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Abstract Since intuition states that it is simple and fast to compute maxima over networks,
we aim at understanding the limits of computing averages over networks through computing
maxima. We thus build on top of max-consensus based networks’ cardinality estimation
protocols a novel estimation strategy that infers averages through computing maxima of
opportunely and locally generated random initial conditions. We motivate the max-consensus
strategy explaining why it satisfies practical requirements, we characterize completely its
statistical properties, and we analyse when and under which conditions it performs favourably
against classical linear consensus strategies in static Cayley graphs.
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1. INTRODUCTION1

Assume that each node i = 1, . . . , n of a sensor network
samples a noisy measurement

yi = hTi θ + νi (1)

with hi known and θ to be estimated. Distributedly com-
puting the Least Squares (LS) estimate of θ corresponds
then to evaluating

θ̂ =

(
1

n

n∑

i=1

hih
T
i

)−1(
1

n

n∑

i=1

hiyi

)
, (2)

i.e., a ratio of averages of local quantities.2

(2) exemplifies how certain distributed task can be solved3

by computing averages over networks: quoting the sur-4

vey [1], many control, optimization and estimation prob-5

lems such as least squares, sensor calibration, vehicle6

coordination and Kalman filtering can be cast as the7

computation of some sort of averages. In other words,8

average consensus represents an important tool for solving9

distributed tasks.10

The performance of average consensus algorithms is of-11

ten measured in convergence speed, i.e., the number of12

communication steps required to reach an agreement [2].13

Indeed, the longer it takes to solve (2), the older the14

original information will be. There is thus a vast effort in15

developing “fast” average consensus strategies with prov-16

able convergence properties. Here we follow this trend,17

and try to understand to which extent max consensus18

protocols (among the fastest consensus strategies in the19

sense specified in Section 3) can be used for computing20

averages over networks.21
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Literature review Let each node i = 1, . . . , n of the
network have an initial value si in its memory, and assume
that the aim of the nodes is to compute

a :=
1

n

n∑

i=1

si =
s

n
, s :=

n∑

i=1

si. (3)

The most well known and characterized average consensus
approach is that of performing linear iterations of the form

a1(k + 1)

...
an(k + 1)


 = P (k)



a1(k)

...
an(k)


 ,



a1(0)
...

an(0)


 =



s1
...
sn


 (4)

with matrices P (k) consistent with the underlying graph 22

and capturing how nodes exchange and mix their informa- 23

tion [1]. The convergence properties of (4) depend on the 24

spectral properties of the P (k)s [3], and thus on the com- 25

munication topology. When the communications network 26

can be designed, then the optimal strategy is given by a 27

de Bruijn graph [4]. When, instead, it is given, then (for 28

static graphs) the P (k) = P leading to fastest convergence 29

is the solution to an opportune semidefinite program [5]. 30

Our approach to compute a in (3) is based on a different 31

premise: instead of aggregating information through sums, 32

we consider max-operations. Here, we first propose a max- 33

consensus based strategy and then compare it with (4). At 34

the best of our knowledge, there is no literature addressing 35

these two points, while there are manuscripts describing 36

how to compute n (and, potentially, also s) using max- 37

operations. When quantization issues are negligible, the 38

problem of estimating the network cardinality n through 39

max-consensus protocols is completely solved [6]. We are, 40

however, not aware of generalizations for estimating s and 41

a, and not aware of solutions to estimating the cardinality 42

n when quantization issues are considered (a first partial 43

attempt is in [7]). 44

We notice that the max-consensus strategies cited above 45

are not perfect counting mechanisms. Coupling a max- 46

consensus-based leader election step with the classical 47



average consensus would in fact lead to perfect counting1

(assuming that the leader election task terminates cor-2

rectly) [8]. Nonetheless this hybrid approach has slower3

convergence properties (a max consensus step is followed4

by an average consenus step). We also notice that an5

alternative strategy for estimating averages is to exploit6

sampling-based approaches, i.e., averaging only a subset7

of the n original numbers s1, . . . , sn; the quality of this8

approximation depends then on the empirical distribution9

of these quantities [9].10

Assumptions Here we summarize our simplifying as-11

sumptions, omitting for brevity some basic graph-theoretic12

definitions (deferred to [1]).13

Assumption 1. The network is represented by a static14

strongly connected graph G = (V, E) with V = {1, . . . , n}15

the set of nodes and E the set of communication links.16

Assumption 2. Time is partitioned into ordered intervals17

indexed by t = 0, 1, 2, . . ., each referred to as an “epoch”.18

During each epoch, randomly, uniformly and i.i.d. during19

the epoch, each agent i in the network broadcasts its20

information to all its neighbors through a perfect channel21

(i.e., without collisions, delays, communication errors).22

Assumption 3. Computations are free of quantization is-23

sues.24

Assumption 4. The quantities si are all strictly positive.25

Problem definition Given the previous assumptions, nodes
can compute m := maxni=1 {si} through iterations of the
kind
si(k) = max

(
si(k − 1), {sj(k − 1)}j∈Ni

)
, si(0) = si,

(5)
with Ni denoting the set of neighbors of i. Protocol (5)26

converges to m in at most d epochs, with d the diameter of27

the network (notice that d can be estimated using the very28

same protocol [10]). In fact, the maximum m is different29

from the average a; nonetheless, as explained in Section 2,30

it is possible to modify the initial condition in (5) so that31

the resulting m conveys statistical information about a,32

eventually allowing one to compute a Maximum Likelihood33

(ML) estimate â of a from m. Moreover one can improve34

the statistical accuracy of â by sending more information35

per communication step (see Section 2).36

Consider instead the classical linear average consensus37

protocol (4) where P (k) = P , consistent with the network38

graph and doubly stochastic, i.e., with non-negative entries39

and s.t. if 1 is a column vector of n ones then P1 = 1,40

PT1 = 1. With these assumptions protocol (4) expo-41

nentially converges to a with rate equal to the essential42

spectral radius of P [1, Theorem 1].43

Thus:44

• the average consensus converges exponentially to a;45

• the max consensus converges in d steps to â 6= a, and46

the estimation error can be diminished by increasing47

the number of scalars sent per communication step.48

Choosing the Mean Squared Error (MSE) as our perfor-49

mance index (i.e., the sum of the squares of the local50

deviations from a at the generic epoch k), under certain51

conditions (on P , on s1, . . . , sn, on the number of scalars 52

used in the max consensus and others; see Section 2), the 53

max-consensus based strategy may lead to better MSEs. 54

Here, we are interested in studying when this happens. 55

Statement of contributions Our contributions are: 56

(1) derive (32), i.e., a max-consensus based ML estimator 57

of a, and fully characterize its statistical properties 58

in (37) and (38); 59

(2) motivate estimator (32) as the unique possible strat- 60

egy under the framework described in Section 3; 61

(3) characterize when, and under which conditions, es- 62

timator (32) performs better (in MSEs terms) than 63

the average-consensus strategy (4) when considering 64

Cayley graphs. 65

Structure of the manuscript Section 2 presents the esti- 66

mation strategy and characterizes it from statistical per- 67

spectives. Section 3 motivates the structure of the pro- 68

posed protocol from practical considerations. Section 4 69

compares the performance of the novel estimator with 70

the average-consensus strategy. Section 5 concludes the 71

manuscript with some remarks and a roadmap for future 72

research. 73

2. MAX AVERAGING 74

We introduce and characterize an unbiased estimator 75

of the average a = s/n = sn−1 in (3) by means of 76

the following 3 subsections, defining respectively a ML 77

estimator for n−1 (Section 2.1), for s (Section 2.2), and 78

for a (Section 2.3). 79

2.1 Estimating n−1 80

Estimating the size of a network n has been a research
topic for long. In our set-up we are interested in performing
this task through max-consensus strategies under the as-
sumption of negligible quantization effects. I.e., we assume
that the memory of the generic agent i is endowed with
the Mn-dimensional vector

yi = [yi,1 . . . yi,Mn ] ∈ RMn (6)
where each component is a real-valued scalar initialized at
the origin of time as
yi,m ∼ U [0, 1] i.i.d., i = 1, . . . , n, m = 1, . . . ,Mn,

(7)
and where the max-consensus communication protocol is
such that for every communication epoch (cf. Assump-
tion 2) every node updates its yi,m’s for m = 1, . . . ,Mn

as
yi,m ← max

j∈Ni

(
{yj,m} , yi,m

)
(8)

so that, after at most d epochs, every yi,m converges to
ym := max

j∈V
{yj,m} , m = 1, . . . ,Mn. (9)

Let then
y := [y1, . . . , yMn

] . (10)



Using order-statistics considerations it is immediate to
check that

p (y ; n) = nMn

Mn∏

m=1

(
ym
)n−1

, (11)

so that the ML estimator of n−1 given y is

n̂−1 = n̂−1(y) := − 1

Mn

Mn∑

m=1

log ym. (12)

This estimator, fully characterized in [6], has a proba-
bility distribution expressible in closed-form. Indeed each
variable − log (ym) is exponentially distributed with rate
n; moreover the sum of Mn i.i.d. exponential random
variables with rate n is a Gamma random variable with
shape Mn and scale n−1. n̂−1 is thus a scaled version of
this sum of exponentials

p
(
n̂−1 ; n,Mn

)
= Gamma

(
Mn, (nMn)−1

)
(13)

(Mn is the shape, (nMn)−1 is the scale) such that, for
Mn > 2,

E
[
n̂−1

]
= n−1, (14)

E



(
n−1 − n̂−1

n−1

)2

 = var

(
n̂−1

n−1

)
=

1

Mn
. (15)

Interestingly, n̂−1 is Minimum Variance Unbiased (MVU),1

i.e., efficient and it achieves its Cramér-Rao lower bound.2

Remark 5. Generating yi,m in (7) using distributions other
than the uniform does not lead to better statistical perfor-
mance. Indeed by using the probability integral transform
it is possible to show that generating yi,m using any cu-
mulative distribution P(·) that is absolutely continuous
(the natural choice for the case considered here, where we
neglect quantization issues) leads to an estimator of the
form

n̂−1 = n̂−1(y) := − 1

Mn

Mn∑

m=1

logP(ym). (16)

The novel estimator would have the same probability3

density of n̂−1 given in (13) [6, Prop. 7], and thus be4

statistically equivalent to the original one.5

2.2 Estimating s6

Estimating s =
∑n
i=1 si can be seen as a generalization

of estimating n =
∑n
i=1 1, i.e., as a weighted cardinality

estimation problem. In this case assume that the memory
of the generic agent i is endowed with the Ms-dimensional
vector

zi = [zi,1 . . . zi,Ms ] ∈ RMs (17)
where each component is a real-valued scalar. Exploiting
the fact that Beta distributions are generalizations of
uniform distributions, namely,

u ∼ U [0, 1]⇒ u1/s ∼ Beta (s, 1)⇒ Beta (1, 1) = U [0, 1] ,
(18)

we now consider the initialization of the components zi,m
at the origin of time as
zi,m ∼ Beta (si, 1) i.i.d., i = 1, . . . , n, m = 1, . . . ,Ms.

(19)

We thus consider the same max-consensus communication
protocol as before, i.e., for each epoch every node updates
every zi,m for m = 1, . . . ,Ms as

zi,m ← max
j∈Ni

(
{zj,m} , zi,m

)
(20)

so that, after d epochs, every zi,m converges to

zm :=
n

max
j=1
{zj,m} , m = 1, . . . ,Ms. (21)

Importantly, [11, Lemma 1] ensures that

zm ∼ Beta

(
n∑

i=1

si, 1

)
= Beta (s, 1) . (22)

Let then
z := [z1, . . . , zMs ] . (23)

Since
p (zm ; n) =

1

B (s, 1)
zs−1m = szs−1m (24)

where B (·, ·) is the Beta function, it follows that

p (z ; s) = sMs

Ms∏

m=1

(
zm
)s−1

, (25)

so that the ML estimator of s given z is structurally the
inverse of (12), i.e.,

ŝML = ŝML(z) :=
Ms

−∑Ms

m=1 log zm
. (26)

Since the ML estimator ŝML is biased (see, e.g., [6,
Sec. III]), we introduce its unbiased version

ŝ = ŝ(z) :=
Ms − 1

−∑Ms

m=1 log zm
. (27)

ŝ shares similar properties with n̂−1:
p (ŝ ; s,Ms) = Inv-Gamma (Ms, s(Ms − 1)) (28)

from which it follows, for Ms > 2,
E [ŝ] = s, (29)

E

[(
s− ŝ
s

)2
]

= var

(
ŝ

s

)
=

1

Ms − 2
. (30)

Remark 5 is valid also for ŝ; i.e., generating zi,m us- 7

ing other absolutely continuous cumulative distributions 8

rather than the uniform one does not lead to performance 9

improvements. Moreover ŝ exploits the same complete and 10

sufficient statistic exploited by n̂, and is thus MVU as well. 11

2.3 Estimating a 12

Having computed the ML estimators for n−1 and s is in- 13

strumental for computing the ML estimator for the average 14

a. Indeed, the ML estimator for a is the composition of the 15

ML estimators for s and n−1: 16

Lemma 6. Assume that the nodes have already reached
consensus on y and z in (10) and (23) respectively. Then

arg max
ã∈R

p (y, z ; ã) = ŝML(z)n̂−1(y). (31)
17

The unbiased version of the ML estimator (31) is defined
by

â = â(y, z) := ŝ(z)n̂−1(y). (32)
The proof of the unbiasedness of â exploits the indepen-
dence of y and z (the latter being inherited by the fact



that the yi,m’s and the zi,m’s are independent, and the
fact that we are considering a frequentist approach where
n and s are deterministic quantities). This independence
implies then (for Mn,Ms > 2)

E [â] = E [ŝ]E
[
n̂−1

]
= a (33)

E

[(
a− â
a

)2
]

= var

(
â

a

)

=

(
var

(
ŝ

s

)
+ 1

)(
var

(
n̂−1

n−1

)
+ 1

)
− 1

=
Mn +Ms − 1

Mn (Ms − 2)
.

(34)

To reduce the notational burden, assume thenMn+Ms =:1

M to be bounded. The natural choice for choosing Mn2

andMs is then to minimize the Normalized Mean Squared3

Error (NMSE):4

Lemma 7. Given M > 4, let

(M∗n,M
∗
s ) := arg min

Mn,Ms∈N+

E

[(
a− â
a

)2
]

s.t. Mn +Ms = M.

(35)

Then

M∗n = floor
(
M

2

)
− 1 M∗s = M −M∗n. (36)

5

For the rest of the manuscript assume that Mn and Ms

have been chosen as in (36). Then, the NMSE (34) reduces
to (see Figure 1)

E

[(
a− â
a

)2
]

=
M − 1(

floor
(
M
2

)
− 1
) (

ceil
(
M
2

)
− 1
)

= o

(
1

M

)
.

(37)

Moreover, considering that â results from the product of
an inverse gamma variate with an independent gamma
variate, it follows that the distribution of â is given by [12,
Lemma 2.1]

p (â ; a) =
1

(
M∗n

a(M∗s − 1)

)M∗
s

B (M∗s ,M
∗
n)

·

· âM
∗
s−1

(
1 +

M∗s − 1

M∗n
aâ

)M
(38)

As expected, Remark 5 is valid also for â; i.e., generating6

yi,m and zi,m using other absolutely continuous cumulative7

distributions rather than the uniform one does not lead8

to performance improvements. Moreover, since â exploits9

the statistics used by ŝ and n̂, which are complete and10

sufficient for a, it immediately follows that â is also MVU.11

Remark 8. Max-consensus based averaging is naturally
adapted to estimating generalized averages such as

α

√√√√ 1

n

n∑

i=1

sαi . (39)

In fact, given the a priori knowledge of the exponent α, the12

network can exploit our protocol to distributedly generate13

0 100 200 300 400 500
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10−1
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M

E

[ (
a
−

â

a

) 2
]

Figure 1. Graphical representation of (37), the NMSE of
the estimator â as a function of the number of scalars
M transmitted during each broadcast communica-
tion.

information on the average n−1
∑n
i=1 s

α
i and then infer a 14

ML estimate of (39) as we discussed above. 15

3. MOTIVATIONS 16

Motivated by practical considerations, we considered the 17

following assumptions: 18

A1) nodes are peers running the same information ag- 19

gregation primitives, and they are not differentiated 20

during their production process (by means, e.g., of an 21

unique ID); 22

A2) time is critical, and we aim at understanding the 23

achievable performance when the estimate is com- 24

puted as soon as the information is propagated once 25

from every node to every other node (i.e., in the case 26

when the consensus is reached as soon as possible); 27

A3) there is no prior information on the si; 28

A4) the number of communicated scalars is limited, to 29

account for finite bandwidths. (Yet we ignore quan- 30

tization issues, to obtain a simplified description of 31

trade-offs that may be encountered in real world set- 32

tings; the validity of these approximations will have 33

to be investigated in future works). 34

We now motivate why these assumptions lead naturally to 35

the proposed max-consensus based algorithm. 36

First, Assumption A1, useful for simplifying the physical 37

production of the nodes, suggests to use randomized al- 38

gorithms. Indeed, considering deterministic initial condi- 39

tions (not depending on the estimand) and deterministic 40

aggregation mechanisms (again not depending on the es- 41

timand) would imply a non identifiability of the average. 42

Thus randomization should act either on the initial condi- 43

tions or/and in the aggregation mechanism. Since random- 44

ized aggregation strategies would violate the convergence 45

requirement stated in Assumption A2 1 , randomization 46

should happen when initializing the nodes’ memories. 47

Moreover, Assumptions A2 and A3 suggest to use max- 48

consensus protocols: indeed the convergence requirement is 49

satisfied only by order-statistics consensus protocols, that 50

compute the κ-th biggest (or smallest) element in the set 51

{s1, . . . , sn}. An approach may then be constructing and 52

exchanging lists of the biggest / smallest si’s and then infer 53

a using L-estimators; but since we do not assume a prior 54

1 We omit treating formally this issue due to space constraints, and
leave it for extensions of this paper. The intuition is that if node j
randomly modifies the information content of a message received by
i, then i should be informed back of these changes.



on the si’s, the performance of these estimators cannot be1

characterized. This leads to frequentist assumptions where2

random variables are constructed from the si’s. Estimating3

sums using generic order-statistics on these novel r.v.s4

leads then to asymptotically equivalent estimators [13]; we5

thus choose here the simplest one, i.e., max consensus 2 .6

Given that we consider max-consensus protocols, Assump-7

tion A4 finally implies that we must estimate a through8

estimating both s and n in (3). Indeed, recalling (22),9

computing maxima leads to Beta random variables with10

a parameter given by a sum. In other words, only sums11

can be estimated from a Beta random variable derived12

from max-consensus operations. It is then clear that the13

generic ratio s/n cannot be estimated directly by using14

just one max consensus protocol: at least two parallel15

computations are needed and this motivates the structure16

of our estimator.17

4. COMPARISON18

We now compare the performance of the average-consensus19

protocol (4) against the ones of the max-consensus strat-20

egy (34) for Cayley graphs and different kinds conditions.21

We start with a general discussion of the NMSE associated22

to protocol 4 in Section 4.1, a general discussion on Cayley23

graphs in Section 4.2, and a comparison of the NMSEs of24

the considered protocols for Cayley graphs in Section 4.2.25

4.1 Characterization of protocol (4)26

Let (4) be s.t. P (k) = P for every k, and let the
spectrum of P be Λ = {1, λ2, . . . , λn}, with 1 ≥ |λ2| ≥
. . . ≥ |λn|. Let moreover the associated eigenvectors be
1/n, v2, . . . , vn, normalized so that ‖vi‖2 = 1, i = 2, . . . , n.
Consider then the notation s := [s1, . . . , sn]

T and a(k) :=

[a1(k), . . . , an(k)]
T , so that (4) reduces to a(k) = Pa(k −

1), a(0) = s. With this notation, a = 1Ts/n; we can thus
define the NMSE associated to P and s at time k as

NMSE (a(k)) :=
‖a(k)− 1a‖2

‖1a‖2
=

1

n

n∑

i=1

(
ai(k)− a

a

)2

.

The aim is then to compare NMSE (a(k)) with E
[(

a−â
a

)2]
27

in (37), i.e., the average of the local normalized squared28

errors induced by the average consensus in a generic29

epoch k with the expected normalized squared error of30

the max consensus assuming that this has converged (in31

other words, for k ≥ d).32

Instrumental to this comparison, we decompose the vector
s in two components, one parallel to 1 and one orthogonal
to it. I.e., we let

s = s‖ + s⊥, s‖ :=
11T

n
s = 1a, s⊥ := s− s‖, (40)

so that, since P1 = 1,
a(k) = P ks = s‖ + P ks⊥ = 1a+ P ks⊥. (41)

Thus, given the spectral decomposition of P ,

‖a(k)− 1a‖2 =
∥∥P ks⊥

∥∥2 =

∥∥∥∥∥
n∑

i=2

λki
(
vTi s

⊥) vi
∥∥∥∥∥

2

. (42)

2 We nonetheless notice that using generic order-statistic consensus
strategies is better when the size of the network is small [13].

Assume now that nodes start from a given “dissensus” level
‖s− 1a‖ = ϕ > 0, (43)

and that for simplicity s⊥ = ϕvi for an opportune i =
2, . . . , n. Thus

NMSE (a(k)) =
ϕ2

na2
λ2ki , (44)

i.e., the best convergence is achieved for s⊥ ‖ vn, while 33

the worst is for s⊥ ‖ v2 (the very well known fact that the 34

convergence rate of (4) is asymptotically dominated by λ2, 35

the essential spectral radius of P ). 36

4.2 Essentials on Cayley graphs 37

We notice that the problem of selecting the P leading to 38

the fastest convergence properties can be framed in terms 39

of an opportune semi-definite program [5]. Here, we focus 40

on Cayley graphs because of the availability of bounds 41

on the essential spectral radius of the P associated to a 42

generic graph in this class [3]. 43

We recall that a Cayley graph G(X,S), where X is a finite 44

Abelian group of order ‖X‖ = n and S ⊆ X, is a graph 45

with vertex set V = G and edge set E = {(x1, x2) ∈ X × 46

X : x1 − x2 ∈ S}. If S generates X then G(X,S) is 47

strongly connected. If S contains all the inverses of its 48

elements then the associated Cayley graph is undirected. 49

A matrix P is then called a Cayley matrix if there exists 50

a function π : G 7→ R such that [Pij ] = π(i − j) (with 51

i and j denoting both the i-th and j-th element of X 52

respectively and the i-th row and j-th column of P ). A 53

stochastic Cayley matrix P is also doubly stochastic, i.e., 54

P1 = 1 implies 1TP = 1T . An important result is the 55

following (tight) bound [3]: 56

Theorem 9. Let X be a finite Abelian group of order n
and S be a subgroup of G containing zero. Then there
exists a positive constant c ≤ 2π2, independent of X and
S, such that for all stochastic P consistent with G(X,S)
there holds

ρ(P ) ≥ 1− c

n2/(‖S‖−1)
, (45)

with ρ(·) : Rn×n 7→ R being the essential spectral radius. 57

This means that even if P has an optimal ρ(P ), then 58

its slowest mode of convergence cannot be faster than a 59

certain quantity depending on the size and the number of 60

communication links of the network. 61

Then, as long the analysis is restricted to the slowest mode
of convergence, since (37) is bounded above by 4/(M −2),
Theorem 9 and (44) give the sufficient condition

M ≥ 4na2

ϕ2

(
1− 2π

n2/(‖S‖−1)

)−2d
+ 2 (46)

ensuring for which M the NMSE of the max-consensus 62

strategy is better than the one of the classical average 63

consensus protocol. 64

4.3 An example 65

Consider the group X = Zn, the generators S = {0, 1},
and the associated Cayley graph G(X,S). For this network
it can be shown that the optimal P in given by



Pi,j =





1

2
∀ (i, j) ∈ E

0 otherwise.
(47)

and thus the essential spectral radius is

ρ(P ) =

(
1

2
+

1

2
cos

(
2π

n

))1/2

. (48)

The NMSE performance of averaging through our max-1

and average- consensus protocols for this network are2

compared in Figure 2.3
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(k
))
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(
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a

)

M = 100
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Figure 2. Graphical comparison of the NMSE in (44)
against (34) for the network with Cayley graph of
Section 4.3, n = 1000 and for different values of the
initial dissensus ϕ2

na2 and the number of scalars M .

5. CONCLUDING REMARKS4

Averaging over networks is a basic tool for distributed5

computations. In practice, it is important that averaging6

protocols have fast dynamics and it is thus interesting to7

study how averaging can be implemented on top of fast8

aggregation schemes such as max consensus.9

The possibility of estimating networks cardinalities with10

max consensus protocols is suggestive of the possibility of11

estimating averages using max operations. To the best of12

our knowledge, here we formally propose a novel mecha-13

nism (stemming from the specific assumptions considered14

in Section 3) for estimating averages on top of the aggrega-15

tion maxima. We characterized the statistical performance16

of the novel estimator and started considering when it17

performs better than linear consensus strategies.18

Unfortunately, due to the lack of tight bounds describing19

the essential spectral radius of a generic average consen-20

sus matrix P , it proves difficult to solve the problem of21

selecting the best performing strategy. Instead, we derived22

a characterization for Cayley graphs, obtaining (46), i.e.,23

an analytical sufficient condition ensuring when the per-24

formance of averaging via max-consensus are better then25

those of the classical average consensus in terms of the26

Normalized Mean Squared Error (NMSE) (assuming the27

worst case dynamics). As expected, there is no uniformly-28

better strategy: depending on the initial condition, either29

the first or the latter wins.30

There are several open questions to be studied: first,31

how the estimator is affected by quantization effects;32

second, how the sufficient condition (46) translates for33

more general graphs; and third, how a Bayesian prior on 34

the si’s can be encoded in the estimation strategy. 35
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