t) are
then represented in Figure 8.

Figure 7. Detail of the motor used in our experiments: the broken rotor bar
fault has been artificially produced by drilling a hole in the squirrel cage.

Table I
NOMINAL CHARACTERISTICS OF THE THREE-PHASE INDUCTION MOTOR

USED IN OUR EXPERIMENTS.

parameter description nominal value
p Pole Numbers 4
Vm Rated Voltage 537 V
fs Frequency 50 Hz

Rated Power 1.1 kW
Im Rated current, Y Connection 3.5 A
rs Stator resistance 4.8 Ohm
rr Rotor resistance 5 Ohm
xs Stator inductance 48 mH
xr Rotor inductance 48 mH
xm Mutual inductance 0.636 H
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Figure 8. Amplitude of the Fourier Transforms (FTs) of the measured
windowed stator currents under faulty (top panel) and healthy (bottom panel)
conditions. Again, the two spectra markedly differ around the lower and
upper sidebands. The measured spectra, moreover, reproduce the theoretical
ones plotted in Figure 6, and this is an indication that the theoretical models
reproduce sufficiently accurately the measured reality.

The measured features to be used in the SVC classifiers
are then the fundamental harmonic, located at fs, and its left
sideband, located at fl. As it can be observed from Figure 9,
the proposed model based SVC test accurately discriminates
the broken and healthy motors used in our experimental
results.

−6 −4 −2 0
15

16
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φ
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φh

φf

φmh

φmf

Figure 9. Overall assessment of the SVC procedure: the squares represent
the theoretically derived features, from which one computes the separating
hyperplane wTφ − b = 0. The triangles instead represent the measured
features, obtained from testing the real device described above. The features
with white interior represent healthy motors, while the ones with black interior
represent faulty motors.

XIII. CONCLUSIONS

We presented a model based Support Vector Classification
(SVC) method for detecting broken rotor bars in three phase
asynchronous motors. We consider features that are extracted
from the spectral analysis of the stator currents (more specif-
ically the amplitude of the fundamental and the left sideband
harmonics) at full load conditions.

We investigated what are the capabilities of using theoreti-
cally derived SVC rules, driven by our interests in the practical
cases where one needs to construct faults detectors in the
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situation where measurements from both healthy and faulty
systems are simultaneously not available.

The main messages brought by this manuscript are that:
a) using theoretically derived SVCs can be meaningful in
practical cases: the method has indeed been experimentally
evaluated, and has been able to detect the fault occurrence
in the examined case; b) SVC is a statistically meaningful
approach when considering Motor Current Signature Analysis
(MCSA). Indeed we proved how, under mild conditions on the
measurement noise, using SVC methods is statistically optimal
under classical hypothesis testing frameworks.

The methodology is nonetheless still in its infancy: future
works need to address specially the robustness to load vari-
ations, changing operating conditions (indeed thermal effects
make the parameters such as resistances and inductances vary),
and in general the effects of model uncertainties.
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