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Abstract Aiming at improving the energy efficiency of air cooled servers in data centers, we
devise a novel control oriented, nonlinear, thermal model of the servers that accounts explicitly
for both direct and recirculating convective air flows. Instrumental to the optimal co-design
of both geometries and cooling policies we propose an identification methodology based on
Computational Fluid Dynamics (CFD) for a generic thermal network of m fans and n electronic
components. The performance of the proposed modelling framework is validated against CFD
measurements with promising results. We formalize the minimum cooling cost control problem
as a polynomially constrained Receding Horizon Control (RHC) and show, in-silico, that the
resulting policy is able to efficiently modulate the cooling resources in spite of the unknown
future computational and electrical power loads.
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1. INTRODUCTION

The increasing societal requirements for data storage and
analysis are served by an increasing number of datacenters,
and this induces the need of operating these notoriously
energy-hungry systems in energetically friendly ways. Only
in Europe, in fact, datacenters consumed on average ap-
proximately 11.8GW in 2013, i.e., about 3% of the total
electricity produced across the continent, and these figures
have been steadily growing at a yearly rate of 4%, with an
associated generation of CO2 comparable to the aviation
industry [1].
Aiming at making datacenters more energy efficient, here
we focus on how to improve the efficiency of their thermal
cooling systems (known to account for up to 40% of the
total energy consumption in data centers [2]).
To define more precisely the problem that we consider, we
note that the primary control objective of a datacenter
is to provide a given set of Information Technology (IT)
services with high overall energy efficiency. The aim is then
to maintain specified Quality of Service (QoS) levels while
decreasing the total electrical power consumption and/or
reusing (after an opportune harvesting) the heat produced
by the IT elements.
A data center has three main infrastructures: the IT sys-
tem, the Cooling Technology (CT) system and the power
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distribution system. From an organizational point of view,
instead, the operations happen on three different layers:
single server level, rack level and datacenter level. At all
levels, electrical power is converted into IT services and
heat that has to be rejected by the CT (consuming more
power) [3]. Incrementing the energy efficiency of the sys-
tem can be done at any one of these three levels; nonethe-
less here we focus on the lowest one, and thus consider the
problem of minimizing the energy consumption in a single
server.

Literature review: the existing strategies for diminishing
the energy usage in a server while maintaining a specified
QoS can be divided into:
• reducing the power consumption by scheduling op-

portunely the network components, e.g., by turning
them on only when needed [4,5];

• regulating the power dissipated by the components
through Dynamic Voltage and Frequency Scaling
(DVFS) techniques, i.e., diminishing the chip’s fre-
quency or voltage when it is not fully utilized and
increasing it when the demand is higher [6,7];

• optimizing the power consumption of the server fans
while respecting the thermal constraints on the inter-
nal components (CPUs, memory banks, etc.).

In this paper we focus on the last strategy and aim at
finding the fans control law that provides the minimum
cost air flow satisfying the thermal constraints on the
server components. We are indeed interested in this prob-
lem since both the state of the art and (specially) the
state of the practice in server fan control often results in



over-provisioning the air flows, and thus in a higher energy
consumption than necessary.
The state of the practice indeed employs basic fan control
schemes such as simple on-off strategies according to
some thresholds, and tend to disregard variable fan speed
strategies.
A big part of the literature dedicated to the servers’ fans
control focuses on Proportional Integral Derivative (PID)
strategies: e.g., [8] proposes a control strategy based on
an adaptive PID controller, while [9] considers a PID
controller that is trained on-line by a neural network that
assumes a linear lumped parameter model of the thermal
network inside the server. We also mention [10], that
proposes to solve the thermal control problem by means
of cascades of PI controllers. PID controllers improve
the power consumption with respect to the state of the
practice, but still lead to over-provisions since the set-
points of the air flows have to be over-estimated to satisfy
the thermal constraints on-line.
Other approaches consider instead either Multiple Input
Multiple Output (MIMO) minimum cost control strate-
gies, as in [11], bang-bang schemes, as in [12], and finite
state machines deciding to actuate jointly or separately
various actuators in a MIMO fashion [13,14].
All these techniques nonetheless disregard: 1) modelling
the effects of other components on the board due to
warm flow recirculation, 2) accounting for potentially
available IT load forecasts, 3) considering the unavoidable
uncertainties in the models of the controlled physical
system.

Statement of contributions: Model Predictive Control
(MPC) is now considered a standard tool for solving
model-based, complex multivariable optimal control prob-
lems where the dynamics is subject to state and actuator
constraints. Here we thus tailor this control strategy to the
specific needs of datacenters by:
• proposing a novel model of the thermal dynamics at
the server level that accounts for nonlinear direct and
recirculation flows inside a generic server’s enclosure;
• describing how to identify the model above by lever-
aging CFD tools;
• validating the predictive capabilities of the so-identified
thermal model by means of opportune experiments;
• deriving and testing a dedicated deterministic MPC
strategy based on the model above and accounting
for forecasts of future IT and thermal loads.

In this way we address problems 1) and 2) above, while
keeping 3) as a future research issue.

Structure of the manuscript: Section 2 develops a novel
parametric, nonlinear, modelling framework aimed at the
thermal dynamics of server enclosures. Section 3 details
what are the issues in identifying the parameters of the
proposed dynamics and develops a least square approach
that exploits steady state measurements from CFD tri-
als. Section 4 formalizes our MPC strategy in terms of
a minimum cost optimization problem with polynomial
constraints. In Section 5 we show the performance of our
modelling framework using validation data from a CFD

campaign and demonstrate sample in-silico trajectories
of a controlled server. Finally, Section 6 collects final
thoughts and future directions.

Symbol Description Dim. Type

t continuous time R index
k discrete time N index
n number of IT components N index
m number of fans N index

xc temperatures of the n IT com-
ponents

Rn signal

xf temperatures of the flows
crossing the n IT components

Rn signal

xi temperature of the server’s in-
let air

R signal

u set-points for the mass flows
from the m fans

Rm signal

p power consumption of the n IT
components

Rn signal

f total flows crossing the n IT
components

Rn signal

∆ sampling period R parameter
b electrical power to heat conver-

sion rates
Rn parameter

h heat exchange rates of the n IT
components

Rn parameter

R matrix of the conduction rates
among the various n compo-
nents

Rn×n parameter

ρ vector of the parasitic losses
thermal resistances of the n IT
components

Rn parameter

Λd direct air mass flows maps (i.e.,
Λd

(i,j) considers the contribu-
tion of the direct flow from fan
j onto the IT component i)

Rn×m map

Λr recirculation air mass flows
maps (i.e., Λr

(i,j) considers the
contribution of the recircula-
tion flow from IT component
j onto the IT component i)

Rn×n map

?(j) j-th coordinate of the vector ?
or j-th row of the matrix ?

?(i,j) i, j-th element of the matrix ?

Table 1. Notation and most important formu-
las used throughout the manuscript.

2. THERMODYNAMICS INSIDE THE SERVER’S
ENCLOSURE

High-end servers such as the one in Figure 1 are packaged
in standardized enclosures and stacked within racks to
facilitate their access to networking, power and cooling
resources. A single rack can host from tens up to hundreds
of server enclosures. Groups of racks are further organized
in rows (within the computer hall) to form cold and hot
aisles: cool air from the cold aisle is supplied at the front
face of the rack, travels through the servers’ enclosures and
is eventually rejected at a higher temperature through the
back side to the hot aisle.



At the single enclosure (i.e., server) level a convective
flow is forced using local cooling fans: the cool air that
enters the server’s inlet at a temperature xi (for all
practical purposes constant along the air inlet) travels then
the enclosure, absorbs the heat energy dissipated by the
electronics, and then exits from the server’s outlet.

DIMMs
CPUs

fans

air outlet

air inlet

Figure 1. A Dell R730xd Power-Edge server. This platform
develops on a rectangular base that is 44.40cm wide,
68.40cm long and 8.73cm high, contains six main cool-
ing fans, 2 Central Processing Units (CPUs), 16 banks
of Dual In-line Memory Modules (DIMMs) organized
in four groups, companion chips and connectivity
support electronics, a power supply unit and up to
12 mass storage docks

In this work we propose a novel generic modelling frame-
work to describe the temperature dynamics of the electri-
cal components inside the server, and specifically model
the nonlinear convective effects of direct and recircula-
tion air flows. Due to format constraints, we tailor our
discussion to standard rack-unit enclosures disregarding
other enclosure types such as blades, even if the thermal
behavior of these IT devices can be captured within the
same framework. Our eventual aim is to use the proposed
model of the thermodynamics to regulate the temperatures
of the electronics within safe limits while minimizing the
cost of operating the fans and in spite of varying envi-
ronmental conditions (e.g., temperature and humidity in
the computer room) and computational load (and thus the
total heat load inside the enclosure).
In our control oriented model of a server, the state is given
by the temperatures of those electrical components within
the enclosure that dissipate the largest amount of power,
namely the CPUs and the DIMMs. The manipulable vari-
ables are the mass flows produced by the fans, affecting
the amount and the distribution of the cooling resources
within the enclosure. Moreover, in our model of a server
we consider two exogenous inputs: 1) the inlet air temper-
ature xi, and 2) the electrical power consumption of the
components. In practice, the inlet temperature xi is slowly
varying in time and can be measured; We thus assume that
xi is a known deterministic quantity that remains constant
on a sufficiently short prediction horizon. We moreover
assume that the power consumption of the electronics
is indirectly set by the job scheduling controllers that

allocate the IT requests. Since these schedulers operate
at a datacenter level, in our framework we can consider
their output as an external reference imposed on the single
server.
Our approach is then to consider a minimum cost MPC
strategy that computes the air flows that should be pro-
vided by the servers’ fans, and, instrumentally to it, we
introduce a novel modelling framework for the enclosure’s
thermal dynamics. The functional structure of the latter
dynamics builds on top of the following ingredients:
1) A static flow model that describes how the cool

air moves from the fans onto the components and
how the warm air recirculates inside the enclosure
(Section 2.1);

2) A dynamic thermal model that describes how the
temperature of a single component depends on the
intensity and temperature of the flows crossing it and
on the electrical power that is currently consuming
(Section 2.3).

The models defining the behavior of our generic network of
m-fans and n-components will then include the following
variables:
• as states, the n temperatures of the heat-dissipating
IT components xc =

[
xc1 . . . x

c
n

]T and the n temper-
atures of the air flows through each of these compo-
nents xf =

[
xf1 . . . xfn

]T
;

• as exogenous inputs, the n unknown (average) powers
dissipated by each component during the sampling
interval p =

[
p1 . . . pn

]T and the temperature of the
air inlet xi;

• as manipulable inputs, the m air mass flows produced
by the m fans within the server u =

[
u1 . . . um

]T ,
that in their turn determine the total cooling air flows
through the n components f =

[
f1 . . . fn

]T .
2.1 A control-oriented static air flow model

Minimizing the power used for rejecting the heat produced
by the CPU and the DIMMs modules requires an accurate
but control-oriented model of how the cool air moves from
the fans onto the components and how the warm air
recirculates inside the enclosure. We thus need a model
that is simple enough to lead to a numerically tractable
MPC problem but at the same time captures with a
sufficient degree of approximation the essential physical
behavior of the system.
Consider then that fluids, especially compressible ones as
gases, follow dynamical laws; nonetheless in our servers-
cooling framework we assume a static model, with the ra-
tionale behind this simplification being that the dynamics
of the air flows inside the servers’ enclosures are much
faster than the thermal dynamics that we want to control.
We thus safely exploit separation of time scales consider-
ations and approximate the faster manifold corresponding
to the fluid dynamics as always in steady state.
We then model the air flux blowing on the n components
in the server to be the sum of an opportune polynomial
transformation of u to account for the direct fluxes from
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Figure 2. The flow model proposed in this manuscript
accounts for: 1) direct and cold air flows (in blue) that
are pushed from the fans onto the components, and
2) recirculating warm air flows (in red) that affect
the temperature of neighboring components and, in
this way, couple the thermal dynamics of the various
individual elements.

the m fans to the n components, plus a polynomial trans-
formation of the air flows f to account for recirculation
effects within the server; graphically, thus, we consider the
situation depicted in Figure 2. Compactly, we write the
total flow f crossing the n components as the sum of the
two previous contributions, i.e., as

f = Λd[u] + Λr[f ], (1)
where Λd and Λr in (1) are opportune polynomial func-
tions (described in more detail in Appendix A). We stress
that the flow from the fans is “cold” while the flow due to
recirculation is “warm” and acts as a disturbance coupling
the individual dynamics.
With this model the total flow f can then be computed as
a solution to the 2n polynomial constraints

(I − Λr)[f ] = Λd[u], f � 0, (2)
where I denotes the identity operator, i.e., I[f ] = f .
Model (2) generalizes different existing models by captur-
ing:
i) those models that assume no warm recirculation

flows, obtainable when taking Λr = 0;
ii) those models that preserve total mass-flows, obtain-

able when Λd and Λr are both row-stochastic matri-
ces;

iii) those models that do not preserve total mass-flows,
in the remaining settings.

Interestingly, when Λr is a linear operator (i.e., a matrix),
then the total flow f is just a polynomial transformation
of the fans operating conditions u, since in this case (for
relevant sufficient conditions on the non-singularity of Λr
see Appendix 5 in [3]).

f = (I − Λr)−1 Λd[u]. (3)

2.2 Modelling the dynamics of the temperature xfj of the
flow crossing the single thermal component j

As done for the flow model (1), we approximate the
temperature of the flow crossing the j-th component,
xfj (u,xc, xi), using a static mapping. Instrumental for
our purposes, it is convenient to re-write the generic j-
th coordinate of the recirculation operator Λr in (1) as
the sum of n scalar polynomial functions, i.e., as

Λr(j)[f ] =̇
n∑
h=1

Λr(j,h)[f ]. (4)

With the above definition, we model xfj (u,xc, xi) as the
weighted average of the temperatures of the direct and
recirculation flows under the simplifying assumptions of
perfect flow mixing and heat energy conservation, i.e., as

xfj =
Λd(j)[u] · xi +

∑n
h=1 Λr(j,h)[f ] · xch
fj

, j = 1, . . . , n.

(5)
The flow temperature model (5) accounts for
(1) the temperature and intensity of the direct flow

through the product Λd(j)[u] · xi;
(2) the temperature and intensity of the recirculation

flows from all the other components through the sum
n∑
h=1

Λr(j,h)[f ] · xch.

Using (1) together with (5) corresponds then to approx-
imating the (average) convective cooling effect on the j-
th component through the total flow fj and the energy
and mass conservation assumptions leading to the flow
temperature model (5).

2.3 Modelling the dynamics of the temperature xcj of the
single thermal component j

We model the dynamics of the generic j-th component
through three main contributions:

ẋcj = −hjfj(u)
(
xcj − x

f
j (u,xc, xi)

)
︸ ︷︷ ︸

convection

+ . . .

+
[
R(j) ρj

] [xc
xi

]
︸ ︷︷ ︸

conduction

+ bjpj︸︷︷︸
el. power

j = 1, . . . , n.
(6)

Specifically, the rate of change of temperature in (6)
depends on:
i) a convection term that expresses the rate at which

heat is transferred between the electronic component
and the air flow fj crossing it. hj here is a lumped
parameter describing the average heat transfer coeffi-
cient in Newton’s law of cooling. The rate of this heat
exchange is moreover modeled to be proportional to
the equivalent mass flow fj crossing the component;
we then recall that the latter is in its turn a function
of the controls u, i.e., fj =̇ fj(u) (c.f. (2));

ii) a conduction term that expresses the rate at which
heat is exchanged among neighboring components
through the mechanism of conduction. Parasitic
losses to the environment are taken into account by
introducing the thermal resistance ρj between the
component and a fictitious environmental node;

iii) a self-heating term that expresses the rate at which
electrical power flowing through the electrical compo-
nent is converted into heat.

Specializing (6) with (5) we eventually get, for j =
1, . . . , n,



ẋcj = −hjfjxcj + hj

n∑
h=1

Λr(j,h)[f ] · xch +R(j)x
c + . . .

+ hjΛd(j)[u] · xi + ρjx
i + bjpj

= Ψj

(
xcj(k),u,p, xi

)
.

(7)

Discretizing (7) using Euler’s rule (we assume that the
power consumption of the components is piecewise con-
stant and that the controls are zero-order held), with a
sample interval of length ∆, yields

xcj(k + 1) = xcj(k) + ∆ ·Ψj(xcj(k),u,p, xi)
=: Ψ∆

j (xcj(k),u,p, xi).
(8)

3. ESTIMATION OF THE PARAMETERS OF THE
AIR FLOW MODEL (1) FROM CFD TRIALS

In our control-oriented framework we seek also to estimate
the model’s parameters through opportune system identi-
fication schemes. Unfortunately, measuring xc, xf , p, u
and f in a real-world system is quite complicated, since
it needs expensive and bulky measurement systems (that,
moreover, perturb the measured dynamics with their pres-
ence).
The design of a server’s enclosures, nonetheless, is always
performed using opportune CFD tools that simulate ac-
curately the distribution of the temperatures and of the
air flows within the server. The intuition is thus that it is
possible to simultaneously co-design the structure of the
servers’ enclosures and the fans control algorithm through
the very same CFD model.
We thus assume that we are endowed with a CFD simula-
tor that allows us to 1 2 :
(1) specify the boundary conditions at the air inlet (i.e.,

the inlet air temperature xi and the air mass flows u
produced by the m fans);

(2) specify the vector p of the electrical power supplied
to the n electronic components;

(3) run the CFD simulation and consequently retrieve the
temperatures xc.

Having then collected K sets of initial conditions and
temperature measurements from K different CFD runs
one can estimate both the coefficients in the maps Λd,
Λr in (1) and the remaining parameters in (7).
Importantly, we notice that the identification problem is
not in a standard form; indeed the measurements refer
to steady-state CFD simulations, so that all the measure-
ments come from a system that is always in some equilib-
rium. Recalling (8), formulating the estimation problem in
a Least Squares (LS) fashion thus leads to

1 In this manuscript, for simplicity, we ignore the problem of
designing the experiments in the maximally informative way, and
leave it for future research issues. In this work we considered a Latin
hypercube sampling strategy to generate the sets of initial conditions.
2 We also notice that throughout each CFD simulation-run, the
variables u and p are maintained constant so that the measured
variables correspond to a server at steady state. This is compliant
with the scope of this manuscript, where we neglect the dynamics of
the air flows as stated in Section 2.1.

min
θ

n∑
j=1

N−2∑
t=0

Ψj

(
xcj(t),u(t), xi

)2
subject to (I − Λr)[f(t)] = Λd[u(t)] 0 ≤ t ≤ N − 2

(9)

where θ =̇
[
Λd,Λr, R,h, b, ρ,f(0), . . . ,f(N − 2)

]
(for no-

tational simplicity we omit in (9) stating obvious non-
negativity constraints for some components in θ like
f(t) � 0).
The structure of (9) nonetheless leads to two separate
statistical identifiability issues and two separate numerical
issues:
i) considering (7), the dynamics ẋcj = αΨ with α 6= 0

has the same steady-state behavior of the dynamics
ẋcj = Ψ; this implies that choosing α [R,h, b, ρ]
instead of [R,h, b, ρ] in (8) leads to the same cost;

ii) (9) is non-convex when the order of the polynomials
in Λd,Λr is higher than 1. This raises the issue
of numerical problems in solving the optimization
problem when the number of involved parameters is
high.

To cope with these issues we:
• address i) by letting b = h = [1, . . . , 1], i.e., normaliz-

ing the electrical power to heat conversion rates plus
absorbing the heat exchange rates in Λd and Λr;

• address ii) by restricting our recirculation model to
be at most linear, as in (3). With this hypothesis

Λr(j,h)[f ] =
[
Λr (I − Λr)−1 Λd[u]

]
(j,h)

=̇ Λr(j,h)[u].

(10)
We thus highlight the fact that with linear recircu-
lation models the flows can be determined explic-
itly as a polynomial mapping of merely the con-
trols u rather then as solutions to the constrained
problem (2) (notice that we override the symbol Λr
for notational simplicity; nonetheless we stress that
Λr(j,h)[f ] 6= Λr(j,h)[u], to avoid confusion).

Exploiting the two strategies above the estimation prob-
lem (9) thus reduces to

min
θ

n∑
j=1

N−2∑
t=0

( n∑
h=1

Λr(j,h)[u] · xch +R(j)x
c+

+Λd(j)[u] · xi + ρjx
i + pj

)2
(11)

subject to the non-negativity constraints on θ.
Our last step is then to rewrite problem (11) as a classical
linearly constrained least squares problem by rewriting the
polynomial functions Λr [·] and Λd [·] as scalar products
using (A.2) in Appendix A, In this way every summand
in (11) can be rewritten in the separable form

aTΛd(j)
πΛd(j)

[u(k)]
(
xi − xcj(k)

)
+

+
n∑
h=1

(
aTΛr(j,h)

πΛr(j,h)
[u(k)]

(
xch − xcj

))
+

+R(j)x
c(k) + ρjx

i + pj(k).

(12)



Paraphrasing, thus, for each j-th IT component, solv-
ing (11) means solving the least squares problem

Φjθj = −pj , (13)
where the hyper-parameter θj and the vector of powers pj
are defined through

θj =̇
[
aTΛd(j)

aTΛr(j,1)
. . . aTΛr(j,n)

R(j) ρj
]T
, (14)

pj =̇
[
pj(1) pj(2) . . . pj(N)

]T
, (15)

and where the regressor Φj is obtained by reorganizing and
stacking accordingly the coefficients of (12). For instance,
the k-th row of the j-th regressor Φj is

Φjk =̇
[
πTΛd(j)

[u(k)]
(
xi − xcj(k)

)
,

πTΛr(j,1)
[u(k)]

(
xc1 − xcj

)
,

...
πTΛr(j,n)

[u(k)]
(
xcn − xcj

)
,

(xc(k))T , xi

]
.

(16)

4. MINIMUM COST FAN CONTROL

To design a fans control policy we notice that:
• the rotational speeds of the fans are limited, so that

the control values u are constrained in the hyper-
rectangle defined by the extreme points umin,umax ∈
Rm≥0;

• the temperatures of the IT components shall be kept
below some specified safe limits, that implies that
there exist state constraints of the kind xc � xcmax ∈
Rn≥0;

• the concept of minimizing the cooling provisioning
can be translated into minimizing the sum of the
power consumption of the individual fans while guar-
anteeing the temperatures of the IT components to be
within their limits. In first approximation, then, the
power necessary to produce a given air mass flow is
proportional to the product of the generated pressure
drop and the mass flow itself. For the generic h-th fan
at time t, the latter product is then proportional to
the cubic power of the control value uh(t).

Given the above remarks, we propose to control the fans
by solving on-line the following RHC problem:

min
u(0),...,u(H−1)

H−1∑
t=0

m∑
h=1

(uh(t))3

subject to (for 0 ≤ t ≤ H − 1, 1 ≤ j ≤ n):
xc(0) = xc0
umin � u(t) � umax
xc(t+ 1) � xcmax

xcj(t+ 1) = Ψ∆
j

(
xcj(t),u(t),p(t), xi

)
(17)

Notice that the electrical power consumption of the n IT
components over the future horizon is unknown, i.e., at
each time t the values of p(t),p(t+1), . . . ,p(t+H−1) are
unknown. Since the investigation of opportune predictors

of the power consumption is outside of the scope of this
work, here we adapt the following heuristic: We consider
that the worst case temperature and cost scenario in (17)
occurs when the server runs at its full computational
load, i.e., when p(t) = pmax, t = 0, 1, . . . ,H − 1. In
this manuscript we then use as a forecast of the future
power consumption p(t),p(t+1), . . ., the worst-case power
consumption. We stress that less conservative and more
realistic forecast can be (if available) directly plugged into
the proposed MPC strategy (17). The degree of conserva-
tiveness of the resulting feedback law is demonstrated in
Section 5.

5. NUMERICAL EXPERIMENTS

We divide this section in two separate parts: Section 5.1,
analyzing the predictive capabilities of model (1), and
Section 5.2, analyzing the performance of the control
strategy (17).

5.1 Assessment of the identification methodology

We demonstrate the predictive capabilities of model (1)
through simulations on a CFD model of a Dell R730xd
Power-Edge server like in Figure 1. The CFD model is
based on the true size specifications of the server and
contains 6 fans, 4 groups of DIMMs and two CPUs with
heat-sinks mounted on their top. The simulations were run
using the double precision steady state solver in the CFD
software ANSYS CFX.
We thus generated a training dataset

Dtrain =̇
{
xcκ,pκ,uκ, x

i
κ

}K
κ=1

by feeding the CFD simulator withK different 3 boundary
conditions pκ,uκ, xiκ and collecting the corresponding xcκ.
We then used this dataset to solve the estimation prob-
lem (11) 4 and find an opportune estimate θ̂.

To asses the predictive capability of θ̂ we then generated
a second dataset

Dtest =̇
{
xcκ,pκ,uκ, x

i
κ

}K′

κ=1

by feeding the CFD simulator with other K ′ boundary
conditions pκ,uκ, xiκ that have not been included in the
training set Dtrain, then both collecting again the corre-
sponding xcκ from the CFD and also forecasting these
values through (7) (where we implicitly compute xc as
the equilibrium of the thermal dynamics defined by the
estimated θ̂).
The results are graphically plotted in Figure 5, where the
x-axis represents the simulation index, the left y-axis in-
dicates the temperature measured by the CFD simulator,
3 For simplicity in this work we generated both the training and test
sets by means of Latin Hypercube Sampling strategy.
4 We notice that increasing the number of terms in the flow
model (1) may lead to both overfitting and increasing computa-
tional requirements. To mitigate these problems in our estimation
problem we actually regularized the LS problem (11) by means of a
lasso penalty with regularization parameter automatically chosen by
means of a leave-one-out cross validation, and by choosing the max-
imal polynomial order by means of an Akaike Information Criterion
(AIC)-type model order selection strategy.



and the right y-axis indicates the error committed by our
trained model. As it can be seen, the maximal error is
about 2 degrees but usually stays well below 1 degree,
indicating overall a good prediction capability at least in
the considered scenario.
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Figure 3. Reconstruction of the steady state temperatures
of the first CPU (black line) over 700 validation trials.
The reconstruction error is shown in gray.

5.2 Assessment of the control methodology

In this section we test the capabilities of our control
scheme in minimizing the power consumption used by the
fans while constraining the thermal dynamics of the IT
components to be within their thermal comfort ranges.
Our assessments are not based on a real server, but rather
on the model identified in Section 5.1.
We consider two different heat load scenarios:
1) the true power consumption of the components at

time t, p(t), is set to be the worst-case power con-
sumption. That is, in this scenario we set p(t) = pmax
for all t;

2) the true power consumption of the components is set
to be a realization of the stochastic process with sea-
sonal trends described in [15], simulating a medium
to high load scenario.

For both scenarios we set the inlet temperature to be
xi = 20 ◦C, a prediction horizon of length H = 4 and
a sampling time of ∆ = 1 seconds. Iteratively solving the
minimum cost problem (17) in a receding horizon fashions
yields then the temperature and control trajectories in
Figure 4 and Figure 5 for scenarios i) and ii) respectively.
We observe that in scenario i) the full utilization of the
two CPUs leads to an over provisioning of the cooling
resources for the DIMMs: Due to the flow mixing inside
the enclosure, indeed, this is the minimum cost control
that can dissipate the heat produced by the two CPUs
while satisfying all the temperature constraints of all the
IT components. In scenario ii), instead, the minimum cost
controller is able to regulate all temperatures in an efficient
manner near to the upper comfort limits.
Finally, we notice that in both scenarios the control policy
(17) is able to operate the simulated server with no
constraint violations in spite of the unknown future power
loads.

6. CONCLUSIONS

Developing control oriented models is the most time-
consuming task in the implementation of model-based con-
trollers. Here, we proposed a novel modelling and optimal
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Figure 4. Controlled cooling trajectories of a server under
full computational and power loads.
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Figure 5. Controlled cooling trajectories of a server under
medium to high computational loads.

control framework tailored for air cooled servers within
data centers. Our dynamics shows a promising ability at
capturing the complex convective cooling effects inside
the server’s enclosure; its functional structure moreover
is open to other cooling applications.
In the light of these new and fast methodologies to approx-
imate the network’s thermal dynamics and to compute the
control costs, this work hints at enabling the co-design of
the geometries within the server enclosure and that of the
cooling control policies. Towards this eventual goal, we
detailed an identification strategy that is based on steady
state measurements performed by a CFD tool. We showed
that our modelling strategy is effective at capturing the
steady state behavior of the server’s thermal state and
demonstrated minimum cost in-silico sample trajectories
of an air cooled, controlled, server.
For the future we envision the study of generic thermal
networks with an arbitrary number ofm supply nodes that
distribute the cooling resources and an arbitrary number
of n heating nodes that necessitate cooling.
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Appendix A. POLYNOMIAL FUNCTIONS

Definition 1. (Polynomial function). We call u 7→ Λ(u) :
Rm → Rn a polynomial function if each of its coor-
dinates Λi, i = 1, . . . , n, is a polynomial mapping of
u =̇

[
u1 u2 . . . um

]
. The degree of Λ is the highest mono-

mial degree among all the monomials of Λ1, . . . ,Λn.
Example 2. The functions Λ1 : R2 → R and Λ2 : R2 →
R2 defined below are polynomial with degree 2 and 3
respectively:

Λ1(u1, u2) =̇u1u2, Λ2(u1, u2, u3) =̇
[
u1u2
u3

1

]
.

Example 3. A generic real-valued polynomial function
with degree 3 is written

Λ(u1, . . . , um) =
∑

1≤i≤j≤k≤m
aijkuiujuk + . . .

+
∑

1≤i≤j≤m
aijuiuj +

∑
1≤i≤m

aiui + a0.

More in general, it can be shown (e.g., using a stars and
bars combinatoric argument) that the number of coeffi-
cients in a scalar polynomial mapping with m variables
and degree d is given by counter

σ(m, d) =̇
(
m+ d

d

)
.

In this manuscript we prefer the notation Λ[u] to
Λ(u1, . . . , um) and write a generic scalar polynomial of
degree d and m variables as

Λ[u] =
σ(m,d)∑
i=1

aiu
αi , (A.1)

where ai ∈ R, the generic αi =
[
αi1 αi2 . . . αim

]
is

an m-tuple in {0, 1, . . . , d}m such that
m∑
j=1

αij ≤ d and

the notation uαi is taken to mean
m∏
j=1

u
αij
j . We order

the finite families {αi} in a lexicographical manner, i.e.,
so that α1 = (0, 0, . . . , 0) precedes α2 = (0, 0, . . . , 1),
the latter precedes αd+2 = (0, . . . , 1, 0) and so on up to
ασ(m,d) = (d, 0, . . . , 0).

Given the ordering above we can always rewrite (A.1) as
the scalar product

Λ[u] = aTΛπΛ[u], (A.2)
where the monomial coefficients and the powers of u have
been organized in two vectors aΛ,πΛ ∈ Rσ(m,d) defined
through

aΛ =̇
[
a1 a2 . . . aσ(m,d)

]T
,

πΛ[u] =̇
[
uα1 uα2 . . . uασ(m,d)

]T
.

(A.3)


